14.09.2014 Views

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Evaporation-residue residue cross sections: role of the entrance channel<br />

<strong>IPN</strong>O Participation: N. Rowley<br />

Collaboration: Nabila Saffi dine-Grar (Department of Physics, University Ferhat Abbas of Sétif,<br />

19000 Algérie)<br />

Sections efficaces de résidus d’évaporation : rôle de la voie d’entrée<br />

Pour une réaction entre deux ions lourds, la création des résidus d’évaporation est un processus très<br />

complexe, surtout pour les systèmes symétriques où la quasi-fission peut intervenir très fortement. L’étude<br />

d’une gamme de réactions menant au même noyau composé, permet une séparation approximative des<br />

effets de la voie d’entrée (choix du projectile et de la cible) et les effets parvenant des propriétés du noyau<br />

composé lui-même. Nous définissons deux distributions de barrière ; une pour la capture (étape initial da la<br />

réaction) et, en exploitant la section efficace des résidus d’évaporation, une deuxième pour la création du<br />

noyau composé. Une comparaison des deux permet de voir l’importance de la quasi-fission dans les<br />

différents systèmes.<br />

For heavy systems, the formation of high-Z evaporation<br />

residues via heavy-ion capture is a very<br />

complex process. In the early stages of the <strong>reaction</strong>,<br />

the colliding partners encounter an external<br />

Coulomb barrier which they must surmount or penetrate<br />

for the <strong>reaction</strong> to proceed. Once the barrier<br />

has been crossed, the composite system must<br />

evolve to form an equilibrated compound nucleus,<br />

though of course there may be pre-equilibrium fission<br />

before this state is reached; a systemdependent<br />

process referred to as quasifission. Furthermore,<br />

if <strong>and</strong> when a compound nucleus is formed,<br />

it may decay by true fission, as well as becoming<br />

a longer-lived evaporation residue through<br />

the emission of low-mass particles (neutrons, protons,<br />

alpha-particles...). At sufficiently high angular<br />

momentum all of the compound <strong>nuclei</strong> will fission<br />

<strong>and</strong> their contribution to the evaporation residue<br />

cross section will fall to zero.<br />

Even in its first stage, the <strong>reaction</strong> may be further<br />

complicated by the presence of a “distribution of<br />

Coulomb barriers” arising from the internal <strong>structure</strong>s<br />

of the <strong>reaction</strong> partners (principally their highly<br />

collective states). This phenomenon will modify the<br />

coefficents for crossing the external barriers <strong>and</strong><br />

entering into the composite system.<br />

Well above the highest barrier, all of the low partial<br />

waves that are capable of surviving fission will be<br />

fully transmitted, <strong>and</strong>, in the absence of quasifission,<br />

the reduced cross section for evaporationresidue<br />

formation at a given compound-nucleus<br />

excitation energy, becomes independent of the<br />

<strong>reaction</strong> partners [1]. This significantly simplifies<br />

the <strong>reaction</strong> dynamics. However, when attempting<br />

to optimize compound-nucleus formation (for example<br />

in superheavy-element creation) one might<br />

choose a lower energy, where transmission is not<br />

complete but survival is much greater. We investigate<br />

the differences that arise from different<br />

choices of target <strong>and</strong> projectile in this lower-energy<br />

Fig. 1. A comparison of the experimental barrier<br />

distribution ( 96 Zr + 124 Sn <strong>reaction</strong>) for fusion<br />

(compound nucleus creation) with the theoretical<br />

capture distribution shows the dominant role of<br />

quasi-fission for all but the highest barriers. Both<br />

curves are normalized to 1 for comparison, but the<br />

true fusion probability is around 8%.<br />

regime. They essentially come from:<br />

1) the compound nucleus excitation energy at the<br />

corresponding barrier,<br />

2) the “inertial parameter” 2MR 2 which determines<br />

the energy range over which the evaporationresidue<br />

cross section saturates, <strong>and</strong><br />

3) the entrance-channel barrier distribution due to<br />

the intrinsic <strong>structure</strong>s of the reactants.<br />

A good underst<strong>and</strong>ing of these effects will facilitate<br />

the study of the role of quasi-fission which is also<br />

system dependent, being significantly more important<br />

for mass-symmetric systems. It may also possess<br />

a deformation dependence (the survival probability<br />

being greatest for the most “compact” configurations<br />

at contact), <strong>and</strong> may be further influenced<br />

by closed shells in the target <strong>and</strong>/or projectile<br />

(with the fragment-mass drift favouring the<br />

closed-shell <strong>structure</strong>s).<br />

We derive the correct structural form of the evaporation-residue<br />

cross section <strong>and</strong> demonstrate our<br />

70

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!