13.09.2014 Views

Absolute Maximum Ratings Characteristics SKiiP 20 NAB 12 - SKiiP ...

Absolute Maximum Ratings Characteristics SKiiP 20 NAB 12 - SKiiP ...

Absolute Maximum Ratings Characteristics SKiiP 20 NAB 12 - SKiiP ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>SKiiP</strong> <strong>20</strong> <strong>NAB</strong> <strong>12</strong> - <strong>SKiiP</strong> <strong>20</strong> <strong>NAB</strong> <strong>12</strong> I Mini<strong>SKiiP</strong> 2<br />

<strong>Absolute</strong> <strong>Maximum</strong> <strong>Ratings</strong><br />

Symbol Conditions 1) Values Units<br />

Inverter (Chopper see <strong>SKiiP</strong> 22 <strong>NAB</strong> <strong>12</strong>)<br />

V CES<br />

V GES<br />

I C T heatsink = 25 / 80 °C<br />

I CM t p < 1 ms; T heatsink = 25 / 80 °C<br />

I F = –I C T heatsink = 25 / 80 °C<br />

I FM = –I CM t p < 1 ms; T heatsink = 25 / 80 °C<br />

Bridge Rectifier<br />

V RRM<br />

I D<br />

I FSM<br />

I 2 t<br />

T j<br />

T stg<br />

V isol<br />

T heatsink = 80 °C<br />

t p = 10 ms; sin. 180 °, T j = 25 °C<br />

t p = 10 ms; sin. 180 °, T j = 25 °C<br />

AC, 1 min.<br />

1<strong>20</strong>0<br />

± <strong>20</strong><br />

16 / 11<br />

32 / 22<br />

16 / 11<br />

32 / 22<br />

1500<br />

25<br />

370<br />

680<br />

– 40 . . . + 150<br />

– 40 . . . + <strong>12</strong>5<br />

2500<br />

© by SEMIKRON 000131 B 16 – 49<br />

V<br />

V<br />

A<br />

A<br />

A<br />

A<br />

V<br />

A<br />

A<br />

A 2 s<br />

<strong>Characteristics</strong><br />

Symbol Conditions 1) min. typ. max. Units<br />

10 A T = 25 (<strong>12</strong>5) °C<br />

A T = 25 (<strong>12</strong>5) °C<br />

IGBT - Inverter<br />

V CEsat I C =<br />

R thjh per IGBT<br />

t d(on)<br />

t r<br />

t d(off)<br />

j<br />

V CC = 600 V; V GE = ± 15 V<br />

I C = 10 A; T j = <strong>12</strong>5 °C<br />

R gon = R goff = 150 Ω<br />

t f inductive load<br />

E on + E off<br />

C ies V CE = 25 V; V GE = 0 V, 1 MHz<br />

IGBT - Chopper *<br />

V CEsat I C = 15<br />

R thjh per IGBT<br />

t d(on)<br />

j<br />

V CC = 600 V; V GE = ± 15 V<br />

t r<br />

I C = 15 A; T j = <strong>12</strong>5 °C<br />

t d(off)<br />

R gon = R goff = 82 Ω<br />

t f inductive load<br />

E on + E off<br />

C ies V CE = 25 V; V GE = 0 V, 1 MHz<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

–<br />

2,7(3,3)<br />

55<br />

50<br />

380<br />

80<br />

2,7<br />

0,53<br />

–<br />

2,5(3,1)<br />

55<br />

45<br />

400<br />

70<br />

4,0<br />

1,0<br />

–<br />

Diode 2) - Inverter (Diode 2) - Chopper see <strong>SKiiP</strong> 22 <strong>NAB</strong> <strong>12</strong>)<br />

V F = V EC I F = 10 A T j = 25 (<strong>12</strong>5) °C – 2,0(1,8)<br />

R thjh per diode<br />

– –<br />

V TO<br />

r T<br />

T j = <strong>12</strong>5 °C<br />

T j = <strong>12</strong>5 °C<br />

–<br />

–<br />

1,0<br />

80<br />

I RRM<br />

Q rr<br />

E off<br />

I F = 10 A, V R = – 600 V<br />

di F /dt = – 300 A/µs<br />

V GE = 0 V, T j = <strong>12</strong>5 °C<br />

–<br />

–<br />

–<br />

<strong>12</strong><br />

1,8<br />

0,4<br />

Diode - Rectifier<br />

V F I F = 25 A, T j = 25 °C<br />

– 1,2<br />

R thjh per diode<br />

– –<br />

3,2(3,9)<br />

110<br />

100<br />

570<br />

1<strong>20</strong><br />

–<br />

–<br />

1,8<br />

3,0(3,7)<br />

110<br />

90<br />

600<br />

100<br />

–<br />

–<br />

1,4<br />

2,5(2,3)<br />

1,2<br />

110<br />

–<br />

–<br />

–<br />

2,4<br />

–<br />

2,6<br />

°C<br />

°C<br />

V<br />

V<br />

ns<br />

ns<br />

ns<br />

ns<br />

mJ<br />

nF<br />

K/W<br />

V<br />

ns<br />

ns<br />

ns<br />

ns<br />

mJ<br />

nF<br />

K/W<br />

V<br />

V<br />

mΩ<br />

A<br />

µC<br />

mJ<br />

K/W<br />

V<br />

K/W<br />

Temperature Sensor<br />

R TS T = 25 / 100 °C 1000 / 1670 Ω<br />

Mechanical Data<br />

M 1<br />

Case<br />

case to heatsink, SI Units<br />

mechanical outline see page<br />

B 16 – 8<br />

2 –<br />

M2<br />

* For diagrams of the Chopper IGBT please refer to <strong>SKiiP</strong> 22 <strong>NAB</strong> <strong>12</strong><br />

