14.09.2014 Views

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Hadron Electrodynamics<br />

<strong>IPN</strong>O Participation: Egle Tomasi-Gustafsson, Dominique March<strong>and</strong><br />

Collaboration : IRFU/SPhN (Saclay), JINR-BLTP(Dubna,Russia), NSC-KFTI (Kharkov, Ukraine)<br />

Le but de ces études est la compréhension de la <strong>structure</strong> interne du nucléon et des mécanismes d’interaction<br />

pour les réactions élastiques, inélastiques et d’annihilation induites par électrons ou hadrons. Nous<br />

avons calculé les observables pour la réaction avec cinématique inverse proton-électron, qui a un intérêt<br />

particulier pour les phénomènes de polarisation. L’étude des corrections radiatives pour la diffusions élastique<br />

électron-proton et pour la diffusion Compton profondément virtuelle, a montré que les corrections<br />

aux ordres supérieurs, deviennent importantes dans le domaine d’énergie couvert par JLab (USA). Les<br />

réactions d ‘annihilation protons-antiprotons (électron-positron) font l’intérêt de programmes d’études auprès<br />

de FAIR (Allemagne) et de BES (Chine), en particulier pour l’étude des facteurs de forme électromagnétiques<br />

du proton dans la région temps. Nous avons suggéré de mesurer le rapport de production de<br />

paires de pions et de kaons qui pourrait mettre en évidence les excitations du vide de QCD.<br />

Proton electron elastic scattering<br />

Electron proton scattering is the most simple <strong>reaction</strong><br />

which allows to have information on the hadron<br />

<strong>structure</strong>. It has been widely studied theoretically<br />

<strong>and</strong> experimentally, but the present interest is<br />

related to specific kinematical conditions which<br />

could not be reached in the past. The inverse<br />

kinematics p+e→ p+e has to be treated separately,<br />

as approximations, such as neglecting the electron<br />

mass, do not hold anymore. The specificity of this<br />

<strong>reaction</strong> is that also at a few GeV incident energy<br />

the values of the transferred momenta are very<br />

small. Born approximation can be applied, but at<br />

very small energiesn Coulomb corrections have to<br />

be taken into account. Recent interest is related to<br />

two possible applications: - the possibility to build<br />

beam polarimeters, for high energy polarized proton<br />

beams, in the RHIC energy range, - the possibility<br />

to produce polarized antiprotons beams,<br />

which would open a wide domain of polarization<br />

studies at the FAIR facility. We have calculated the<br />

cross section <strong>and</strong> the relevant polarization observables<br />

in the Born approximation, as a function of<br />

the scattering angle (or the transferred momentum),<br />

in a wide energy range. Applications to polarimetry<br />

for high energy beams <strong>and</strong> antiproton<br />

polarization are under evaluation.<br />

High Order Radiative Corrections<br />

The problem of radiative corrections to electron<br />

proton elastic scattering is very important at the<br />

energies <strong>and</strong> with the experimental precision<br />

achievable in present experiments. In particular,<br />

corrections to the cross section can be very large,<br />

<strong>and</strong> first order corrections, as usually applied, may<br />

not have the necessary precision. The possibility<br />

that the two photon exchange mechanism (in principle<br />

suppressed by a factor of α, the electromagnetic<br />

fine <strong>structure</strong> constant) could become important,<br />

has been recently recalled, in connection with<br />

the measurement of proton electromagnetic form<br />

factors in polarized <strong>and</strong> unpolarized measure-<br />

Fig.1 DVCS helicity asymmetry as a function of<br />

the azimuthal angle: Born (solid line), radiatively<br />

corrected (dashed line) (top); relative value of the<br />

correction in percent (bottom).<br />

ments. A model independent calculation being not<br />

possible, it turns out that theoretical models are<br />

very little constrained <strong>and</strong> give quantitatively different<br />

results. Our approach is different.<br />

Firstly we calculated the box diagram for ep scattering,<br />

using approximations that are known to<br />

magnify this contribution, which was found of the<br />

order of a percent. Secondly, we calculated exactly<br />

the box diagram due to two photon exchange for<br />

e scattering, which is possible for a pure QED<br />

process. Finally we proved that e scattering constitutes<br />

an upper limit for ep scattering (for the<br />

elastic intermediate state), the reason being that<br />

proton form factors decrease very fast with the momentum<br />

transfer squared <strong>and</strong> are smaller than the<br />

static values for a <strong>structure</strong>less particle.<br />

Calculations for high order radiative corrections,<br />

based on the <strong>structure</strong> functions method were applied<br />

to elastic ep scattering <strong>and</strong> to Deep Virtual<br />

Compton scattering (DVCS), Fig.1. In both case, it<br />

appeared that high order contributions modify the<br />

size <strong>and</strong> the dependence of the experimental observables<br />

on the kinematical variables [1].<br />

38

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!