11.09.2014 Views

Simulation of dynamic abelian and non-abelian gauge theories with ...

Simulation of dynamic abelian and non-abelian gauge theories with ...

Simulation of dynamic abelian and non-abelian gauge theories with ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Simulation</strong> <strong>of</strong> <strong>dynamic</strong> <strong>abelian</strong> <strong>and</strong><br />

<strong>non</strong>-<strong>abelian</strong> <strong>gauge</strong> <strong>theories</strong><br />

<strong>with</strong> ultracold atoms<br />

Benni Reznik<br />

Tel Aviv University<br />

Joint work <strong>with</strong><br />

Erez Zohar, Tel Aviv University<br />

J. Ignacio Cirac, MPQ<br />

MPQ, January 29, 2013<br />

1


Talk outline<br />

• HEP <strong>and</strong> Lattice <strong>gauge</strong> theory – overview<br />

• Confinement in 1+1 – a simple realization<br />

• Further examples: <strong>non</strong>-<strong>abelian</strong> <strong>and</strong> higher<br />

dimensional <strong>gauge</strong> <strong>theories</strong>.<br />

• Outlook <strong>and</strong> Summary<br />

• List <strong>of</strong> relevant publications


Simulating systems<br />

Using one controllable quantum system in<br />

order to simulate another system,<br />

for example by:<br />

3<br />

• BECs<br />

• Atoms in optical lattices<br />

• Rydberg Atoms<br />

• Trapped Ions<br />

• Superconducting devices<br />

• …<br />

• Water flow tanks<br />

•…


Simulated physics<br />

• Condensed Matter Models ( high TC?)<br />

Artificial potentials (AB phases, Hall effect, etc)<br />

• Gravity: Black hole Hawking radiation,<br />

quantum radiation in cosmological expansion.<br />

• QFT: Scalar <strong>and</strong> fermion relativistic fields.


Simulated physics<br />

• Condensed Matter Models ( high TC?)<br />

Artificial potentials (AB phases, Hall effect, etc)<br />

• Gravity: Black hole Hawking radiation,<br />

quantum effects <strong>of</strong> cosmological expansion.<br />

• QFT: Scalar <strong>and</strong> fermion relativistic fields,<br />

• .<br />

• High Energy physics (HEP)<br />

• Quantum Chromo<strong>dynamic</strong>s (QCD) effects?<br />

• Confinement <strong>of</strong> Quarks?


HEP vs. cond. mat.<br />

• Experimentally more challenging compared <strong>with</strong> cond. mat. simulations.<br />

(For reasons to be explained).<br />

• Could be used to explore otherwise experimentally <strong>and</strong> computationally<br />

inaccessible effects.<br />

• There are different proposals <strong>with</strong> different levels <strong>of</strong> difficulty.<br />

Starting <strong>with</strong> relatively simple models, that can<br />

be developed to study complex challenging problems.<br />

Note also recent works by :<br />

P. Zoller group, <strong>and</strong> M. Lewenstein group.


Requirements: HEP models<br />

Fermion fields : = Matter<br />

Bosonic, Gauge fields:= Interaction mediators<br />

Constraints:<br />

• local <strong>gauge</strong> invariance = “charge” conservation<br />

(exact, or low energy, effective )<br />

• Relativistic invariance = causal structure,<br />

( In the continuum limit.)


