10.09.2014 Views

Feedback from Stars & Black Holes in Galaxy Formation

Feedback from Stars & Black Holes in Galaxy Formation

Feedback from Stars & Black Holes in Galaxy Formation

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Feedback</strong> <strong>from</strong> <strong>Stars</strong> & <strong>Black</strong> <strong>Holes</strong><br />

<strong>in</strong> <strong>Galaxy</strong> <strong>Formation</strong><br />

Philip Hopk<strong>in</strong>s<br />

Eliot Quataert, Norm Murray,<br />

Lars Hernquist, Todd Thompson, Dusan Keres, Chris Hayward, Stijn Wuyts,<br />

Kev<strong>in</strong> Bundy, Desika Narayanan, Ryan Hickox, Rachel Somerville, & more<br />

Tuesday, December 25, 12


Tuesday, December 25, 12


Tuesday, December 25, 12


Q: WHY IS STAR FORMATION SO INEFFICIENT?<br />

Moster 2009<br />

Log( Stellar/Halo Mass )<br />

10% of baryons<br />

Log( Halo Mass )<br />

Log SFR<br />

Tuesday, December 25, 12<br />

Log<br />

Kennicutt 1998<br />

gas / dyn


A: Stellar <strong>Feedback</strong>!<br />

SO WHAT’S THE PROBLEM?<br />

“Disk” with thermal feedback<br />

Ø<br />

Standard (<strong>in</strong> <strong>Galaxy</strong> <strong>Formation</strong>):<br />

Couple SNe energy<br />

as “heat<strong>in</strong>g”/thermal energy<br />

Ø<br />

⇣ n<br />

⌘ 1<br />

t cool ⇠ 4000 yr<br />

cm 3<br />

⇣ n<br />

⌘ 1/2<br />

t dyn ⇠ 10 8 yr<br />

cm 3<br />

FAILS:<br />

Ø<br />

“Cheat”:<br />

Ø<br />

Ø<br />

Turn off cool<strong>in</strong>g<br />

Force w<strong>in</strong>d by hand<br />

(‘kick’ out of galaxy)<br />

No <strong>Feedback</strong><br />

Piontek & Ste<strong>in</strong>metz<br />

SNe Heat<strong>in</strong>g Alone<br />

Cool<strong>in</strong>g Turned Off<br />

make really ~1<br />

m<strong>in</strong><br />

Tuesday, December 25, 12


Stellar <strong>Feedback</strong>: How Can We Do Better?<br />

Tuesday, December 25, 12<br />

ESA


Stellar <strong>Feedback</strong>: How Can We Do Better?<br />

Ø<br />

High-resolution (~1pc), molecular cool<strong>in</strong>g (1000 cm -3 )<br />

Tuesday, December 25, 12<br />

ESA


Stellar <strong>Feedback</strong>: How Can We Do Better?<br />

Ø<br />

High-resolution (~1pc), molecular cool<strong>in</strong>g (1000 cm -3 )<br />

Ø<br />

Heat<strong>in</strong>g:<br />

Ø<br />

Ø<br />

Ø<br />

SNe (II & Ia)<br />

Stellar W<strong>in</strong>ds<br />

Photoionization (HII Regions)<br />

Tuesday, December 25, 12<br />

ESA


Stellar <strong>Feedback</strong>: How Can We Do Better?<br />

Ø<br />

High-resolution (~1pc), molecular cool<strong>in</strong>g (1000 cm -3 )<br />

Ø<br />

Heat<strong>in</strong>g:<br />

Ø<br />

Ø<br />

Ø<br />

SNe (II & Ia)<br />

Stellar W<strong>in</strong>ds<br />

Photoionization (HII Regions)<br />

Ø<br />

Explicit Momentum Flux:<br />

Ø<br />

Radiation Pressure<br />

˙ P rad ⇠ L c (1 + IR)<br />

Ø<br />

Ø<br />

SNe<br />

˙ P SNe ⇠ ĖSNe v 1<br />

ejecta<br />

Stellar W<strong>in</strong>ds<br />

˙ P W ⇠<br />

Tuesday, December 25, 12<br />

Ṁv w<strong>in</strong>d<br />

ESA


Tuesday, December 25, 12


Hopk<strong>in</strong>s, Quataert, & Murray, <strong>in</strong> prep<br />

Tuesday, December 25, 12


NGC 1097 (Spitzer)<br />

Hopk<strong>in</strong>s, Quataert, & Murray, <strong>in</strong> prep<br />

Tuesday, December 25, 12


Genzel+ 2011<br />

Hopk<strong>in</strong>s, Quataert, & Murray, <strong>in</strong> prep<br />

Tuesday, December 25, 12


Stellar <strong>Feedback</strong> gives Self-Regulated Star <strong>Formation</strong><br />