2,5 Nm<br />

SEMIKRON integrated<br />

intelligent Power<br />

<strong>SKiiP</strong> <strong>20</strong> <strong>NAB</strong> <strong>12</strong><br />

<strong>SKiiP</strong> <strong>20</strong> <strong>NAB</strong> <strong>12</strong> I 3)<br />

3-phase bridge rectifier +<br />

braking chopper +<br />

3-phase bridge inverter<br />

Case M2<br />

UL recognized file no. E63532<br />

• specification of shunts and<br />

temperature sensor see part A<br />

• common characteristics see<br />

page B 16 – 4<br />

1) T heatsink = 25 °C, unless<br />

otherwise specified<br />

2) CAL = Controlled Axial Lifetime<br />

Technology (soft and fast<br />

recovery)<br />

3) With integrated DC and/or AC<br />

shunts<br />

4)<br />

accuracy of pure shunt, please<br />

note that for DC shunt no<br />

separate sensing contact is<br />

used.<br />

R cs(dc) 5 % 4)<br />

R cs(ac) 1 %<br />

16,5 mΩ<br />

10 mΩ


Fig. 1 Typ. output characteristic, t p = 80 µs; 25 °C Fig. 2 Typ. output characteristic, t p = 80 µs; <strong>12</strong>5 °C<br />

T j = <strong>12</strong>5 °C<br />

V CE = 600 V<br />

V GE = ± 15 V<br />

R G = 150 Ω<br />

T j = <strong>12</strong>5 °C<br />

V CE = 600 V<br />

V GE = ± 15 V<br />

I C = 10 A<br />

Fig. 3 Turn-on /-off energy = f (I C ) Fig. 4 Turn-on /-off energy = f (R G )<br />

I Cpuls = 10 A<br />

V GE = 0 V<br />

f = 1 MHz<br />

Fig. 5 Typ. gate charge characteristic Fig. 6 Typ. capacitances vs. V CE<br />

B 16 – 50 000131 © by SEMIKRON


Mini<strong>SKiiP</strong> 1<strong>20</strong>0 V<br />

ICop /IC<br />

1.2<br />

1.0<br />

Mini1<strong>20</strong>7<br />

T j = 150 °C<br />

V GE = ≥ 15 V<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 25 50 75 100 <strong>12</strong>5 150<br />

Th [°C]<br />

Fig. 7 Rated current of the IGBT I Cop / I C = f (T h )<br />

ICpuls/IC<br />

2,5<br />

2<br />

Mini1<strong>20</strong>9<br />

T j = ≤ 150 °C<br />

V GE = ± 15 V<br />

ICsc/ICN<br />

<strong>12</strong><br />

10<br />

Mini<strong>12</strong>10<br />

T j = ≤ 150 °C<br />

V GE = ± 15 V<br />

t sc = ≤ 10 µs<br />

L ext < 25 nH<br />

1,5<br />

1<br />

8<br />

6<br />

4<br />

Note:<br />

*Allowed numbers of<br />

short circuit:1s<br />

0,5<br />

2<br />

0<br />

0<br />

0 500 1000 1500<br />

0 500 1000 1500<br />

VCE [V]<br />

VCE [V]<br />

Fig. 9 Turn-off safe operating area (RBSOA) of the IGBT Fig. 10 Safe operating area at short circuit of the IGBT<br />

Fig. 11 Typ. freewheeling diode forward characteristic<br />

Fig. <strong>12</strong> Forward characteristic of the input bridge diode<br />

B 16 – 4 0698 © by SEMIKRON


Mini<strong>SKiiP</strong> 2<br />

+rect<br />

+B<br />

+DC<br />

I+<br />

<strong>SKiiP</strong> <strong>20</strong> <strong>NAB</strong> 06 ...<br />

<strong>SKiiP</strong> 21 <strong>NAB</strong> 06 ...<br />

<strong>SKiiP</strong> <strong>20</strong> <strong>NAB</strong> <strong>12</strong> ...<br />

<strong>SKiiP</strong> 22 <strong>NAB</strong> <strong>12</strong> ...<br />

Circuit<br />

Case M2<br />

Layout and connections for the<br />

customer’s printed circuit board<br />

Note: The shunts are available<br />

only by option I<br />

L1<br />

L2<br />

L3<br />

g1<br />

B +T -T<br />

gB<br />

g2<br />

-rect -B -DC<br />

g3<br />

g4<br />

Isu<br />

0u<br />

-DC/A<br />

g5<br />

g6<br />

Isv<br />

0v<br />

Isw<br />

0w<br />

U<br />

V<br />

W<br />

Hauptanschluß<br />

power connector<br />

Steueranschluß<br />

control pin

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!