Structure <strong>of</strong> HEP models<br />

• Matter particles:= fermions (+Higgs)<br />

(Charges: electric, color , flavor. Spin. Mass)<br />

• Gauge fields:= mediate the Interactions<br />

Electromagnetic: massless photon, (1), U(1)<br />

Weak interaction : massive Z, W’s , (3), SU(2)<br />

Strong interaction : massless Gluons , (8), SU(3)


Structure <strong>of</strong> HEP models<br />

The <strong>abelian</strong>/<strong>non</strong>-<strong>abelian</strong> local symmetries much<br />

determines the Gauge field <strong>dynamic</strong>s.<br />

It also constrains the interactions between<br />

Gauge fields <strong>and</strong> Matter-field.<br />

U(1) => linear Maxwell’s theory<br />

SU(N) => <strong>non</strong>-linear Yang-Mills theory


Abelian U(1): QED<br />

α QQQ ≪ 1,<br />

V QQQ r ∝ 1 r<br />

We (ordinarily) don’t need second quantization to underst<strong>and</strong><br />

the structure <strong>of</strong> atoms. m e c 2 2<br />

≫ E RRRRRRR ≃ α QQQ m e c 2<br />

In HEP scattering, perturbation theory ( Feynman diagrams)


Abelian U(1): QED<br />

α QQQ ≪ 1,<br />

V QQQ r ∝ 1 r<br />

We (ordinarily) don’t need second quantization to underst<strong>and</strong><br />

the structure <strong>of</strong> atoms. m e c 2 2<br />

≫ E RRRRRRR ≃ α QQQ m e c 2<br />

In HEP scattering, perturbation theory ( Feynman diagrams)<br />

Works well.


Non-<strong>abelian</strong>: QCD<br />

α QQQ > 1 , V QQQ r ∝ r<br />

<strong>non</strong>-perturbative confinement effect!<br />

=> structure <strong>of</strong> Hadrons: quark pairs form Mesons ,<br />

quark triplets form Baryons.<br />

Color Electric flux-tubes:<br />

“a <strong>non</strong>-<strong>abelian</strong> Meissner effect”.


Non-<strong>abelian</strong>: QCD<br />

α QQQ > 1 , V QQQ r ∝ r<br />

<strong>non</strong>-perturbative confinement effect!<br />

=> structure <strong>of</strong> Hadrons: quark pairs form Mesons ,<br />

quark triplets form Baryons.<br />

Color Electric flux-tubes:<br />

“a <strong>non</strong>-<strong>abelian</strong> Meissner effect”.


Gauge fields<br />

Abelian Fields<br />

Massless<br />

Long-range forces<br />

Chargeless<br />

Linear <strong>dynamic</strong>s<br />

Non-Abelian fields<br />

Massless<br />

Confinement<br />

Carry charge<br />

Self interacting & NL


Lattice <strong>gauge</strong> theory<br />

• The st<strong>and</strong>ard avenue: Z lllllll − computed using<br />

Monte Carlo “sampling”<br />

(Other methods exist: <strong>non</strong>-<strong>abelian</strong> bosonization (1+1); instanton semiclassical<br />

summation, large N perturbation, variational methods… )<br />

------------------<br />

… but:<br />

• Limited applicability <strong>with</strong> too many quarks .<br />

<br />

Computationally hard “sign problem”.<br />

color superconductivity, Quark-Gluon plasma. )<br />

• Quark confinement <strong>with</strong> <strong>dynamic</strong> matter never<br />

proven.


First step:<br />

• Confinement in Abelian lattice models!<br />

• Toy models <strong>with</strong> “QCD-like properties” that<br />

capture the essential physics mechanism<br />

<strong>of</strong> confinement.


Confinement in <strong>abelian</strong><br />

compact QED lattice models<br />

• 1+1D: “Schwinger’s model” manifests confinement.<br />

(analytic <strong>and</strong> lattice results available).<br />

• 2+1D: confinement for all values <strong>of</strong> coupling constant,<br />

a <strong>non</strong>-perturbative mechanism (Polyakov).<br />

• 3+1D: phase transition between strong coupling<br />

confinement phase, <strong>and</strong> weak coupling coulomb<br />

phase.<br />

• For T > 0: there is a phase transition also in 2+1 D.