Massive High-z Disk<br />

Dwarf Starburst<br />

no feedback<br />

with feedback<br />

Tuesday, December 25, 12


Stellar <strong>Feedback</strong> gives Self-Regulated Star <strong>Formation</strong><br />

Massive High-z Disk<br />

Dwarf Starburst<br />

no radiation<br />

pressure<br />

no feedback<br />

with feedback<br />

Tuesday, December 25, 12


Stellar <strong>Feedback</strong> gives Self-Regulated Star <strong>Formation</strong><br />

Massive High-z Disk<br />

Dwarf Starburst<br />

no<br />

no<br />

radiation<br />

SNe or<br />

pressure<br />

stellar w<strong>in</strong>ds<br />

no feedback<br />

with feedback<br />

Tuesday, December 25, 12


Stellar <strong>Feedback</strong> gives Self-Regulated Star <strong>Formation</strong><br />

Massive High-z Disk<br />

Dwarf Starburst<br />

no<br />

no<br />

radiation<br />

SNe or<br />

pressure<br />

stellar w<strong>in</strong>ds<br />

no feedback<br />

with feedback<br />

No HII<br />

Photoheat<strong>in</strong>g<br />

Tuesday, December 25, 12


Stellar <strong>Feedback</strong> & Self-Regulation<br />

WHICH MECHANISMS MATTER?<br />

Ø<br />

SFR ~ 100+ M sun /yr<br />

(L ~ L EDD )<br />

Tuesday, December 25, 12<br />

Ø Optically thick Ø ~ 100 cm -3<br />

T cool ~ 1000 yr


Stellar <strong>Feedback</strong> & Self-Regulation<br />

WHICH MECHANISMS MATTER?<br />

Ø<br />

SFR ~ 0.01 M sun /yr<br />

(L


Kennicutt-Schmidt relation emerges naturally<br />

no feedback<br />

with feedback<br />

Tuesday, December 25, 12


Kennicutt-Schmidt relation emerges naturally<br />

Tuesday, December 25, 12


Kennicutt-Schmidt relation emerges naturally<br />

Ø Efficient cool<strong>in</strong>g the gas disk dissipates its support:<br />

Tuesday, December 25, 12


Kennicutt-Schmidt relation emerges naturally<br />

Ø Efficient cool<strong>in</strong>g the gas disk dissipates its support:<br />

P˙<br />

diss ⇠ M gas v turb<br />

t cross<strong>in</strong>g<br />

Tuesday, December 25, 12


Kennicutt-Schmidt relation emerges naturally<br />

Ø Efficient cool<strong>in</strong>g the gas disk dissipates its support:<br />

P˙<br />

diss ⇠ M gas v turb<br />

⇠ M gas disk ⌦<br />

t cross<strong>in</strong>g<br />

Tuesday, December 25, 12


Kennicutt-Schmidt relation emerges naturally<br />

Ø Efficient cool<strong>in</strong>g the gas disk dissipates its support:<br />

P˙<br />

diss ⇠ M gas v turb<br />

⇠ M gas disk ⌦<br />

t cross<strong>in</strong>g<br />

set by global properties:<br />

Q ⌘<br />

⌦<br />

⇡G⌃<br />

Tuesday, December 25, 12


Kennicutt-Schmidt relation emerges naturally<br />

Ø Efficient cool<strong>in</strong>g the gas disk dissipates its support:<br />

P˙<br />

diss ⇠ M gas v turb<br />

⇠ M gas disk ⌦<br />

t cross<strong>in</strong>g<br />

Ø<br />

Collapse stops when momentum <strong>in</strong>put <strong>from</strong> feedback:<br />

set by global properties:<br />

Q ⌘<br />

⌦<br />

⇡G⌃<br />

Tuesday, December 25, 12


Kennicutt-Schmidt relation emerges naturally<br />

Ø Efficient cool<strong>in</strong>g the gas disk dissipates its support:<br />

P˙<br />

diss ⇠ M gas v turb<br />

⇠ M gas disk ⌦<br />

t cross<strong>in</strong>g<br />

Ø<br />

Collapse stops when momentum <strong>in</strong>put <strong>from</strong> feedback:<br />

