14.09.2014 Views

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Electrochemical behavior of tetrachloro <strong>and</strong> tetrabromouranyl<br />

complexes in room temperature ionic liquids<br />

<strong>IPN</strong>O Participation: C. Cannes, C. Le Naour, M-O. Sornein, M. Mendes<br />

Collaboration : DRECAM (CEA Saclay), LISE (Paris VI, CNRS)<br />

Les liquides ioniques sont des solvants pouvant intervenir dans des étapes de séparation lors du retraitement<br />

des déchets nucléaires. Notre objectif est d’acquérir des données fondamentales sur les actinides<br />

dans ces milieux. Le comportement électrochimique de complexes tétrahalogénés d’uranyle a été étudié<br />

par voltammétrie et électrolyses quantitatives. Deux mécanismes de réduction sont proposés: le 1er mécanisme,<br />

noté DISP, comprend un transfert monoélectronique suivi d’une réaction de dismutation conduisant<br />

à la régénération du complexe uranyle(VI) initial. Le 2e mécanisme, noté ECE, correspond à un transfert<br />

monoélectronique suivi d’une dissociation partielle conduisant à la formation d’un complexe d’uranyle(V),<br />

lui-même réductible aux potentiels imposés à l’électrode selon un deuxième transfert électronique. Dans<br />

les deux cas, la réduction conduit à la formation d’espèces insolubles d’U(IV) (oxyde ou hydroxyde) et à la<br />

production d’ions halogénure.<br />

Ionic liquids (Ils) are media entirely composed of<br />

ions with a melting point bellow 100°C. They are<br />

characterized by a thermal, chemical <strong>and</strong> electrochemical<br />

stability. They posses a low vapor pressure,<br />

they are non-flammable <strong>and</strong> not toxic. Their<br />

physicochemical properties can be also «finetuned»<br />

by a judicious choice of the anion-cation<br />

combination. They are currently under study to<br />

replace organic solvents, especially the volatile<br />

organic compounds, in many fields: synthesis, catalysis,<br />

polymerization <strong>and</strong> various electrochemical<br />

devices. They are also considered in the nuclear<br />

industry as recent works have shown their good<br />

stability under , <strong>and</strong> irradiation. ILs could then<br />

be involved in the separation of actinides <strong>and</strong> fission<br />

products either by liquid/liquid extraction or<br />

electrodeposition processes.<br />

Moreover, ILs are solvents different from molecular<br />

solvents <strong>and</strong> high temperature molten salts. New<br />

complexes or unusual oxidation states could then<br />

be stabilized. To use ILs in chemical processes, it<br />

seems necessary to accumulate data on the solvation,<br />

complexation <strong>reaction</strong> <strong>and</strong> redox properties of<br />

metallic species in these media. In this context, we<br />

have focused our work on the structural <strong>and</strong> electrochemical<br />

behavior of uranium complexes in two<br />

ILs: the 1-butyl-3-methylimidazolium <strong>and</strong> the<br />

methyl-tributylammonium, both of them being associated<br />

to the bis(trifluoromethylsulfonyl)imide<br />

([BuMeIm][Tf 2 N] <strong>and</strong> [MeBu 3 N][Tf 2 N]). Here are<br />

presented the redox properties of [UO 2 Cl 4 ] 2- in<br />

[BuMeIm][Tf 2 N]. The influence of the uranyl lig<strong>and</strong><br />

<strong>and</strong> the IL cation are also examined via the study<br />

of [UO 2 Br 4 ] 2- <strong>and</strong> the IL [MeBu 3 N][Tf 2 N].<br />

Electrochemical behavior of [UO 2 Cl 4 ] 2- in<br />

[BuMeIm][Tf 2 N]<br />

The cyclic voltammogram of [U VI O 2 Cl 4 ] 2– presents<br />

a cathodic peak at -1.4 V <strong>and</strong> two anodic peaks<br />

around -0.4 V <strong>and</strong> 0.2 V (fig. 1, blue curve). If the<br />

swithching cathodic potential is -2.5 V, the intensity<br />

of the second anodic peak increases <strong>and</strong> its shape<br />

corresponds to an anodic redissolution one (red<br />

curve). Then the reduction of the [UO 2 Cl 4 ] 2- seems<br />

irreversible <strong>and</strong> would lead to a deposit.<br />

Fig. 1: Voltammograms of 0.01 M [UO 2 Cl 4 ] 2– in<br />

[BuMeIm][Tf 2 N] at 25°C at a glassy carbon<br />

eletrode at 0.1 V.s -1 .<br />

When Cl - are added in the solution, the intensity of<br />

the anodic peak around -0.4 V (a 2 ) decreases<br />

while a new anodic one (a 1 ) appears around -1.3 V<br />

(fig. 2). Table 1 reports the variation of the ratio of<br />

this new anodic peak intensity (I pa1 ) over the cathodic<br />

peak intensity (I pc1 ): I pa1 /I pc1 increases with<br />

the concentration of Cl – <strong>and</strong> with the potential scan<br />

rate. These results indicate that the redox process<br />

is characterized by an electron transfer followed by<br />

a chemical <strong>reaction</strong>. The kinetic of this <strong>reaction</strong><br />

would be function of the Cl - concentration: the<br />

highest the concentration, the slowest the <strong>reaction</strong>.<br />

This <strong>reaction</strong> would then lead to Cl - production.<br />

Fig. 2 put also in evidence a decrease of I pc1 when<br />

the Cl - concentration increases. However, if the<br />

potential scan rate is increased, that is when the<br />

chemical <strong>reaction</strong> is more <strong>and</strong> more kinetically limited,<br />

I pc1 is almost constant as a function of the Cl -<br />

amount. Two mechanisms could explain the results:<br />

either an EC (DISP) mechanism, the chemical<br />

<strong>reaction</strong> being a disproportionation <strong>reaction</strong>, or<br />

an ECE mechanism, that is two electron transfer<br />

steps separated by a chemical <strong>reaction</strong>. Thus, the<br />

129

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!