14.09.2014 Views

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

G0 experiment at Jefferson Lab.<br />

<strong>IPN</strong>O Participation: L. Bimbot, S.Ong, J. Van de Wiele et J. Arvieux+<br />

Collaboration : http://www.npl.uiuc.edu/exp/G0/admin/g0-phone-book.html<br />

L’expérience G0 est une expérience de mesure de violation de parité dans la diffusion d’électrons polarisés<br />

sur les nucléons. Le but principal est la détermination d’une éventuelle contribution du quark étrange aux<br />

propriétés électrique et magnétique du proton. L’ensemble expérimental a servi pour les mesures aux angles<br />

avants et aux angles arrières. Ainsi ont pu être mesurées les asymétries non seulement pour les électrons<br />

élastiquement diffusés sur le proton mais aussi les quasi élastiques après interaction avec une cible<br />

de deutérium, les électrons diffusés inélastiquement et les pions issus des mêmes interactions. Une gr<strong>and</strong>e<br />

moisson de résultats a été analysée qui apporte de nouveaux éléments sur notre connaissance des facteurs<br />

de formes étrange et axiaux des nucléons.<br />

Motivation<br />

Three asymmetry measurements are necessary to<br />

extract G z E, G z M <strong>and</strong> G e A - from which the strange<br />

form-factors can be deduced [1]. The asymmetry<br />

of the <strong>reaction</strong> for the two helicity states of the<br />

beam can be expressed as:<br />

A<br />

GFQ<br />

2<br />

GEG<br />

Z<br />

E<br />

Z<br />

GMGM<br />

(<br />

2<br />

( GE)<br />

1<br />

(<br />

4sin<br />

4 2<br />

G<br />

M<br />

2<br />

)<br />

2<br />

w<br />

)<br />

' G<br />

M<br />

G<br />

e<br />

A<br />

NUPPAC [2] <strong>and</strong> are shown in Fig.1.<br />

where:<br />

Q 2 is the squared fourmomentum<br />

transfer (Q 2 > 0), G F <strong>and</strong> the usual<br />

weak <strong>and</strong> electromagnetic couplings, M p the proton<br />

mass <strong>and</strong> the laboratory electron scattering angle.<br />

G E <strong>and</strong> G M are the electromagnetic formfactors,<br />

G z E <strong>and</strong> G z M are the electroweak formfactors<br />

<strong>and</strong> G e A is the effective axial form-factor of<br />

the proton seen in parity-violating electron scattering.<br />

From the measurements of G z E, G z M <strong>and</strong> G e A<br />

<strong>and</strong> the knowledge of the electromagnetic formfactors<br />

of the proton <strong>and</strong> the neutron, it is possible<br />

to extract the s quark contribution (G s E <strong>and</strong> G s M ) to<br />

the nucleon <strong>structure</strong>. This decomposition only<br />

relies on charge symmetry of the nucleon <strong>and</strong> on<br />

the assumption that only the light quark flavours<br />

contribute to these form factors. Finally the measured<br />

asymmetry can be expressed in terms of<br />

strange form factors:<br />

A = + G s E + G s M + G e A<br />

where is the asymmetry known from neutron <strong>and</strong><br />

proton form factors (for the G0 experiment varies<br />

between -1 <strong>and</strong> -35 x10 -6 ).<br />

Experimental setup<br />

To undertake the experiment a specialized instrumentation<br />

apparatus has been set up in Hall C of<br />

Jefferson Laboratory, Newport News, Virginia,<br />

USA. Both forward <strong>and</strong> backward angle configurations<br />

were described in detail in contributions to<br />

Figure 1 Experimental setup<br />

Data taking<br />

The total charge of incident beam on different targets<br />

is given in Table 1, for the different energies.<br />

A long serie of additionnal measurements have<br />

also been recorded for detailed studies of accuracy,<br />

false asymmetries, backgrounds <strong>and</strong> dilutions<br />

factors.<br />

362 MeV 687 MeV 3.30 GeV<br />

Hydrogen ~90C ~100C ~101C<br />

Deuterium ~70C ~45C<br />

Table 1 Total charge on target<br />

Analysis <strong>and</strong> results<br />

The analysis procedure was similar for both configurations;<br />

blinding factors were introduced to prevent<br />

distortion in the analysis from any expectation.<br />

After rejecting all quartets including bad<br />

events, the raw asymmetries were calculated from<br />

which we could verify the data quality. Corrections<br />

coming from beam quality <strong>and</strong> instrumental effects<br />

were applied, followed by all the corrections coming<br />

from background contamination. Then the results<br />

were unblinded to allow combination with<br />

40

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!