P˙<br />

⇤ ⇠ P ˙ diss<br />

set by global properties:<br />

Q ⌘<br />

⌦<br />

⇡G⌃<br />

Tuesday, December 25, 12


Kennicutt-Schmidt relation emerges naturally<br />

Ø Efficient cool<strong>in</strong>g the gas disk dissipates its support:<br />

P˙<br />

diss ⇠ M gas v turb<br />

t cross<strong>in</strong>g<br />

⇠ M gas<br />

disk ⌦<br />

Ø<br />

Collapse stops when momentum <strong>in</strong>put <strong>from</strong> feedback:<br />

P˙<br />

⇤ ⇠ P ˙ diss<br />

set by global properties:<br />

Q ⌘<br />

⌦<br />

⇡G⌃<br />

P˙<br />

⇤ ⇠ few ⇥ L c ⇠ ✏ ⇤<br />

Ṁ⇤ c<br />

Tuesday, December 25, 12


Kennicutt-Schmidt relation emerges naturally<br />

Ø Efficient cool<strong>in</strong>g the gas disk dissipates its support:<br />

P˙<br />

diss ⇠ M gas v turb<br />

t cross<strong>in</strong>g<br />

⇠ M gas<br />

disk ⌦<br />

Ø<br />

Collapse stops when momentum <strong>in</strong>put <strong>from</strong> feedback:<br />

P˙<br />

⇤ ⇠ P ˙ diss<br />

set by global properties:<br />

Q ⌘<br />

⌦<br />

⇡G⌃<br />

P˙<br />

⇤ ⇠ few ⇥ L c ⇠ ✏ ⇤<br />

˙⌃ ⇤ ⇠<br />

✓<br />

✏ ⇤ c<br />

◆<br />

Ṁ⇤ c<br />

⌃ gas ⌦ ⇠ 0.02 ⌃ gas ⌦<br />

Tuesday, December 25, 12


Global Star <strong>Formation</strong> Rates are INDEPENDENT of High-Density SF Law<br />

Efficiency (SF per tdyn) Index (SFR ~ r n )<br />

SF Density Threshold<br />

Hopk<strong>in</strong>s, Quataert, & Murray 2011<br />

also Saitoh et al. 2008<br />

Tuesday, December 25, 12


Global Star <strong>Formation</strong> Rates are INDEPENDENT of High-Density SF Law<br />

Efficiency (SF per tdyn) Index (SFR ~ r n )<br />

SF Density Threshold<br />

• Set by feedback (i.e. SFR) needed to ma<strong>in</strong>ta<strong>in</strong> marg<strong>in</strong>al stability<br />

Hopk<strong>in</strong>s, Quataert, & Murray 2011<br />

also Saitoh et al. 2008<br />

Tuesday, December 25, 12


Molecular Chemistry doesn’t change th<strong>in</strong>gs above modest Metallicity<br />

MOLECULES ARE A TRACER<br />

No Chemistry (SF <strong>from</strong> all gas)<br />

SF <strong>from</strong> molecules only<br />

SF, cool<strong>in</strong>g track molecules<br />

see also Glover 2011<br />

SMC<br />

Tuesday, December 25, 12


Molecular Chemistry doesn’t change th<strong>in</strong>gs above modest Metallicity<br />

