exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3 exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

ipnweb.in2p3.fr
from ipnweb.in2p3.fr More from this publisher
14.09.2014 Views

FT Amplitude D Complexation of protactinium(V) with organic ligands: thermodynamic and structural study IPNO Participation: M. Mendes, S. Hamadi, C. Le Naour Collaboration : CEA Marcoule, CEA Bruyères-le-Chatel, FZD Dresden Dans le contexte des réacteurs à combustible thorium, la sûreté des opérations de retraitement et des sites de stockage nécessite une connaissance approfondie de la chimie en solution du protactinium, produit sous forme des isotopes 231 et 233 dans ce nouveau type de réacteur. Ce travail présente les résultats établis lors d’études sur le comportement du protactinium au degré d’oxydation V en présence d’acide oxalique (complexant susceptible d’être présent dans certaines eaux souterraines) et d’acide diéthylènetriaminopentacétique (agent décorporant des actinides). L’utilisation de la spectroscopie d’absorption X, de l’électrophorèse capillaire couplée ICP-MS, d’une part, et de la technique d’extraction liquide-liquide avec l’élément à l’échelle des traces, d’autre part, a permis de déterminer la structure des complexes d’ordre maximum et de déterminer les grandeurs thermodynamiques relatives aux équilibres de formation de l’ensemble des complexes impliqués. Structural study X-ray Absorption Spectroscopy measurements were performed at ESRF-Grenoble on samples of 231 Pa prepared at IPNO in oxalic acid 1M and in a mixture HCl/DTPA. XANES spectra show that protactinium(V) does not form the transdioxo bond that characterizes the other light actinides at their higher oxidation states. The analysis of EXAFS spectra (Fig.1) allowed to characterize the complex PaO(C 2 O 4 ) 3– that displays a short mono-oxo bond (Pa-O at 1.75 Å) and 3 bidendate oxalate ligands, whereas no oxo bond was observed in the complex between Pa(V) and H 5 DTPA. 5 B presence of PaO(C 2 O 4 ) 3– and Pa(DTPA). Thermodynamic study In order to avoid the polymerization of protactinium at high concentrations, the thermodynamic study was performed with the element at tracer scale (C Pa ~ 10 -12 M) using solvent extraction with TTA (thenoyltrifluoroacetone) as chelating agent. First, the logarithmic variations of the distribution coefficient D of Pa(V) as a function of the total concentration of ligand as illustrated in Fig.2 allowed to determine the mean number of ligand per Pa atom for complexes that are predominant in aqueous phase. In oxalic system, the species PaO(C 2 O 4 ) + , - 3– PaO(C 2 O 4 ) 2 and PaO(C 2 O 4 ) 3 are formed successively (slopes –1 to –3 on Fig.2). With DTPA, only the complex(1,1) is formed. 4 3 A . 2 1 C D 0,1 0,01 slope -1 slope -2 0 1E-3 0 2 4 6 R+Phi 1E-4 slope -3 Fig.1: Experimental modulus of the Fourier transform of L III EXAFS spectrum of Pa 1.25 10 -2 M in 1M H 2 C 2 O 4 and fitted curve (dashed line) Experiments involving Capillary electrophoresis coupled with an ICP-sector field Mass spectrometer were performed at CEA-BIII on samples of Pa ~10 -8 M in the presence of oxalic acid, on one hand, and H 5 DTPA on the other hand. The electrophoretic mobility of the oxalate and DTPA complexes were proved to agree with a highly charged anionic species and a neutral one, respectively. This structural study allows to conclude to the 1E-5 1E-8 1E-6 1E-5 1E-4 1E-3 0,01 0,1 Fig.2: Variations of the distribution coefficient D of Pa(V) as function of oxalic acid concentration at 40°C and µ=3M The extraction data ((D 0 /D)-1), collected at different values of ionic strength and temperature, were plotted as function of the total ligand concentration and adjusted with a polynomial of third order in the case of oxalic system. The coefficients of this polynomial are the formation constants i of the oxalate C ox 131

