exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3 exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

ipnweb.in2p3.fr
from ipnweb.in2p3.fr More from this publisher
14.09.2014 Views

width measurements. This relationship simply illustrates the fact that an atomic vacancy which has been created in the entrance channel phase of the collision in the reaction partners — and transferred to the fused nucleus after electronic orbital arrangements — disappears either because it decays through X ray emission, characteristic of the formed element, or because a nuclear decay process has occurred, leading to a new element whose characteristic inner shell X-ray is different. These competing processes between nuclear and atomic decays will eventually continue along the decay chain. The experiment performed at Ganil in November 2009 focused on the compared decay of 103 In and 109 In formed in the reactions 76 Kr+ 27 Al and 82 Kr+ 27 Al at 340 MeV. The second experiment entitled "Super-Heavy Element Fission Time Measurements Using Inner- Shell Ionization” is the first step of the SHE stability measurement program which extends our crystal blocking experiments. The lifetimes of K- and L- shell vacancies of such atoms, in the 10 -18 s and 10 -17 s range, respectively, should allow to measure fission times much longer than the nuclear formation time. In particular by choosing fissioning nuclei with atomic numbers near or at predicted closed shells for protons and/or neutrons, one should be able to probe the stability of super-heavy elements as the high fission barriers expected in the vicinity of shell closures should lead to fission times long enough for K and L X-ray emission from the compound nucleus. Moreover, X-ray observation from super-heavy compound nuclei gives access at the same time to their charge identification and to a quantitative estimate of their fission time, bringing thus valuable and complementary pieces of information to the crystal-blocking experiments performed at GANIL. In addition, this method allows the study of systems for which single crystal targets are not available. In a first step, this alternative method for fission time measurement, independent of any nuclear model has been applied in December 2009 to the Z=120 element formed in U induced reactions on Ni targets. The confirmation of the existence of long lifetime ( > 10 -18 s) components for such heavy elements by two independent experimental methods is of crucial interest as within the present theoretical approaches it seems quite difficult to reconcile the very tiny measured residue cross sections and the rather high cross sections associated to compound nuclei surviving against fission longer than 10 -18 s. In addition , by studying the 238 U + 58 Ni and 238 U + 64 Ni systems, the evolution of fission times with neutron numbers in the proximity of the neutron shell closure can also be studied, providing thus very sensitive tests of nuclear shell models. The experimental planning Successful tests have been realized in September 2008, in order to check the background counting rates registered in the X-ray Germanium detectors at low energy and the feasibility of the lifetime measurement experiments based on the Atomic Clock technique. 2009 has been mainly dedicated to the realization and tests of the different parts of the experimental set-up: the sectorized ionization chambers constituting the first stage of the charged fragment telescopes built in Ganil have been tested in June. Then we tested the sensitivity of diamond monocristal detectors to radiation damage with 7.5 A MeV 129Xe beams, in order to check whether this type of detectors could be used to detect the elastically scattered projectiles in our experiments, to deduce the inner shell ionization probabilities. Finally it appeared that the pulseheight delivered by these diamond detectors was quite rapidly affected by the radiation damage, which led us to use alternatively the elastically scattered target nuclei in standard detectors located at large angles. Furthermore, all the mechanics needed to install the FluoX detection set up around the Vamos target have been designed and built this year: a set of supports for the Germanium detectors operated under vacuum, allowing precise displacements has been designed in IPNO whereas the reaction chamber hosting the fragment detectors was drawn in Ganil. A few days of beam time have been used in September to check the whole setup, including the Vamos spectrometer and finally the two scheduled experiments have been successfully performed in the last months of 2009. The analysis of these two experiments just started in January 2010. References [1] Morjean M. et al «Fission time measurements: a new probe into super-heavy element stability», Physical Review Letters, 101, 072701, 2008 113

