14.09.2014 Views

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Fluo X: Deexcitation time measurements<br />

using the Atomic Clock method<br />

<strong>IPN</strong>O Participation: D. Jacquet, M.F. Rivet, L. Tassan Got<br />

Collaboration : GANIL Caen, CEA/IRFU/SPhN Saclay, CEA/DIF/DPTA/SPN Bruyères le Châtel, LPC<br />

Caen, INFN (Italy), N<strong>IPN</strong>E Bucharest (Romania)<br />

Après le succès des expériences de mesure de temps de fission utilisant la méthode de blocage dans une<br />

cible monocristalline qui a permis de mettre en évidence la très gr<strong>and</strong>e stabilité des <strong>noyaux</strong> de 120 et 124<br />

protons, un nouveau programme expérimental a été entrepris auprès du Ganil: il s’agit d’ étudier les temps<br />

de vie de <strong>noyaux</strong> <strong>exotiques</strong> ( super-lourds ou de masse moyenne mais déficients en neutrons ) grâce à une<br />

méthode dite de l’Horloge Atomique basée sur la décroissance des lacunes crées dans les couches atomiques<br />

profondes au cours des collisions entre ions lourds. Un tel programme permet naturellement d’étendre<br />

les études de stabilité des super-lourds en s’affranchissant des contraintes liées à la qualité cristallographique<br />

de la cible requise par la méthode de blocage. La méthode permet également en s’intéressant<br />

aux temps d’émission de particules d’évaporation, de suivre l’évolution des paramètres de densité de niveau<br />

en fonction de l’asymétrie lorsqu’on s’éloigne de la vallée de stabilité.<br />

The FLUO-X experiments<br />

To extend further the exploration of the superheavy<br />

element stability , probed through the measurement<br />

of their fission time, that we initiated with<br />

the crystal blocking technique for the Z=120 <strong>and</strong><br />

Z=124 <strong>nuclei</strong> [1], we started last year a new program<br />

of decay time measurements based on the<br />

Atomic Clock method. The principle of this method<br />

relies on the decay of the atomic inner shell vacancies<br />

which are created in the <strong>reaction</strong> products<br />

during the collision. K-shell holes are produced in<br />

the <strong>reaction</strong> partners electron clouds during the<br />

approach phase due to time-dependent Coulomb<br />

field. If the projectile velocity is small compared to<br />

the K-shell electron velocity, the electronic levels<br />

adjust quasi adiabatically to reflect the increased<br />

binding of the combined projectile <strong>and</strong> target nuclear<br />

charge, ending with K-shell holes in the<br />

Figure 1: View of the 3 Ge detectors<br />

surrounding the Vamos target <strong>and</strong><br />

operating under vacuum.<br />

united atom (UA) whose decay might be observed.<br />

Such a method can be applied to probe the stability<br />

of superheavy elements through fission time<br />

measurements as well as to evaporation time<br />

measurements of medium-mass <strong>exotic</strong> <strong>nuclei</strong> in<br />

order to study the evolution of decisive parameters<br />

controlling the decay processes. We thus proposed<br />

two experiments to the Ganil PAC in 2008<br />

which have been accepted <strong>and</strong> scheduled during<br />

fall 2009. The first one is entitled "Level density<br />

parameter investigated through evaporation time<br />

measurements". Considering the essential role of<br />

level densities in any statistical code, <strong>and</strong> more<br />

generally in the thermodynamical behavior of<br />

asymmetric nuclear matter, the aim is to derive<br />

information on their evolution with asymmetry<br />

when moving away from the stability valley to the<br />

neutron deficient region. Due to the direct dependence<br />

of the particle emission rate ( or emission<br />

time) on the level density parameters involved ,<br />

one expects different emission time spectra for the<br />

successive <strong>nuclei</strong> evaporating particles during the<br />

deexcitation cascade of a compound nucleus when<br />

assuming different level density parameters.<br />

These differences may end with changes by more<br />

than one order of magnitude for the most probable<br />

times, as well as for the average times.<br />

Fluorescence yields of element characteristic X-<br />

rays, resulting from the filling of collision-induced<br />

inner shells vacancies can be used to measure<br />

particle emission time thanks to a simple relationship<br />

linking the number of characteristic X-ray<br />

N X , the (atomic) lifetime of the K-vacancy <strong>and</strong> the<br />

(nuclear) lifetime of the emitting nucleus. This nuclear<br />

lifetime can be extracted provided the number<br />

of emitting <strong>nuclei</strong> <strong>and</strong> of K-vacancies in the<br />

considered emitter are also measured. Because of<br />

the very tiny impact parameter range associated to<br />

nuclear processes as compared to atomic length<br />

scales, the latter quantity can be deduced from X-<br />

ray production in coincidence with elastic scattering<br />

events. Regarding the atomic lifetimes, they<br />

are experimentally well known from X-ray line<br />

112

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!