14.09.2014 Views

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Exploring key unknown neutrino properties<br />

in astrophysical <strong>and</strong> cosmological environments<br />

<strong>IPN</strong>O Participation: C. Volpe, J. Gava, J. Kneller<br />

Collaboration : A.B. Balantekin (University of Wisconsin-Madison), G.C. McLaughlin (North State<br />

Carolina University), N. Jachowicz (U. Gent)<br />

La physique des neutrinos est un domaine en plein développement depuis la découverte du phénomène<br />

d’oscillation il y a dix ans. Des progrès considérables ont été obtenus sur notre connaissance des propriétés<br />

des neutrinos. Toutefois des questions essentielles restent ouvertes telles que la connaissance de la<br />

valeur absolue et de la hiérarchie de masse, la valeur du troisième angle de mélange, la nature des neutrinos<br />

de Majorana ou Dirac et l’existence possible de la violation de CP leptonique. Nous utilisons les neutrinos<br />

provenant de sources astrophysiques et de l’Univers primordiale pour explorer ces questions et apporter<br />

des stratégies complémentaires dans ces recherches. En particulier, nous venons d’établir dans quelles<br />

conditions ils peuvent y avoir des effets de violation de CP sur les flux des neutrinos dans les milieux et<br />

étudié l’impact. Une signature pour le troisième angle de mélange a aussi été proposée qui peut être utilisée<br />

dans les observatoires des supernovae actuels, comme Super-Kamiok<strong>and</strong>e, ou en phase d’étude.<br />

Introduction<br />

A major progress in our knowledge of neutrino<br />

properties has been made in the last decade after<br />

the discovery of the neutrino oscillation phenomenon<br />

- neutrinos can change their flavour while travelling<br />

- in 1998 by the Super-Kamiok<strong>and</strong>e collaboration,<br />

with an impact in various fields of physics<br />

from particle physics to astrophysics <strong>and</strong> cosmology.<br />

Neutrinos are so elusive that they can pass<br />

through extensive layers of matter to tell us what<br />

happens in the inner core of stars, such as our<br />

Sun. A huge amount of neutrinos is emitted during<br />

the gravitational collapse of massive stars called<br />

core-collapse supernovae. R. Davis, for the pioneering<br />

solar neutrino experiment, <strong>and</strong> M. Koshiba<br />

for the observation of neutrinos from the supernova<br />

1987A have been awarded the Physics Nobel<br />

Prize in 2002, with R. Giacconi. Neutrino oscillations<br />

turn out to be essential when neutrinos<br />

propagate in these <strong>and</strong> other astrophysical environments,<br />

including accretion-disks around blackholes,<br />

as well as in the early Universe, at the epoch<br />

of the synthesis of light elements.<br />

Neutrino physics is entering a crucial phase. In the<br />

coming years several experiments will address<br />

crucial open issues, among which the third neutrino<br />

mixing angle value, the neutrino (Majorana<br />

versus Dirac) nature, the neutrino mass scale <strong>and</strong><br />

hierarchy, <strong>and</strong> the possible existence of CP violation<br />

in the lepton sector. Neutrinos from massive<br />

stars or the Early Universe can bring essential information<br />

on these open questions, either from<br />

searching their effects in these environments (on<br />

the r-process or Big-Bang Nucleosythesis for example)<br />

or in observations in detectors on Earth.<br />

This is one of the strategies followed by the theoretical<br />

group working on neutrinos at <strong>IPN</strong> Important<br />

results have been obtained in the last two years<br />

concerning both the value of the third neutrino mixing<br />

angle <strong>and</strong> CP violation.<br />

Searching for indirect effects of leptonic CP<br />

violation in core-collapse supernovae <strong>and</strong> the<br />

Early Universe (BBN epoch)<br />

We have investigated neutrino propation including<br />

the coupling with matter at tree level (MSW effect)<br />

<strong>and</strong> a non-zero CP violating Dirac phase [1]. We<br />

have identified, for the first time, the conditions<br />

under which there can be CP violating effects in<br />

supernovae. Any physics that breaks the equality<br />

among the muon <strong>and</strong> tau neutrino fluxes at the<br />

neutrinosphere, such as loop corrections or physics<br />

beyond the st<strong>and</strong>ard model (ex. flavourchanging-neutral-currents),<br />

engenders CP effects<br />

on the neutrino fluxes <strong>and</strong> on observables. One of<br />

our main goals has also been to determine<br />

whether CP violation can have an impact on the r-<br />

process. Unraveling the site <strong>and</strong> the conditions for<br />

the r-process is one of the most important open<br />

questions in nuclear astrophysics, core-collapse<br />

supernovae being one of the possible sites. However<br />

present simulations are unable to reproduce<br />

the observed abundances because (anti)neutrino<br />

interactions with neutrons <strong>and</strong> protons reduce the<br />

available neutrons. In such a context effects of<br />

several percent, such as those that might arise<br />

from CP violation, can be important. Our results<br />

show that the CP effects on the neutron/proton<br />

ratio -- a key parameter for the r-process -- are<br />

less than 1% within the MSW framework [1,3].<br />

In [2] we have generalized these results to the<br />

case where the neutrino-neutrino interaction is also<br />

included. Following the neutrino evolution in matter<br />

in this case becomes much more dem<strong>and</strong>ing because<br />

a large number of stiff non-linear differential<br />

equations are involved. We have shown that our<br />

demonstration holds also in the case where neutrino-neutrino<br />

interaction is included; <strong>and</strong> we have<br />

quantified the CP effects on the neutrino fluxes in<br />

the star. These turn out again to be of the order of<br />

several percent [2,3].<br />

78

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!