MOLECULES ARE A TRACER<br />

No Chemistry (SF <strong>from</strong> all gas)<br />

SF <strong>from</strong> molecules only<br />

SF, cool<strong>in</strong>g track molecules<br />

see also Glover 2011<br />

SMC<br />

Ø<br />

Just need some cool<strong>in</strong>g channel: changes at Mgal < 10 6 Msun, Z


How Does Star <strong>Formation</strong> Self-Regulate?<br />

SELF-ADJUST THE MASS IN DENSE GAS<br />

Tuesday, December 25, 12


How Does Star <strong>Formation</strong> Self-Regulate?<br />

SELF-ADJUST THE MASS IN DENSE GAS<br />

Ø<br />

Need net momentum <strong>in</strong>jection dP/dt ~ L/c ~ SFR<br />

to cancel dissipation ~ Mgas sdisk W and ma<strong>in</strong>ta<strong>in</strong> Q~1<br />

Tuesday, December 25, 12


How Does Star <strong>Formation</strong> Self-Regulate?<br />

SELF-ADJUST THE MASS IN DENSE GAS<br />

Ø<br />

Ø<br />

Need net momentum <strong>in</strong>jection dP/dt ~ L/c ~ SFR<br />

to cancel dissipation ~ Mgas sdisk W and ma<strong>in</strong>ta<strong>in</strong> Q~1<br />

