14.09.2014 Views

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Extending the VMI model: normal <strong>and</strong> superdeformed <strong>nuclei</strong><br />

<strong>IPN</strong>O Participation: N. Rowley<br />

Collaboration: J. Ollier <strong>and</strong> J. Simpson (STFC Daresbury Laboratory, UK), A. Lopez-Martens<br />

(CSNSM Orsay)<br />

Le modèle VMI : <strong>noyaux</strong> déformés et superdéformés<br />

Le modèle du “Variable Moment of Inertia” a été exploité afin de définir une nouvelle “référence naturelle”<br />

pour la b<strong>and</strong>e yrast dans les <strong>noyaux</strong> normalement déformés (ND). Cela permet d’obtenir de façon simple<br />

les propriétés intrinsèques du noyau (cœur et quasiparticules) le long d’une chaine isotopique. L’analyse de<br />

ces propriétés suggère l’existence d’une région où le noyau se comporte presque comme un “rotor” parfait,<br />

et une expérience est planifiée pour étudier le 180 Yb qui en est vraisemblablement le meilleur exemple. Des<br />

analyes similaires pour les <strong>noyaux</strong> superdéformés (SD) sont en cours, et portent des informations sur les<br />

interactions entre les états ND et SD (reponsables de la décroissance de ces derniers vers les premiers ;<br />

“decay-out”), et sur le phénomène de b<strong>and</strong>es identiques.<br />

Defining a natural reference<br />

The Harris formula [1] (derived from the cranking<br />

model [2]) is frequently used to parametrise the<br />

spins <strong>and</strong> energies of the first few levels of deformed<br />

rotational <strong>nuclei</strong> as a function of their rotational<br />

frequencies ω (related to the gamma-ray energies<br />

by ω=Eγ/2). For the spin we may write<br />

( J 2 )<br />

0<br />

J1 former parameter is related to the nuclear deformation<br />

<strong>and</strong> the latter to its « stiffness ». Fig. 1<br />

shows the behaviour of J 0 along various isotopic<br />

chains lying between the N=82-126 closed shells.<br />

<strong>and</strong> for the energy<br />

E Harris<br />

1<br />

2<br />

I Harris<br />

).<br />

2<br />

( J<br />

0<br />

3<br />

2<br />

2<br />

J<br />

1<br />

The two inertial parameters [J 0 ,J 1 ] possess an interesting,<br />

dramatic behaviour as functions of the<br />

neutron number N <strong>and</strong> <strong>and</strong> proton number Z. The<br />

I ref<br />

1 2<br />

J 0<br />

J<br />

3<br />

(<br />

1<br />

)<br />

Fig 1. Dependence of J 0 on the neutron number for<br />

various isotopic chains (Z is indicated in the legend)<br />

running through the N=82-126 major shell. This quantity<br />

reflects rather well the nuclear deformation which<br />

switches on rapidly around N=90.<br />

Fig 2. Various properties of the rotational Os isotopes:<br />

(a) the energy change at the first b<strong>and</strong> crossing (that<br />

is, the 2-quasineutron alignment), (b) the distance<br />

from the Fermi energy λ of the aligning levels, (c) the<br />

moment of inertia of the ground-state b<strong>and</strong>, <strong>and</strong> (d)<br />

the spin change at the first crossing. The natural reference<br />

allows a simple <strong>and</strong> reliable extraction of (a)<br />

<strong>and</strong> (d) for comparison with theoretical calculations.<br />

We have re-investigated the properties of the socalled<br />

variable-moment of inertia (VMI) model [3,4]<br />

<strong>and</strong> shown that it can be used to define a « natural<br />

72

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!