exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3 exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

ipnweb.in2p3.fr
from ipnweb.in2p3.fr More from this publisher
14.09.2014 Views

Pygmy resonance and torus mode within Vlasov dynamics IPNO Participation: M. Urban, P. Schuck Dans des noyaux riches en neutrons, des modes collectifs qui n’ont pas d’équivalent dans des noyaux N=Z apparaissent. Un exemple en est la resonance pygmée dans la réponse dipolaire électrique. Nous étudions cette resonance dans le cadre de l’équation de Vlasov que nous résolvons par la méthode des pseudoparticules, avec la fonctionelle d’énergie BCP (qui décrit les masses des noyaux stables et l’équation d’état de la matière asymétrique) comme interaction. Nous obtenons des résultats très raisonnables pour la réponse dipolaire. L’existance de la resonance pygmée est donc un phénomène générique qui ne depend pas de la structure en couches des noyaux. En analysant le champ de vitesse correspondant, il semble que la resonance pygmée n’est pas seulement une oscillation de la peau à neutrons contre le cœur N=Z, mais elle ressemble beaucoup au mode toroïdal qui a été prédit comme mode isoscalaire aussi dans les noyaux N=Z. In neutron-rich nuclei, the rms radius of the neutrons is larger than that of the protons. Hence, the surface region of these nuclei consists mainly of neutrons. The existence of this ‘’neutron skin’’ leads to the existence of new excitation modes. A famous example for such a mode is the ’’pygmy resonance’’. In order to learn more about the character of this mode, we study it in the framework of the semiclassical Vlasov equation, which we solve numerically employing the pseudo-particle method (as in the simulation of heavy-ion collisions). The particles propagate in a mean field which is calculated from a slightly modified version of the so-called BCP energy-density functional, which was fitted to the masses of some finite nuclei and to Brückner calculations for symmetric and asymmetric nuclear matter. The ground state is computed within the Thomas-Fermi approximation in order to be consistent with the Vlasov dynamics. We excite the nucleus at t=0 and then let it evolve until the oscillation is sufficiently damped. The response function is obtained by calculating the Fourier transform of the resulting time-dependent electric dipole moment. Results for the electric dipole response of different tin isotopes are shown in Fig. 1. The response is dominated by the giant dipole resonance, but with increasing neutron excess some strength at lower energies builds up, which in the case of 132 Sn is concentrated in a well localised peak at 8.6 MeV, corresponding to the pygmy resonance. Although our semiclassical theory does not take into account any shell effects, the results for the electric dipole response are in reasonable agreement with fully quantum mechanical RPA calculations. We thus conclude that the main features of the pygmy resonance are independent of the shell structure of the nucleus. We also calculate the velocity fields of protons and neutrons corresponding to the pygmy resonance (see Fig. 2). We see that not only the neutron skin is moving against the core, but the motion resembles that of the isoscalar torus mode which was predicted to exist even in N=Z nuclei.This confirms a result obtained earlier for 208 Pb within a completely different approach [Ryezayeva et al., Phys. Rev. Lett. 89, 272502 (2002)]. Figure 1: electric dipole response of different tin isotopes. Figure 2: proton and neutron velocity fields of the pygmy resonance in 132 Sn. 75

Collective Modes in Ultracold Trapped Fermi Gases: From Hydrodynamic Behaviour to the Collisionless Limit IPNO Participation: M. Urban Collaboration : D. Davesne and T. Lepers (IPN Lyon), S. Chiacchiera (Université de Coimbra) L’équation de Boltzmann est un outil important pour la modélisation de nombreux processus dependant du temps dans des gaz de fermions ultra-froids, puisqu’elle est valable du régime hydrodynamique jusqu’au régime sans collisions. Nous l’avons appliquée au calcul des fréquences et des taux d’amortissement des oscillations collectives (mode quadrupolaire, mode de ciseaux, modes de respiration). Dans le régime d’interaction forte, nous avons calculé le champ moyen et la section efficace dans le milieu, qui rentrent dans l’équation de Boltzmann, en utilisant la matrice T dans l’approximation d’échelle. Les propriétés des modes ont ensuite été obtenus par la méthode des moments. La comparaison avec l’expérience montre que l’effet des collisions est surestimé dans la théorie avec la section efficace dans la milieu. Pour resoudre ce problème, nous avons développé un code qui résout l’équation de Boltzmann numériquement en utilisant la méthode des pseudoparticules. For the description of time-dependent processes in trapped Fermi gases, different regimes can be distinguished. Let us concentrate on the normal-fluid phase. Then there are two limiting cases: If the process is much slower than the mean time between collisions of the atoms, the system is locally in equilibrium and it can be described hydrodynamically. If the process is much faster than the collisions, the system is in the collisionless limit and can be described by the Vlasov equation. In order to interpolate between these limits, we use the Boltzmann equation, which is a Vlasov equation with collision term. In order to account for the Fermi statistics of the atoms, the collision term contains the usual Pauli-blocking factors, which strongly suppress collisions at low temperature. In-medium T matrix The Boltzmann equation needs some input from the underlying microscopic theory. First of all, the propagation of the particles depends on the potential, which in the case of trapped atoms can be written as V=V trap +U, where V trap denotes the trap potential and U is the mean field. In the weakcoupling limit, the latter can be obtained within the Hartree approximation U=gρ, where g

