14.09.2014 Views

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Alpha particle condensation in nuclear systems<br />

<strong>IPN</strong>O Participation: P. Schuck<br />

Collaboration : RCNP,Osaka, Japan ; Universitaet Rostock; Germany; RIKEN, Tokyo; Japan ; Kanto<br />

Gakuin University, Yokohama, Japan<br />

Nous avons maintenant bien établi que le deuxième état 0+ dans le 12 C à 7.65 MeV est un état à trois particules<br />

alpha qui sont en interaction faible. C'est donc un gaz à trois alpha ou en d'autres termes un<br />

condensat de particules alpha. L'occupation de l'onde S est de 70% ce qui justifie bien le terme<br />

'condensat'. Nous reproduisons le facteur de forme inélastique expérimental avec une très bonne précision<br />

sans paramètre ajustable ce qui nous fait penser que notre description est bonne. Une fois accepté qu'un<br />

tel état existe dans le 12 C il n'y a qu'un pas à supposer que de tels états existent aussi dans d'autres<br />

<strong>noyaux</strong> n alpha plus lourds, comme 16 O, 20 Ne, etc. Dans 16 O, un calcul récent indique que l’état 0+ à 15.1<br />

MeV est un condensat à quatre particules α.<br />

It is well known that at least lighter <strong>nuclei</strong> show<br />

under certain circumstances a pronounced cluster<br />

<strong>structure</strong>. One of the most prominent clusters is<br />

the alpha particle with its unusual high binding<br />

energy per particle for such a light element. That<br />

<strong>nuclei</strong> have such a rich cluster <strong>structure</strong>s has to do<br />

with the fact that there are four different fermions<br />

with almost equal mutual attraction. In a mean field<br />

picture two protons <strong>and</strong> two neutrons can be put<br />

into the lowest S-state whereas in a hypothetical<br />

tetra-neutron two out of the four neutrons have to<br />

be put into the energetically very costly P-state.<br />

Unfortunately most of other fermionic systems çhave<br />

only at most two different species. It is evident<br />

that clusters of more than two constituents are<br />

theoretically very difficult to be described microscopically.<br />

For example the second 0+ state in 12 C, the<br />

famous 'Hoyle' state of astrophysics at 7.65 MeV,<br />

is completely absent in a large scale shell model<br />

calculation of the modern kind (it comes somewhere<br />

around 21 MeV!!). On the other h<strong>and</strong> we describe<br />

this state with a microscopic 12 nucleon wavefunction<br />

of the alpha condensate type without adjustable<br />

parameter with very good precision. This<br />

wavefunction consists out of three center of mass<br />

Gaussians with width parameter B <strong>and</strong> three intrinsic<br />

alpha particle wavefunctions, also Gaussians<br />

but with width parameter b. The whole wave function<br />

is explicitly antisymmetrised among the protons<br />

<strong>and</strong> neutrons. The two parameters B <strong>and</strong> b<br />

are used as Generator Coordinates <strong>and</strong> with a suitable<br />

Hamiltonian the corresponding Schroedinger<br />

equation is solved.<br />

Energy of the Hoyle state as well as transition probabilities<br />

<strong>and</strong> form factors are in very good<br />

agreement with the experimental data. We obtain a<br />

volume of this state which is 3 or 4 times as large<br />

as the corresponding ground state. The effective<br />

bosonic occupation of the lowest S-state of the<br />

alpha particles is obtained as 70% which indicates<br />

that this state can be considered to very good approximation<br />

as a weakly interacting condensate of<br />

three alpha particles. Our calculation shows that<br />

analogous states should exist also in heavier N<br />

alpha <strong>nuclei</strong> like 16 O, 20 Ne, 24 Mg, etc with 4, 5, 6,...<br />

condensed alphas. Recent extensive so-called<br />

OCM-type calculation for the 0+ spectrum of 16 O<br />

explains the whole spectrum of the 6 lowest states.<br />

The 6-th state at 15.1 MeV is predicted to be of 4 α<br />

condensate <strong>structure</strong> [1].<br />

A dedicated experiment to detect α-particle<br />

condensed states with Chimeria Catania by B. Borderie<br />

<strong>and</strong> M.F. Rivet et al. is in final stage of analysis<br />

with exciting results. Experiments have been<br />

started to look for the 4 alpha condensate in 16 O.<br />

We also have made calculations in infinite nuclear<br />

matter which show that at low densities where the<br />

alpha particles do not yet overlap, alpha particle<br />

condensation is favored <strong>and</strong> that the critical temperature<br />

is as high as 6 MeV [2]. During the collapse<br />

of massive stars nuclear matter may go through<br />

stages where it contains a lot of alpha particles.<br />

Their possible condensation may influence pressure<br />

<strong>and</strong> equation of state of the matter <strong>and</strong> thus the<br />

collapse scenario. It is believed that the outer tail<br />

of a neutron star contains a lot of alpha particles.<br />

Also there the condensation phenomenon can occur.<br />

References:<br />

[1] Y. Funaki, T. Yamada, H. Horiuchi, G. Roepke,<br />

P. Schuck, A. Tohsaki, Phys. Rev. Lett. 101(2008)<br />

082502<br />

[2] T.Sogo, R. Lazauskas,G.Roepke,P.Schuck,<br />

Phys. Rev. C79 (2009) 051801<br />

74

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!