14.09.2014 Views

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Collective Modes in Ultracold Trapped Fermi Gases:<br />

From Hydrodynamic Behaviour to the Collisionless Limit<br />

<strong>IPN</strong>O Participation: M. Urban<br />

Collaboration : D. Davesne <strong>and</strong> T. Lepers (<strong>IPN</strong> Lyon), S. Chiacchiera (Université de Coimbra)<br />

L’équation de Boltzmann est un outil important pour la modélisation de nombreux processus dependant du<br />

temps dans des gaz de fermions ultra-froids, puisqu’elle est valable du régime hydrodynamique jusqu’au<br />

régime sans collisions. Nous l’avons appliquée au calcul des fréquences et des taux d’amortissement des<br />

oscillations collectives (mode quadrupolaire, mode de ciseaux, modes de respiration). Dans le régime<br />

d’interaction forte, nous avons calculé le champ moyen et la section efficace dans le milieu, qui rentrent<br />

dans l’équation de Boltzmann, en utilisant la matrice T dans l’approximation d’échelle. Les propriétés des<br />

modes ont ensuite été obtenus par la méthode des moments. La comparaison avec l’expérience montre<br />

que l’effet des collisions est surestimé dans la théorie avec la section efficace dans la milieu. Pour resoudre<br />

ce problème, nous avons développé un code qui résout l’équation de Boltzmann numériquement en<br />

utilisant la méthode des pseudoparticules.<br />

For the description of time-dependent processes in<br />

trapped Fermi gases, different regimes can be distinguished.<br />

Let us concentrate on the normal-fluid<br />

phase. Then there are two limiting cases: If the<br />

process is much slower than the mean time between<br />

collisions of the atoms, the system is locally<br />

in equilibrium <strong>and</strong> it can be described hydrodynamically.<br />

If the process is much faster than the collisions,<br />

the system is in the collisionless limit <strong>and</strong><br />

can be described by the Vlasov equation. In order<br />

to interpolate between these limits, we use the<br />

Boltzmann equation, which is a Vlasov equation<br />

with collision term. In order to account for the Fermi<br />

statistics of the atoms, the collision term<br />

contains the usual Pauli-blocking factors, which<br />

strongly suppress collisions at low temperature.<br />

In-medium T matrix<br />

The Boltzmann equation needs some input from<br />

the underlying microscopic theory. First of all, the<br />

propagation of the particles depends on the potential,<br />

which in the case of trapped atoms can be<br />

written as V=V trap +U, where V trap denotes the trap<br />

potential <strong>and</strong> U is the mean field. In the weakcoupling<br />

limit, the latter can be obtained within the<br />

Hartree approximation U=gρ, where g

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!