14.09.2014 Views

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Counts/60keV<br />

Shell <strong>structure</strong> of neutron-rich rich Oxygen isotopes<br />

<strong>IPN</strong>O Participation: A. Ramus, D. Beaumel, Y. Blumenfeld, F.Maréchal, J.A. Scarpaci, N. De<br />

Séréville, S. Franchoo, J. Guillot, F. Hammache, I. Stefan<br />

Collaboration : University of Surrey (UK), University of Birmingham (UK); University of Liverpool<br />

(UK); University of West Scotl<strong>and</strong> (UK), STFC Daresbury (UK), VECC Kolkata (India); GANIL, Caen<br />

(France); SPhN/IRFU/CEA, Saclay (France); LPC, Caen (France)<br />

Nous avons étudié la <strong>structure</strong> en couches des isotopes d’oxygène riche en neutron à l’aide de réactions<br />

de transfert d’un neutron induites par un faisceau d’ 20 O produit par le dispositif SPIRAL du GANIL, sur une<br />

cible de CD 2 . Le dispositif expérimental combinait les détecteurs MUST2 et TIARA pour la détection des<br />

particules, quatre détecteurs EXOGAM pour les gammas, et le spectromètre VAMOS pour l’identification<br />

de l’éjectile lourd. Plusieurs états sous le seuil neutron sont observés dans le spectre en énergie d’excitation<br />

de l’ 19 O produit via la réaction 20 O(d,t) 19 O. L’état excité à 1.41 MeV est peuplé par pickup d’un neutron<br />

sur l’orbitale 2s 1/2 , en principe inoccupée. La valeur du facteur spectroscopique de cet état montre que la<br />

taille du gap N=14 est encore réduite par rapport au cas de l’ 22 O. Un état à 3.23 MeV est identifié pour la<br />

première fois comme étant de parité négative, Contrairement aux états observés plus bas, son énergie est<br />

mal reproduite par les calculs de modèle en couches.<br />

Introduction<br />

Shell <strong>structure</strong> evolution is one of the major paradigms<br />

of nowadays nuclear physics. While related<br />

effects such as modification of the magic numbers<br />

far from stability have been discussed for many<br />

years [1], experimental evidences are accumulating<br />

only since the advent of radioactive nuclear<br />

beams. The mechanisms at work in the structural<br />

changes in neutron-rich oxygen isotopes have<br />

been underlined in [2]. The proton occupancy <strong>and</strong><br />

the strong monopole tensor force between the proton<br />

d 5/2 <strong>and</strong> neutron d 3/2 orbitals are invoked to<br />

explain the decrease of the N=20 gap in favour of<br />

N=16 when going from the stable 30 Si to 24 O. The<br />

present study aims to investigate the development<br />

of the N=14 <strong>and</strong> N=16 shell gaps across oxygen<br />

<strong>and</strong> neon isotopes using one neutron transfer <strong>reaction</strong>s.<br />

The (d,p) <strong>and</strong> (d,t) transfer <strong>reaction</strong>s on<br />

20 O <strong>and</strong> 26 Ne beams delivered by the SPIRAL facility<br />

at GANIL have been studied. In the case of<br />

20 O, the (d,p) <strong>reaction</strong> will provide the single particle<br />

strength in 21 O <strong>and</strong> measure the energy of the<br />

so-far unobserved 3/2+ state that carries the d 3/2<br />

strength. Information concerning negative parity<br />

states in 19 O measured in the (d,t) transfer <strong>reaction</strong><br />

should also help to resolve uncertainties about the<br />

cross shell excitations in the N=16 region. In this<br />

report, only the preliminary results obtained for the<br />

20 O(d,t) <strong>reaction</strong> will be presented.<br />

particles, offering a nearly 4 solid angle coverage.<br />

For -ray detection, four germanium clovers of the<br />

EXOGAM array were mounted in a cross geometry<br />

around the target point. The heavy fragments were<br />

detected using the VAMOS spectrometer set at<br />

zero degrees with its st<strong>and</strong>ard detection. The excitation<br />

energy in 19 O is deduced from the measured<br />

triton angle <strong>and</strong> total energy using two-body kinematics.<br />

For tritons in coincidence with 19 O fragments<br />

in VAMOS, the resulting spectrum (Fig. 1)<br />

shows three peaks with an overall excitation energy<br />

resolution around 500 keV (FWHM).<br />

20 O(d,t) 19 O<br />

E*(MeV)<br />

Fig.1: Excitation energy spectrum in 19 O reconstructed<br />

from the energy <strong>and</strong> angles of tritons<br />

detected in the MUST2 array.<br />

Results<br />

The secondary beam of 20 O was produced by the<br />

ISOL method using the SPIRAL facility at GANIL at<br />

11 MeV/u. A combined setup was used to detect<br />

light recoil charged particles, gammas <strong>and</strong> heavy<br />

ejectiles in coincidence. The TIARA [3] <strong>and</strong><br />

MUST2 [4] silicon arrays were placed around the<br />

CD2 target to detect the recoiling light charged<br />

Results are summarized <strong>and</strong> compared to Shell<br />

Model calculations [5] performed with the WBP<br />

interaction in table 1 <strong>and</strong> Fig.2 for the three observed<br />

peaks. Considering the known spectroscopic<br />

information on 19 O, the first peak could correspond<br />

to a doublet composed of the groundstates<br />

(GS) <strong>and</strong> a state at 89 keV. However, the<br />

gamma-particle coincidences do not show any 89<br />

15

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!