14.09.2014 Views

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Studies <strong>and</strong> synthesis of specific materials based on uranium.<br />

Applications on nuclear fuel <strong>and</strong> radioactive ion beam production targets<br />

<strong>IPN</strong>O Participation: A. Ozgumus, N. Barré-Boscher, V. Sladkov, B. Fourest, M. Cheikh Mhamed, E.<br />

Cottereau, S. Essabaa, B. Hy, C. Lau, B. Roussière<br />

Collaboration : Sciences Chimiques de Rennes (Univ. Rennes 1), GANIL<br />

Les études sur les carbures d’uranium dans le groupe de Radiochimie ont commencé avec l’aspect retraitement<br />

du combustible usé il y a quelques années. En effet, ce matériau est préconisé comme combustible<br />

des réacteurs de génération IV refroidis à l’He. S’en est suivie une étroite collaboration avec une équipe de<br />

l’Université de Rennes. Depuis 3 ans, nos objectifs sont d’optimiser les méthodes de synthèse pour pouvoir<br />

contrôler la densité, la stœchiométrie, la taille des grains et pores, mais aussi de comprendre les mécanismes<br />

de frittage et d’étudier le comportement de ce matériau en conditions d’usages (haute température,<br />

haute dose d’irradiation). Depuis plus récemment, nous travaillons avec l’équipe du pôle ALTO sur la même<br />

problématique mais le matériau est alors utilisé comme cible de production d’isotopes radioactifs.<br />

Introduction<br />

For three years the Radiochemistry group of the<br />

<strong>IPN</strong>O has been working on the synthesis of uranium<br />

carbides in the framework of a project on new<br />

generation (IV) nuclear plants [1]. This project has<br />

proceeded from an international sustainable <strong>and</strong><br />

safe nuclear fission initiative [2, 3]. Uranium carbide<br />

pellets exhibit high melting temperature <strong>and</strong><br />

thermal conductivities about eight times larger than<br />

uranium dioxide. The uranium carbide pellet micro<strong>structure</strong><br />

<strong>and</strong> density have a large impact on the<br />

fuel performance. The required characteristic of<br />

the uranium carbide for this use is the capability to<br />

retain the fission products inside the material for<br />

safety <strong>and</strong> waste reprocessing. The first studies<br />

concerning this material were made by Bl<strong>and</strong>ine<br />

Fourest <strong>and</strong> Vladimir Sladkov at <strong>IPN</strong>O in the<br />

framework of the reprocessing stage [4]. They<br />

worked on the electrochemical dissolution <strong>and</strong> the<br />

redox properties of the uranium carbides. Very recently<br />

studies have been started at <strong>IPN</strong>O with the<br />

ALTO group within the framework of the SPIRAL2<br />

project to optimize the properties of uranium carbide<br />

used as a radioactive isotope production target.<br />

The required characteristics of this target are<br />

both the high fission production yield <strong>and</strong> the capability<br />

to release the fission products outside the<br />

material as fast as possible. In spite of some opposite<br />

characteristics of the expected material, these<br />

two applications are directly linked by the synthesis<br />

requirement: the production of this material must<br />

be well-controlled by a simple <strong>and</strong> reproducible<br />

method. This allowed us to undertake our studies<br />

to an in depth underst<strong>and</strong>ing of the properties of<br />

the uranium compounds as a function of the synthesis<br />

parameters <strong>and</strong> also of their behaviour under<br />

operating conditions: high temperature <strong>and</strong><br />

high irradiation dose.<br />

Some results<br />

For these two applications, the methods must allow<br />

to control various properties such as the<br />

stoichiometry, the density, the size of the pore <strong>and</strong><br />

their connectivity, the mechanical resistance to<br />

swelling by irradiation <strong>and</strong> the thermal stability.<br />

Most of the important characteristics detailed<br />

above are controlled by dependant parameters like<br />

synthesis <strong>and</strong> sintering temperatures <strong>and</strong> durations.<br />

Our studies concern three ways of synthesis: the<br />

a<br />

c<br />

10 µm<br />

10 µm<br />

10 µm<br />

first two methods are<br />

the carbo-thermic reductions of a mixture of uranium<br />

oxide <strong>and</strong> uranium oxalate <strong>and</strong> graphite at<br />

high temperature [5-8]. The third way is the synthesis<br />

by fusing a stoichiometric mixture of metallic<br />

uranium <strong>and</strong> graphite into an electrical arc [5]. Because<br />

of the drastic conditions of use, all these<br />

characteristics could change.<br />

High temperature (1000°C or 2000°C) <strong>and</strong> high<br />

irradiation dose will modify considerably the initial<br />

properties of the material <strong>and</strong> could lead to the<br />

collapse of the material by swelling, polygonization<br />

or amorphization [9-15]. Our first studies show that<br />

no drastic amorphization has been observed for an<br />

irradiated pellet at the ALTO facility (results to be<br />

published). Now, we are able to well-control the<br />

stoichiometry of the material (monocarbide UC or<br />

dicarbide UC 2 ) determined by the X-Ray diffraction<br />

b<br />

SEM micrograph from<br />

sintered (a) uranium dicarbide<br />

(97% of the d th ).<br />

124

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!