QED in 1+1 : Schwinger’s model<br />

• No magnetic fields: EM has no <strong>dynamic</strong>s <strong>of</strong> its own.<br />

Non trivial <strong>dynamic</strong>s obtained by coupling to<br />

<strong>dynamic</strong>al charge sources.<br />

• Schwinger: e + e − form bound states. (analytic <strong>and</strong><br />

lattice results available.)<br />

(Non-<strong>abelian</strong> extension: same results holds in 1+1:<br />

QCD 2 version, but are not completely solved. Only in<br />

the large-N limit.)


1+1, U(1) <strong>gauge</strong> theory<br />

Start <strong>with</strong> a hopping fermionic Hamiltonian, in 1<br />

spatial direction<br />

H = M n ψ n † ψ n<br />

+ α n ψ n † ψ n+1 + H. c.<br />

n<br />

This Hamiltonian is invariant to global <strong>gauge</strong><br />

transformations,<br />

ψ n ⟶ e −iΛ ψ n ; ψ n † ⟶ e iΛ ψ n<br />


1+1, U(1) <strong>gauge</strong> theory<br />

Promote the <strong>gauge</strong> transformation to be local:<br />

ψ n ⟶ e −iΛ nψ n ; ψ † n ⟶ e iΛ † nψ n<br />

Then, in order to make the Hamiltonian <strong>gauge</strong><br />

invariant, add unitary operators, U n ,<br />

H = M n ψ n † ψ n<br />

+ α n ψ n † U n ψ n+1 + H. c.<br />

n<br />

U n = e iθ n ; θ n ⟶ θ n + Λ n+1 - Λ n


Dynamic 1+1 U(1) <strong>gauge</strong> theory<br />

Add <strong>dynamic</strong>s to the <strong>gauge</strong> field:<br />

H E = g2<br />

2 L n 2<br />

Where L n is the angular momentum operator<br />

conjugate to θ n , representing the (integer) electric<br />

field.<br />

n


Gauge fields: A → θ , E → L<br />

Matter fields: ψ, ψ †<br />

Figure taken from ref. 4


Realization <strong>of</strong> a link


Realization <strong>of</strong> a link<br />

B 1, B 2<br />

F L<br />

F R


Realization <strong>of</strong> a link<br />

L → L − 1<br />

B 1, B 2<br />

F L<br />

F R


Realization <strong>of</strong> a link<br />

L → L + 1<br />

B 1, B 2<br />

F L<br />

F R


Angular Momentum conservation ↔<br />

Local <strong>gauge</strong> invariance<br />

B 1, B 2<br />

F L<br />

F R<br />

ψ L † b 1 † b 2 ψ R + ψ R † b 2 † b 1 ψ L<br />

m F (B 1 )<br />

m F (F R )<br />

m F (B 1 )<br />

m F (F L )


Angular Momentum conservation ↔<br />

Local <strong>gauge</strong> invariance<br />

B 1, B 2<br />

F L<br />

F R<br />

ψ L † b 1 † b 2 ψ R + ψ R † b 2 † b 1 ψ L<br />

m F (B 1 )<br />

m F (F R )<br />

m F (B 1 )<br />

m F (F L )


Angular Momentum conservation ↔<br />

Local <strong>gauge</strong> invariance<br />

B 1, B 2<br />

F L<br />

F R<br />

ψ L † b 1 † b 2 ψ R + ψ R † b 2 † b 1 ψ L<br />

m F (B 1 )<br />

m F (F R )<br />

m F (B 1 )<br />

m F (F L )


Gauge bosons: Schwinger algebra<br />

L + = b 1 † b 2 ; L − = b 2 † b 1<br />

L z = 1 2 N 1 − N 2 ;l = 1 2 N 1 + N 2


Gauge bosons: Schwinger algebra<br />

L + = b † 1 b 2 ; L − = b † 2 b 1<br />

L z = 1 N 2<br />

1 − N 2 ;l = 1 N 2<br />

1 + N 2<br />

<strong>and</strong> thus what we have is<br />

ψ † L L + ψ R + ψ † R L − ψ L


Gauge bosons: Schwinger algebra<br />

ψ † L L + ψ R + ψ † R L − ψ L<br />

For large l , m ≪ l<br />

L + = b † 1 b 2 ~e i φ 1−φ 2 ≡ e ii = U<br />

ψ L † Uψ R + ψ R † U † ψ L<br />

Qualitatively similar results can be obtained <strong>with</strong> two bosons on the link.