Pygmy resonance <strong>and</strong> torus mode within Vlasov dynamics<br />

<strong>IPN</strong>O Participation: M. Urban, P. Schuck<br />

Dans des <strong>noyaux</strong> riches en neutrons, des modes collectifs qui n’ont pas d’équivalent dans des <strong>noyaux</strong> N=Z<br />

apparaissent. Un exemple en est la resonance pygmée dans la réponse dipolaire électrique. Nous étudions<br />

cette resonance dans le cadre de l’équation de Vlasov que nous résolvons par la méthode des pseudoparticules,<br />

avec la fonctionelle d’énergie BCP (qui décrit les masses des <strong>noyaux</strong> stables et l’équation d’état de<br />

la matière asymétrique) comme interaction. Nous obtenons des résultats très raisonnables pour la réponse<br />

dipolaire. L’existance de la resonance pygmée est donc un phénomène générique qui ne depend pas de la<br />

<strong>structure</strong> en couches des <strong>noyaux</strong>. En analysant le champ de vitesse correspondant, il semble que la resonance<br />

pygmée n’est pas seulement une oscillation de la peau à neutrons contre le cœur N=Z, mais elle<br />

ressemble beaucoup au mode toroïdal qui a été prédit comme mode isoscalaire aussi dans les <strong>noyaux</strong><br />

N=Z.<br />

In neutron-rich <strong>nuclei</strong>, the rms radius of the neutrons<br />

is larger than that of the protons. Hence, the<br />

surface region of these <strong>nuclei</strong> consists mainly of<br />

neutrons. The existence of this ‘’neutron skin’’<br />

leads to the existence of new excitation modes. A<br />

famous example for such a mode is the ’’pygmy<br />

resonance’’.<br />

In order to learn more about the character of this<br />

mode, we study it in the framework of the semiclassical<br />

Vlasov equation, which we solve numerically<br />

employing the pseudo-particle method (as in<br />

the simulation of heavy-ion collisions). The particles<br />

propagate in a mean field which is calculated<br />

from a slightly modified version of the so-called<br />

BCP energy-density functional, which was fitted to<br />

the masses of some finite <strong>nuclei</strong> <strong>and</strong> to Brückner<br />

calculations for symmetric <strong>and</strong> asymmetric nuclear<br />

matter. The ground state is computed within the<br />

Thomas-Fermi approximation in order to be<br />

consistent with the Vlasov dynamics. We excite the<br />

nucleus at t=0 <strong>and</strong> then let it evolve until the oscillation<br />

is sufficiently damped. The response function<br />

is obtained by calculating the Fourier transform<br />

of the resulting time-dependent electric dipole<br />

moment.<br />

Results for the electric dipole response of different<br />

tin isotopes are shown in Fig. 1. The response is<br />

dominated by the giant dipole resonance, but with<br />

increasing neutron excess some strength at lower<br />

energies builds up, which in the case of 132 Sn is<br />

concentrated in a well localised peak at 8.6 MeV,<br />

corresponding to the pygmy resonance. Although<br />

our semiclassical theory does not take into account<br />

any shell effects, the results for the electric dipole<br />

response are in reasonable agreement with fully<br />

quantum mechanical RPA calculations. We thus<br />

conclude that the main features of the pygmy resonance<br />

are independent of the shell <strong>structure</strong> of the<br />

nucleus.<br />

We also calculate the velocity fields of protons <strong>and</strong><br />

neutrons corresponding to the pygmy resonance<br />

(see Fig. 2). We see that not only the neutron skin<br />

is moving against the core, but the motion resembles<br />

that of the isoscalar torus mode which was<br />

predicted to exist even in N=Z <strong>nuclei</strong>.This confirms<br />

a result obtained earlier for 208 Pb within a completely<br />

different approach [Ryezayeva et al., Phys.<br />

Rev. Lett. 89, 272502 (2002)].<br />

Figure 1: electric dipole response of<br />

different tin isotopes.<br />

Figure 2: proton <strong>and</strong> neutron velocity<br />

fields of the pygmy resonance in 132 Sn.<br />

75

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!