(D 0 /D)-1 ln complexes of Pa(V). In the DTPA system, the stability constant of the Pa(DTPA) was deduced from the slope of the linear variations of ((D 0 /D)-1). An adjustment is illustrated on Fig.3 and the apparent formation constants determined at 25°C are listed in Table 1. 7 6 5 4 3 2 Same analysis of several extraction data sets were performed at other temperatures allowing the use of Van’t Hoff equation for the determination of thermodynamic parameters (enthalpy, entropy, heat capacity). The analysis of the variations of ln as function of the inverse of temperature are illustrated in Fig.4 for the system Pa/DTPA. In both investigated systems, complexation reactions are characterized by a strong positive entropic contribution. In the complexation process, the desolvation of both ligands and protactinium cation obviously contributes to an increase of disorder in the water structure around species due the liberation of water molecules that occurs simultaneously to the formation of ligand-Pa bond. 1 0 -1 0,000 0,005 0,010 0,015 0,020 0,025 C(DTPA)tot Fig.3: Adjustment of extraction data relative to the system Pa(V)/TTA/Toluene/H 2 0/NaClO 4 /HClO 4 / H 5 DTPA at 10°C and µ=3M. Equilibrium log PaO(OH) 2+ +C 2 O 4 2- +H + ↔PaO(C 2 O 4 ) + +H 2 O 7.4 ± 0.3 PaO(OH) 2+ +2C 2 O 4 2- +H + ↔PaO(C 2 O 4 ) 2 - +H 2 O 14.5 ± 0.8 PaO(OH) 2+ +3C 2 O 4 2- +H + ↔PaO(C 2 O 4 ) 3 3- +H 2 O 19.1 ± 0.7 PaO(OH) 2+ +3H + +DTPA 5- ↔Pa(DTPA)+2H 2 O 28.6 ± 0.3 Table 1: Formation constants of oxalate and DTPA complexes of Pa(V) at 25°C and µ=3M The stability constants of oxalate complexes of Pa (V) are of the same magnitude of order as those of U(VI), but much higher than that of Np(V). The formation constant of the complex Pa(DTPA) is similar to that of actinides(IV) and once again much higher than that of Np(V). 70 69 68 67 66 65 64 63 62 61 60 0,0030 0,0031 0,0032 0,0033 0,0034 0,0035 0,0036 1/T Fig.4: Variation of formation constant of the complex Pa(DTPA) as function of temperature 132

FT Amplitude<br />

D<br />

Complexation of protactinium(V) with organic lig<strong>and</strong>s:<br />

thermodynamic <strong>and</strong> structural study<br />

<strong>IPN</strong>O Participation: M. Mendes, S. Hamadi, C. Le Naour<br />

Collaboration : CEA Marcoule, CEA Bruyères-le-Chatel, FZD Dresden<br />

Dans le contexte des réacteurs à combustible thorium, la sûreté des opérations de retraitement et des sites<br />

de stockage nécessite une connaissance approfondie de la chimie en solution du protactinium, produit<br />

sous forme des isotopes 231 et 233 dans ce nouveau type de réacteur. Ce travail présente les résultats<br />

établis lors d’études sur le comportement du protactinium au degré d’oxydation V en présence d’acide oxalique<br />

(complexant susceptible d’être présent dans certaines eaux souterraines) et d’acide diéthylènetriaminopentacétique<br />

(agent décorporant des actinides). L’utilisation de la spectroscopie d’absorption X, de l’électrophorèse<br />

capillaire couplée ICP-MS, d’une part, et de la technique d’extraction liquide-liquide avec l’élément<br />