The electric <strong>dynamic</strong> term<br />

L z 2 = 1 4 N 1 − N 2<br />

2<br />

= 1 4 b † 2 1<br />

1 b 1 +<br />

4 b † 2 1<br />

2b 2 −<br />

2 b † 1 b 1 b † 2 b 2<br />

H E = g2<br />

2 L n 2<br />

n<br />

E = N 1 − N 2 ccccccccc tt θ = φ 1 − φ 2


cQED: U(1) in 1+1<br />

Scattering fermion-boson<br />

H = M −1 n ψ n † ψ n<br />

n<br />

+ α ψ n † U n ψ n+1 + H. c.<br />

+ g2<br />

2 L n 2<br />

n<br />

Scattering boson-boson


Mass <strong>and</strong> Charge<br />

• Even n (particles): Q = N = ψ † ψ<br />

0 atoms: zero mass, zero charge<br />

1 atom: M, Q=1<br />

• Odd n (anti-particles): Q = N − 1<br />

(note: mass measured relative to –M),<br />

1 atom : zero mass, zero charge (“Dirac sea”)<br />

0 atoms: mass M (relative to –M), charge Q=-1


Quark confinement<br />

N =0 1 0 1<br />

Q =0 0 0 0<br />

L z = 0 0 0<br />

N =1 0 1 0<br />

Q =1 -1 1 -1<br />

L z = 1 0 1<br />

N =1 1 0 0<br />

Q =1 0 0 -1<br />

L z = 1 1 1


SU(2) in 1+1-d<br />

• Confinement <strong>of</strong> “color” charges.<br />

• Non-<strong>abelian</strong> Schwinger “QCD_2”<br />

• Hamiltonian:<br />

on each link – an SU(2) element ;<br />

conjugate to the group’s left <strong>and</strong> right<br />

generators, <strong>and</strong> , satisfying<br />

(separately) SU(2) algebras<br />

37


SU(2) 1+1 simulation<br />

• Gauge field SU(2): 4 bosons on each link<br />

Figure taken from ref. 5<br />

38


d+1 (d>1) : plaquette terms<br />

In more spatial dimensions, one should<br />

consider also <strong>gauge</strong>-<strong>gauge</strong> interactions, which<br />

involve plaquette terms:<br />

− 1 1 2 1 2<br />

cos θ<br />

g 2 m,n + θ m+1,n − θ m,n+1 − θ m,n<br />

m,n<br />

(see ref. 1)<br />

In the continuum limit, this corresponds to<br />

∇ × A 2 - <strong>gauge</strong> invariant magnetic energy<br />

term.


Non-Abelian plaquettes<br />

In this case, the plaquette terms take the<br />

form<br />

− 1<br />

2g 2 Tr □ UUU † U † + H. c.<br />

- This gives the <strong>non</strong>linear Yang-Mills<br />

model.


Realization <strong>of</strong> plaquette terms<br />

Unlike in 1+1 dimensional case, here one has to<br />

obtain “un-natural” plaquette terms using<br />

effective methods.<br />

For example – imposing Gauss’s law as a<br />

constraint.<br />

The <strong>abelian</strong> Kogut-Susskind<br />

model.<br />

Figure taken from ref. 1<br />

PRL 2011.


