14.09.2014 Views

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Extended Skyrme interaction in the spin channel<br />

<strong>IPN</strong>O Participation: J. Margueron, M. Grasso<br />

Collaboration : Institut d'Astronomie et d'Astrophysique de Bruxelles, Dipartimento di Fisica Università<br />

di Milano, University of Aizu-Wakamatsu.<br />

Les interactions de type Skyrme prédisent une phase ferromagnétique au-delà de la densité de saturation<br />

de la matière nucléaire (Fig. 1), ce qui est contraire aux prédictions de modèles ab-initio. Ce désaccord<br />

limite l’utilisation des forces de Skyrme pour prédire les propriétés des étoiles à neutrons. Nous proposons<br />

donc une correction des interactions de type Skyrme pour reproduire les résultats ab-initio (1). En outre,<br />

l’analyse des propriétés de la matière permet de définir des restrictions sur les paramètres du nouveau terme.<br />

Dans les <strong>noyaux</strong> impairs, nous proposons une approximation pour extraire la densité de spin (OSPA)<br />

qui fourni une estimation maximale de l’effet de ce nouveau terme (2). Nous montrons que ce nouveau terme<br />

a un effet très modéré. En conclusion, la correction que nous proposons modifie très peu les états fondamentaux<br />

des <strong>noyaux</strong> impairs, mais a un impact beaucoup plus important sur l’interaction résiduelle particule-trou.<br />

Cette dernière peut donc être ajustée sur les modes collectifs de spin.<br />

Despite many theoretical <strong>and</strong> experimental investigations,<br />

the spin <strong>and</strong> the spin-isospin channels in<br />

either the ground <strong>and</strong> the excited states of <strong>nuclei</strong><br />

are still widely open for future study. Since the<br />

ground states of <strong>nuclei</strong> are non spin-polarized in<br />

the case of even-even <strong>nuclei</strong> <strong>and</strong> weakly spinpolarized<br />

in odd <strong>nuclei</strong>, it is indeed difficult to probe<br />

the spin <strong>and</strong> the spin-isospin channels of the nuclear<br />

interaction. Dense matter in neutron stars<br />

could however give some global constraints. For<br />

instance the ferromagnetic phase predicted by all<br />

the Skyrme interactions beyond the saturation density<br />

0 (see Fig.1) might not be realistic.<br />

A modification of the st<strong>and</strong>ard Skyrme interaction<br />

has therefore been proposed such that the ferromagnetic<br />

instability is removed (1). Being added in<br />

perturbation on top of existing forces, the new term<br />

retains the simplicity <strong>and</strong> the good properties of<br />

0<br />

Fig.1: Ferromagnetic phase diagram for various Skyrme<br />

forces (BSk16: diamond, RATP: down-triangle, SkMS: lefttriangle,<br />

SLy5: circle, SGII: up-triangle, LNS: square) The<br />

horizontal axis shows the critical density at which the asymmetric<br />

matter becomes unstable while the vertical axis<br />

shows the proton fraction. On the l.h.s., matter is not polarized<br />

while on the r.h.s., matter is made of domains where<br />

spin are aligned.<br />

original Skyrme force for nuclear matter <strong>and</strong> the<br />

ground states of even-even <strong>nuclei</strong>. From the analysis<br />

of the properties of nuclear matter, restrictions<br />

on the parameters governing the new term could<br />

be obtained (2).<br />

We have also studied the effects of the new term<br />

on the ground state properties of odd <strong>nuclei</strong>, in<br />

particular the total binding energy <strong>and</strong> the density<br />

distribution (2). To provide an approximate maximal<br />

estimate of the effects while keeping our model<br />

simple, we have performed HF calculations<br />

<strong>and</strong> we introduced the one-spin polarized approximation<br />

(OSPA): we use the equal filling approximation,<br />

so that the time-reversal symmetry is not<br />

broken, but to get the spin density we assumed for<br />

the last occupied state that the spin-up state is<br />

completely filled while the spin-down state is empty<br />

between the two possible spin orientations (or,<br />

equivalently, the opposite). The OSPA is therefore<br />

an approximation which overestimate the spin density,<br />

<strong>and</strong> therefore the effect of the new term. However,<br />

from the OSPA we have shown that the<br />

new term has only a negligible contribution to the<br />

ground-state of odd <strong>nuclei</strong> (few tens of KeV).<br />

We conclude that with an extended Skyrme interaction<br />

including the new term that we propose (1),<br />

the binding energies <strong>and</strong> the mean field of odd <strong>nuclei</strong><br />

remains nearly unchanged but the residual<br />

particle-hole interaction could be tuned with a large<br />

flexibility (2).<br />

References:<br />

(1) J. Margueron <strong>and</strong> H. Sagawa, J. Phys. G: Nucl.<br />

Part. Phys. 36, 125102 (2009).<br />

(2) J. Margueron J., S. Goriely, M. Grasso, G. Colo,<br />

H. Sagawa, J. Phys. G: Nucl. Part. Phys. 36,<br />

125103 (2009).<br />

67

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!