à l’échelle des traces, d’autre part, a permis de déterminer la <strong>structure</strong> des complexes d’ordre maximum<br />

et de déterminer les gr<strong>and</strong>eurs thermodynamiques relatives aux équilibres de formation de l’ensemble<br />

des complexes impliqués.<br />

Structural study<br />

X-ray Absorption Spectroscopy measurements<br />

were performed at ESRF-Grenoble on samples of<br />

231 Pa prepared at <strong>IPN</strong>O in oxalic acid 1M <strong>and</strong> in a<br />

mixture HCl/DTPA. XANES spectra show that protactinium(V)<br />

does not form the transdioxo bond<br />

that characterizes the other light actinides at their<br />

higher oxidation states. The analysis of EXAFS<br />

spectra (Fig.1) allowed to characterize the complex<br />

PaO(C 2 O 4 ) 3– that displays a short mono-oxo bond<br />

(Pa-O at 1.75 Å) <strong>and</strong> 3 bidendate oxalate lig<strong>and</strong>s,<br />

whereas no oxo bond was observed in the complex<br />

between Pa(V) <strong>and</strong> H 5 DTPA.<br />

5<br />

B<br />

presence of PaO(C 2 O 4 ) 3– <strong>and</strong> Pa(DTPA).<br />

Thermodynamic study<br />

In order to avoid the polymerization of protactinium<br />

at high concentrations, the thermodynamic study<br />

was performed with the element at tracer scale<br />

(C Pa ~ 10 -12 M) using solvent extraction with TTA<br />

(thenoyltrifluoroacetone) as chelating agent. First,<br />

the logarithmic variations of the distribution coefficient<br />

D of Pa(V) as a function of the total concentration<br />

of lig<strong>and</strong> as illustrated in Fig.2 allowed to<br />

determine the mean number of lig<strong>and</strong> per Pa atom<br />

for complexes that are predominant in aqueous<br />

phase. In oxalic system, the species PaO(C 2 O 4 ) + ,<br />

-<br />

3–<br />

PaO(C 2 O 4 ) 2 <strong>and</strong> PaO(C 2 O 4 ) 3 are formed successively<br />

(slopes –1 to –3 on Fig.2). With DTPA,<br />

only the complex(1,1) is formed.<br />

4<br />

3<br />

A<br />

.<br />

2<br />

1<br />

C<br />

D<br />

0,1<br />

0,01<br />

slope -1<br />

slope -2<br />

0<br />

1E-3<br />

0 2 4 6<br />

R+Phi<br />

1E-4<br />

slope -3<br />

Fig.1: Experimental modulus of the Fourier transform<br />

of L III EXAFS spectrum of Pa 1.25 10 -2 M in<br />

1M H 2 C 2 O 4 <strong>and</strong> fitted curve (dashed line)<br />

Experiments involving Capillary electrophoresis<br />

coupled with an ICP-sector field Mass spectrometer<br />

were performed at CEA-BIII on samples of Pa<br />

~10 -8 M in the presence of oxalic acid, on one<br />

h<strong>and</strong>, <strong>and</strong> H 5 DTPA on the other h<strong>and</strong>. The electrophoretic<br />

mobility of the oxalate <strong>and</strong> DTPA complexes<br />

were proved to agree with a highly charged<br />

anionic species <strong>and</strong> a neutral one, respectively.<br />

This structural study allows to conclude to the<br />

1E-5<br />

1E-8 1E-6 1E-5 1E-4 1E-3 0,01 0,1<br />

Fig.2: Variations of the distribution coefficient D of<br />

Pa(V) as function of oxalic acid concentration at<br />

40°C <strong>and</strong> µ=3M<br />

The extraction data ((D 0 /D)-1), collected at different<br />

values of ionic strength <strong>and</strong> temperature, were<br />

plotted as function of the total lig<strong>and</strong> concentration<br />

<strong>and</strong> adjusted with a polynomial of third order in the<br />

case of oxalic system. The coefficients of this polynomial<br />

are the formation constants i of the oxalate<br />

C ox<br />

131

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!