Possible Measurements<br />

Electric flux tubes<br />

Flux loops deforming <strong>and</strong> breaking effects<br />

Figure taken from ref. 4<br />

Measurement <strong>of</strong> Wilson Loop’s area law.<br />

Figure taken from ref. 4


Our current situation<br />

Theory 1+1<br />

Pure<br />

U(1) -<br />

cQED<br />

SU(2) –<br />

Yang Mills<br />

Z N<br />

Trivial<br />

1+1 <strong>with</strong><br />

matter<br />

K.S. <strong>and</strong><br />

truncated<br />

d+1 Pure d+1 <strong>with</strong><br />

matter<br />

K.S. <strong>and</strong><br />

truncated<br />

Trivial Full <strong>Simulation</strong> Strong limit<br />

<strong>Simulation</strong><br />

Trivial<br />

<br />

<br />

<br />

<br />

<br />

<br />

K.S. <strong>and</strong><br />

truncated<br />

Strong limit<br />

<strong>Simulation</strong><br />

<br />

<br />

<br />

Published<br />

In preparation<br />

K.S. = Kogut Susskind Hamiltonian LGT


Summary<br />

• We have discussed a simple realization <strong>of</strong> lattice <strong>gauge</strong><br />

theory that manifests confinement: the Abelian Schwinger<br />

model.<br />

• Higher dimensional extension are theoretically more<br />

interesting problems, experimentally harder, but reachable<br />

in the next step by extending upon 1+1-d models.<br />

• This may then allow for insights into <strong>non</strong>-trivial high energy<br />

physics problems.<br />

• Improved simplified realization are possibly still awaiting.


Summary<br />

• We have discussed a simple realization <strong>of</strong> lattice <strong>gauge</strong><br />

theory that manifests confinement: the Abelian Schwinger<br />

model.<br />

• Higher dimensional extension are theoretically more<br />

interesting problems, experimentally harder, but reachable<br />

in the next step by extending upon 1+1-d models.<br />

• This may then allow for insights into <strong>non</strong>-trivial high energy<br />

physics problems.<br />

• Improved simplified realization are possibly still awaiting.<br />

Thank you for your attention !


List <strong>of</strong> relevant publications<br />

1. Confinement <strong>and</strong> Lattice Quantum-Electro<strong>dynamic</strong> Electric Flux Tubes Simulated <strong>with</strong> Ultracold Atoms<br />

Erez Zohar, Benni Reznik<br />

Phys. Rev. Lett. 107, 275301 (2011) . Preprint: arXiv: 1108.1562v2 [quant-ph]<br />

2. Simulating Compact Quantum Electro<strong>dynamic</strong>s <strong>with</strong> ultracold atoms: Probing confinement <strong>and</strong><br />

<strong>non</strong>perturbative effects<br />

Erez Zohar, J. Ignacio Cirac, Benni Reznik<br />

Phys. Rev. Lett. 109, 125302 (2012) Preprint: arXiv: 1204.6574 [quant-ph]<br />

3. Topological Wilson-loop area law manifested using a superposition <strong>of</strong> loops<br />

Erez Zohar, Benni Reznik To appear in New J. Phys.. Preprint: arXiv:1208.1012 [quant-ph]<br />

4. Simulating 2+1d Lattice QED <strong>with</strong> <strong>dynamic</strong>al matter using ultracold atoms<br />

Erez Zohar, J. Ignacio Cirac, Benni Reznik<br />

Phys. Rev. Lett. 110, 055302 (2013), Preprint: arXiv:1208.4299 [quant-ph]<br />

5. A cold-atom quantum simulator for SU(2) Yang-Mills lattice <strong>gauge</strong> theory<br />

Erez Zohar, J. Ignacio Cirac, Benni Reznik<br />

Phys. Rev. Lett. 110, 125304 (2013) , Preprint: arXiv:1211.2241 [quant-ph]<br />

6. Quantum simulations <strong>of</strong> <strong>gauge</strong> <strong>theories</strong> <strong>with</strong> ultracold atoms: local <strong>gauge</strong> invariance from angular<br />

momentum conservation,<br />

Erez Zohar, J. Ignacio Cirac, Benni Reznik preprint: arXiv:1303.5040

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!