14.09.2014 Views

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

exotic nuclei structure and reaction noyaux exotiques ... - IPN - IN2P3

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

First fast-timing timing experiment at ALTO: nuclear-state half-life<br />

life<br />

measurements in 137,139 Cs <strong>and</strong> 138 Ba.<br />

<strong>IPN</strong>O Participation: B. Roussière <strong>and</strong> the DA-ALTO group<br />

Collaboration : CSNSM-Orsay, T<strong>and</strong>ar CNEA-Buenos Aires, INRNE BAS-Sofia<br />

Le dispositif de ‘’fast-timing’’ développé pour mesurer, auprès d’ALTO, les vies moyennes des états excités<br />

des <strong>noyaux</strong> dans la gamme de quelques dizaines de ps à quelques ns a été testé en ligne. Les mesures<br />

ont été réalisées sur les niveaux excités de 137,139 Cs et 138 -<br />

Ba obtenus lors de la décroissance des<br />

<strong>noyaux</strong> 137-139 Xe. Les <strong>noyaux</strong> de Xénon riches en neutrons étaient produits par la photo-fission de 238 U induite<br />

en bombardant une cible épaisse de carbure d’uranium par un faisceau d’électrons (E = 50 MeV, I ≤<br />

500 nA). Les résultats obtenus sur la masse 138 ont permis, puisque les vies moyennes dans 138 Ba sont<br />

bien connues, de caractériser très précisément le dispositif expérimental et de valider les techniques d’analyse.<br />

Les vies moyennes des cinq premiers états excités de 139 Cs ainsi que celle du premier état excité de<br />

137 Cs ont été mesurées pour la première fois.<br />

Introduction<br />

Nuclear-state half-lives, giving access to transition<br />

probabilities, provide direct insight into the <strong>structure</strong><br />

of the nucleus <strong>and</strong> offer one of the most stringent<br />

test of the nuclear models. The fast-timing<br />

technique is well adapted to measure half-lives in<br />

the sub-nanosecond range. Developed at first with<br />

BaF 2 crystals [1], this method knows nowadays a<br />

revival of interest due to the advent of LaBr 3 scintillators<br />

[2] that have good spectroscopy properties<br />

(high scintillation light yield, fast emission <strong>and</strong> the<br />

best energy resolution among all scintillators). In<br />

the frame of our lanthanide <strong>nuclei</strong> study program at<br />

ALTO [3], we have developed a fast-timing experimental<br />

set-up <strong>and</strong> optimized, by off-line tests with<br />

radioactive sources, its efficiency for measuring<br />

half-lives in the [100 ps - some ns] range by the<br />

slope method [4]. To test on-line this fast-timing<br />

system, we have performed measurements in<br />

137,139 Cs <strong>and</strong> 138 Ba <strong>nuclei</strong> obtained from -decay of<br />

137,138,139 Xe that are well produced at PARRNe,<br />

either using the TANDEM deuteron beam or the<br />

low-intensity ALTO electron-beam.<br />

Experimental procedure<br />

137-139 Xe were produced by photo-fission in a thick<br />

uranium carbide target using a 100 to 500 nA, 50<br />

MeV electron beam. The target, composed of 122<br />

UC x disks of 14 mm diameter <strong>and</strong> 1 mm thick, was<br />

associated with a MK5 hot plasma ion source. The<br />

ions were extracted under 30 kV, mass-separated<br />

<strong>and</strong> collected on a mylar-aluminium tape. The collected<br />

radioactive sources were then transported in<br />

front of the detection device consisting of one Ge<br />

detector <strong>and</strong> three scintillators (one PilotU plastic<br />

for detection, one BaF 2 <strong>and</strong> one LaBr 3 for detection,<br />

all three with 25.4 mm diameter <strong>and</strong> 3 mm,<br />

30 mm <strong>and</strong> 10 mm length respectively).<br />

The yield of 139 Xe was measured to be 2×10 5 ions/<br />

s. The measurement cycles were chosen in order<br />

to optimize the counting rates: for A = 139 t collection =<br />

t counting = 40 s, for A = 137 t collection = t counting = 4 m<br />

<strong>and</strong> for A = 138 t collection = 7.5 m <strong>and</strong> t counting = 30 m.<br />

Experimental results<br />

In 138 Ba, except the level located at 1898.7 keV<br />

(T 1/2 = 2.164(11) ns), the excited states most fed<br />

–<br />

by the decay of 138g Cs have very short half-lives<br />

[5]. Therefore, in view of the time properties of the<br />

detectors used, the transitions de-exciting these<br />

levels can be considered as prompt transitions <strong>and</strong><br />

the 138 mass provides an ideal c<strong>and</strong>idate for calibration<br />

purpose. Thus measurements on mass 138<br />

allowed us i) to validate our experimental setup for<br />

the determination of half-lives in the ns range<br />

since, for the level located at 1898.7 keV, we have<br />

measured T 1/2 = 2.11 (5) ns, in excellent agreement<br />

with the value reported in the literature; <strong>and</strong><br />

ii) to precisely characterize our fast-timing set-up,<br />

in particular by the determination of the promptcurve<br />

properties (position <strong>and</strong> width). Figure 1<br />

shows the displacement of the center of gravity of<br />

the prompt curve as a function of the -ray energy<br />

when time measurement is performed between the<br />

<strong>and</strong> LaBr 3 or BaF 2 detectors or between the<br />

LaBr 3 <strong>and</strong> BaF 2 detectors; one can note in this<br />

case the excellent agreement between the values<br />

observed experimentally (red dots) <strong>and</strong> those extrapolated<br />

from - measurements (yellow grid),<br />

which points out the consistency of measurements<br />

Figure 1<br />

19

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!