ENERGY AND ENVIRONMENT The increasing energy demand, combined with climate constraints led to a study of a world energy landscape to the horizon 2050. A detailed analysis of energy needs, available resources and geographical distribution of the populations led to the construction of an energy bouquet, which allows to answer the various societal constraints. One of the conclusions is that it will be necessary to increase the part of the nuclear energy in the world energy mix. In this frame, and in order to minimize the uranium resource, a study is in progress on sodium cooled reactors allowing the use of thorium fuels. Besides, the possibility of the coupling in a reactor between the neutronic and thermo-hydraulic phenomena has been shown. At last, experimental studies at the nTOF line of CERN on neutron induced fission have been done on isotopes of interest both for thorium cycle and transmutation of nuclear waste. The fields of the radiochemistry group concern essentially the physico-chemical properties of actinides and fission products. Five main research topics are thus developed : • Synthesis of solids (oxide, carbide) for new potential fuels. Dissolution mechanism studies and irradiation effects • Mechanism studies of radionuclides at the interface solid/solution (temperature effects, heat measurements, interactions with organic matter) • Thermodynamic data base of relevant actinides such as protactinium(V) at tracer scale • Electrochemical and spectroscopic studies of uranium in room temperature ionic liquids • Thorium molten salt electrochemical investigations. ENERGIE ET ENVIRONNEMENT La demande croissante en énergie, combinée aux contraintes climatiques ont conduit à mener une réflexion sur le paysage énergétique mondial à l’horizon 2050. Une analyse détaillée des besoins en énergie, des ressources disponibles et de la répartition géographique des populations a conduit à la construction d’un bouquet énergétique, qui permet de répondre aux différentes contraintes sociétales. Une des conclusions est qu’il sera nécessaire d’augmenter la part de l’énergie nucléaire dans le mix énergétique mondial. Dans ce cadre, et afin de réduire la consommation de minerai d’uranium, une étude est menée sur les réacteurs refroidis au sodium permettant l’utilisation de combustibles au thorium. Par ailleurs, la faisabilité du couplage entre les phénomènes neutroniques et de thermohydrauliques présents dans un réacteur a été montrée. Enfin, des études expérimentales auprès de la ligne nTOF du CERN de mesures de sections efficaces de fission d’intérêt pour le cycle du thorium et pour la transmutation complètent ces travaux. Les recherches, conduites par le groupe de radiochimiste du laboratoire, concernent principalement les propriétés physico-chimiques des actinides et des produits de fission et s’orientent selon cinq axes principaux: • L’élaboration de solides, oxyde et carbure d’uranium, en tant que futur combustible. Le comportement vis-à-vis de la corrosion et de l’irradiation, en vue de leur stockage ou de leur retraitement. • Les mécanismes régissant la rétention des radionucléides dans les sols (chaleurs associées, effets de la température et de la matière organique) • La thermodynamique des actinides en solution (entre autres, protactinium à l’échelle des traces) • Le comportement électrochimique et spectroscopique de l’uranium dans les liquides ionique s’étude électrochimique des sels de fluorure de thorium fondus. 114

ENERGY AND ENVIRONMENT<br />

The increasing energy dem<strong>and</strong>, combined with climate constraints led to a study of a world energy<br />

l<strong>and</strong>scape to the horizon 2050. A detailed analysis of energy needs, available resources <strong>and</strong><br />

geographical distribution of the populations led to the construction of an energy bouquet, which allows<br />

to answer the various societal constraints. One of the conclusions is that it will be necessary to increase<br />

the part of the nuclear energy in the world energy mix. In this frame, <strong>and</strong> in order to minimize the<br />

uranium resource, a study is in progress on sodium cooled reactors allowing the use of thorium fuels.<br />

Besides, the possibility of the coupling in a reactor between the neutronic <strong>and</strong> thermo-hydraulic<br />

phenomena has been shown. At last, experimental studies at the nTOF line of CERN on neutron<br />

induced fission have been done on isotopes of interest both for thorium cycle <strong>and</strong> transmutation of<br />

nuclear waste.<br />

The fields of the radiochemistry group concern essentially the physico-chemical properties of<br />

actinides <strong>and</strong> fission products. Five main research topics are thus developed :<br />

• Synthesis of solids (oxide, carbide) for new potential fuels. Dissolution mechanism studies <strong>and</strong><br />

irradiation effects<br />

• Mechanism studies of radionuclides at the interface solid/solution (temperature effects, heat<br />

measurements, interactions with organic matter)<br />

• Thermodynamic data base of relevant actinides such as protactinium(V) at tracer scale<br />

• Electrochemical <strong>and</strong> spectroscopic studies of uranium in room temperature ionic liquids<br />

• Thorium molten salt electrochemical investigations.<br />

ENERGIE ET ENVIRONNEMENT<br />

La dem<strong>and</strong>e croissante en énergie, combinée aux contraintes climatiques ont conduit à mener une<br />

réflexion sur le paysage énergétique mondial à l’horizon 2050. Une analyse détaillée des besoins en<br />

énergie, des ressources disponibles et de la répartition géographique des populations a conduit à la<br />

construction d’un bouquet énergétique, qui permet de répondre aux différentes contraintes sociétales.<br />

Une des conclusions est qu’il sera nécessaire d’augmenter la part de l’énergie nucléaire dans le mix<br />

énergétique mondial. Dans ce cadre, et afin de réduire la consommation de minerai d’uranium, une<br />

étude est menée sur les réacteurs refroidis au sodium permettant l’utilisation de combustibles au<br />

thorium. Par ailleurs, la faisabilité du couplage entre les phénomènes neutroniques et de thermohydrauliques<br />

présents dans un réacteur a été montrée. Enfin, des études expérimentales auprès de la<br />

ligne nTOF du CERN de mesures de sections efficaces de fission d’intérêt pour le cycle du thorium et<br />

pour la transmutation complètent ces travaux.<br />

Les recherches, conduites par le groupe de radiochimiste du laboratoire, concernent principalement<br />

les propriétés physico-chimiques des actinides et des produits de fission et s’orientent selon cinq axes<br />

principaux:<br />

• L’élaboration de solides, oxyde et carbure d’uranium, en tant que futur combustible. Le<br />

comportement vis-à-vis de la corrosion et de l’irradiation, en vue de leur stockage ou de leur<br />

retraitement.<br />

• Les mécanismes régissant la rétention des radionucléides dans les sols (chaleurs associées,<br />

effets de la température et de la matière organique)<br />

• La thermodynamique des actinides en solution (entre autres, protactinium à l’échelle des traces)<br />

• Le comportement électrochimique et spectroscopique de l’uranium dans les liquides ionique<br />

s’étude électrochimique des sels de fluorure de thorium fondus.<br />

114

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!