14.09.2014 Views

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Pairing properties in <strong>nuclei</strong> <strong>and</strong> in neutron stars<br />

<strong>IPN</strong>O Participation: J. Margueron, E. Khan<br />

Collaboration : University of Aizu-Wakamatsu, Tohoku University, Institut d'Astronomie et d'Astrophysique<br />

de Bruxelles, N<strong>IPN</strong>E Bucharest.<br />

Les propriétés d’appariement des <strong>noyaux</strong> ainsi que des étoiles à neutrons sont étudiés dans des modèles<br />

de champ moyen Hartree-Fock-Bogoliubov. Pour cela, nous proposons une interaction d’appariement de<br />

portée nulle et dépendante de la densité, non-empirique (non-ajusté sur des <strong>noyaux</strong>), qui reproduit la longueur<br />

de diffusion dans le canal 1 S 0 ainsi que les calculs ab-initio de gap dans la matière uniforme. Pour<br />

reproduire à la fois la matière symétrique et la matière de neutrons, nous avons du introduire une dépendance<br />

en isospin dans la force d’appariement. Nous discutons aussi les effets de polarisation du milieu audelà<br />

du premier ordre BCS. D’une étude systématique sur des <strong>noyaux</strong> semi-magiques (chaines isotopiques<br />

et isotoniques) nous avons montré que l’interaction d’appariement au premier ordre BCS reproduit très bien<br />

les données expérimentales. Nous avons montré l’impact des différent modèles d’appariement sur le refroidissement<br />

des étoiles à neutrons.<br />

The pairing gap is an important quantity to underst<strong>and</strong><br />

the cooling of neutron stars, as it modifies<br />

the specific heat as well as neutrino emission processes<br />

(1). It is also important to underst<strong>and</strong> the<br />

Glitches of neutron stars. A precise <strong>and</strong> well constrained<br />

theory for pairing in neutron stars is thus<br />

necessary.<br />

Among these constrains are those given by <strong>nuclei</strong>.<br />

In a marked contrast with electronic systems, the<br />

nuclear interaction is already attractive in the first<br />

order approximation (BCS). Nevertheless, it has<br />

been shown that higher order contributions, such<br />

that medium polarization, may lead to important<br />

corrections to the nuclear interaction in the particle<br />

-particle channel <strong>and</strong> therefore to the pairing gap in<br />

uniform matter as well as in finite <strong>nuclei</strong>.<br />

We have proposed an effective density-dependent<br />

pairing interaction that reproduces both the neutron-neutron<br />

scattering length in the 1 S 0 channel<br />

<strong>and</strong> the neutron pairing gap in uniform matter (2).<br />

In order to simultaneously describe the density<br />

dependence of the neutron pairing gap for both<br />

symmetric <strong>and</strong> neutron matter, it was necessary to<br />

include an isospin dependence in the effective<br />

pairing interaction. Depending on whether the medium<br />

polarization effects on the pairing gap calculated<br />

in Ref.(3) are taken into account or not, we<br />

have proposed two different density dependences<br />

in the pairing interaction (hereafter named Bare<br />

<strong>and</strong> Induced). The comparison of the predictions of<br />

these interactions with the odd-even mass staggering<br />

(OEMS) in semi-magic <strong>nuclei</strong> is shown in Fig.1<br />

(for isotopic chain) <strong>and</strong> Fig.2 (for isotonic chain).<br />

The HFB calculations based on the IS+IV Bare<br />

pairing force well account for the experimental<br />

OEMS (similar comparison for the binding energy<br />

<strong>and</strong> the two neutrons separation energy are shown<br />

in Ref.(4)). This result suggests that a global nonempirical<br />

pairing interaction depending on both the<br />

IS <strong>and</strong> IV densities can be adjusted to be used for<br />

a wide range of the nuclear chart. In contrast, the<br />

IS Bare force, which is adjusted only in symmetric<br />

matter, fails to correctly reproduce isotopic <strong>and</strong><br />

isotonic systematic, <strong>and</strong> the IS+IV induced pairing<br />

force, which includes medium polarization, under<br />

estimate the OESM.<br />

In Ref.(4) it has also been shown, with the local<br />

density approximation (LDA), that the pairing field<br />

deduced from the pairing gaps in infinite matter<br />

reproduces qualitatively well the pairing field for<br />

finite <strong>nuclei</strong> obtained with the HFB method.<br />

Despite the differences between finite <strong>nuclei</strong> <strong>and</strong><br />

neutron stars matter, self-consistent mean field<br />

models could be extrapolated to infinite matter under<br />

the extreme conditions realized in stars (1,5).<br />

The crust of neutron stars is made of nuclear clusters<br />

where the HFB model is applicable within the<br />

Wigner-Seitz approximation. In Ref.(5), a comparison<br />

between b<strong>and</strong> theory <strong>and</strong> mean field approximation<br />

has sheld light on the domain of application<br />

of mean field models. A systematic calculation of<br />

the neutron specific heat in the crust of neutron<br />

stars has therefore been performed <strong>and</strong> has been<br />

used in a model for the cooling of neutron stars (1).<br />

The effects of the clusters are moderated, but nonnegligeable.<br />

Larger effects induced by the pairing<br />

force have been observed. These results motivate<br />

the comparison of the different pairing interactions<br />

in finite <strong>nuclei</strong>, such as in Ref.(4), with an improved<br />

description of medium polarization.<br />

References:<br />

(1) M. Fortin, F. Grill, J. Margueron,<strong>and</strong> N. S<strong>and</strong>ulescu,<br />

submitted to Phys. Rev. C,<br />

ArXiv/0910.5488(nucl-th).<br />

(2) J. Margueron, H. Sagawa, <strong>and</strong> K. Hagino,<br />

Phys. Rev. C 76, 064316 (2007).<br />

(3) L. G. Cao, U. Lombardo, <strong>and</strong> P. Schuck, Phys.<br />

Rev. C 74, 064301 (2006).<br />

(4) J. Margueron, H. Sagawa, <strong>and</strong> K. Hagino,<br />

Phys. Rev. C 77, 054309 (2008).<br />

(5) N. Chamel, J. Margueron, E. Khan, Phys. Rev.<br />

C 79, 012801 (2009).<br />

68

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!