Not just top-down collapse<br />

Tuesday, December 25, 12


Star <strong>Formation</strong> is <strong>Feedback</strong>-Regulated:<br />

MORE FEEDBACK = LESS STAR FORMATION<br />

MW<br />

“Normal” <strong>Feedback</strong> Strength<br />

1/3 <strong>Feedback</strong> Strength<br />

3x <strong>Feedback</strong> Strength<br />

Tuesday, December 25, 12


Star <strong>Formation</strong> is <strong>Feedback</strong>-Regulated:<br />

MORE FEEDBACK = LESS STAR FORMATION<br />

MW<br />

“Normal” <strong>Feedback</strong> Strength<br />

1/3 <strong>Feedback</strong> Strength<br />

3x <strong>Feedback</strong> Strength<br />

1/3 Strength<br />

Normal Strength<br />

3x Strength<br />

Tuesday, December 25, 12


Properties of GMCs<br />

DEPENDENCE ON FEEDBACK AND OTHER SCALINGS<br />

Tuesday, December 25, 12


Properties of GMCs<br />

THINGS TO EXAMINE IN THE FUTURE...<br />

L<strong>in</strong>ewidth [km s -1 ]<br />

Sims<br />

Observed<br />

Number of GMCs<br />

Tuesday, December 25, 12


Tuesday, December 25, 12<br />

Galactic<br />

Super-W<strong>in</strong>ds


Tuesday, December 25, 12<br />

X-Rays


How Efficient Are Galactic Super-W<strong>in</strong>ds?<br />

AND WHAT MECHANISMS DRIVE THEM?<br />

Massive High-z Disk<br />

Dwarf Starburst<br />

with feedback<br />

no feedback<br />

Tuesday, December 25, 12


How Efficient Are Galactic Super-W<strong>in</strong>ds?<br />

AND WHAT MECHANISMS DRIVE THEM?<br />

Massive High-z Disk<br />

Dwarf Starburst<br />

with feedback<br />

no radiation<br />

pressure<br />

no feedback<br />

Tuesday, December 25, 12


How Efficient Are Galactic Super-W<strong>in</strong>ds?<br />

AND WHAT MECHANISMS DRIVE THEM?<br />

Massive High-z Disk<br />

Dwarf Starburst<br />

with feedback<br />

no SNe or<br />

stellar w<strong>in</strong>ds<br />

no radiation<br />

pressure<br />

no feedback<br />

Tuesday, December 25, 12


How Efficient Are Galactic Super-W<strong>in</strong>ds?<br />

AND WHAT MECHANISMS DRIVE THEM?<br />

Massive High-z Disk<br />

Dwarf Starburst<br />

with feedback<br />

no SNe or<br />

stellar w<strong>in</strong>ds<br />

no radiation<br />

pressure<br />

no feedback<br />

Tuesday, December 25, 12


How Efficient Are Galactic Super-W<strong>in</strong>ds?<br />

Yang+ 03<br />

Log( Stellar/Halo Mass )<br />

Log( Halo Mass )<br />

Ø<br />

Large mass-load<strong>in</strong>g:<br />

Ṁ w<strong>in</strong>d ⇡ 10 Ṁ⇤<br />

⇣<br />

V<br />

⌘ 1.1 ⇣<br />

c<br />

⌃<br />

⌘ 0.5<br />

gas<br />

100 km s 1 10 M pc 2<br />

Tuesday, December 25, 12


How Efficient Are Galactic Super-W<strong>in</strong>ds?<br />

Ø<br />

Large mass-load<strong>in</strong>g:<br />

Ṁ w<strong>in</strong>d ⇡ 10 Ṁ⇤<br />

⇣<br />

V<br />

⌘ 1.1 ⇣<br />

c<br />

⌃<br />

⌘ 0.5<br />

gas<br />

100 km s 1 10 M pc 2<br />

Tuesday, December 25, 12


Future Directions<br />

WHAT CAN WE EXPLORE WITH MORE REALISTIC ISM/FEEDBACK MODELS?<br />

Ø<br />

Mergers:<br />

Ø<br />

Star cluster formation? Starburst environments?<br />

Ø<br />

AGN <strong>Feedback</strong>:<br />

Ø<br />

How does it couple to a multi-phase ISM?<br />

Ø<br />

Cosmological simulations:<br />

Ø<br />

Ø<br />

“Zoom-<strong>in</strong>” disk formation simulations (D. Keres)<br />

Cosmological volume AMR: dwarf populations<br />

and mass function evolution (M. Kuhlen)<br />

Ø<br />

GMCs & ISM Structure:<br />

Ø<br />

<strong>Formation</strong> & destruction of GMCs, lifetimes,<br />

star formation efficiencies<br />

~30 sec<br />

Tuesday, December 25, 12


Tuesday, December 25, 12<br />

What About the AGN?


Ø<br />

Every massive galaxy hosts a<br />

supermassive black hole<br />

Ø<br />

Mass accreted <strong>in</strong> ~couple bright quasar phase(s)<br />

(Soltan, Salucci+, Trema<strong>in</strong>e+, Yu & Lu, PFH, Shankar, et al.)<br />

Tuesday, December 25, 12


Scatter <strong>in</strong> the mass<br />

that “gets down<br />

to” MBH<br />

Gebhardt et al.<br />

Ferrarese et al.<br />

Har<strong>in</strong>g & Rix<br />

Trema<strong>in</strong>e<br />

Marconi & Hunt<br />

Scatter <strong>in</strong> M BH<br />

BHs must<br />

somehow<br />

self-regulate<br />

Tuesday, December 25, 12<br />

PFH, Murray, & Thompson 2009


What can AGN <strong>Feedback</strong> Do For You?<br />

No <strong>Feedback</strong><br />

Oppenheimer & Dave<br />

Number Density<br />

No AGN FB<br />

Observed<br />

Observed<br />

Ø<br />

Ø<br />

Ø<br />

Sharp color bimodality<br />

Lower<strong>in</strong>g mass of >M* galaxies<br />

Remov<strong>in</strong>g/heat<strong>in</strong>g gas <strong>in</strong> groups<br />

Tuesday, December 25, 12


What can AGN <strong>Feedback</strong> Do For You?<br />

Oppenheimer & Dave<br />

Number Density<br />

No AGN FB<br />

Observed<br />

Ø<br />

Ø<br />

Ø<br />

Sharp color bimodality<br />

Lower<strong>in</strong>g mass of >M* galaxies<br />

Remov<strong>in</strong>g/heat<strong>in</strong>g gas <strong>in</strong> groups<br />

Tuesday, December 25, 12


“Transition”<br />

vs.<br />

“Ma<strong>in</strong>tenance”<br />

Ø<br />

“Quasar” mode (high mdot)<br />

Ø<br />

“Radio” mode (low mdot)<br />

Ø<br />

Move mass <strong>from</strong> Blue to Red?<br />

Ø<br />

Keep it Red<br />

Ø<br />

Rapid (~10 7 yr)<br />

Ø<br />

Long-lived (~Hubble time)<br />

Ø<br />

Small(er) scales (~pc-kpc)<br />

Ø<br />

Large (~halo) scales<br />

Ø<br />

Morphological Transformation<br />

Ø<br />

Subtle morphological change<br />

Ø<br />

Gas-rich/Dissipational Mergers?<br />

Ø<br />

Hot Halos & Dry Mergers<br />

Ø<br />

Regulates <strong>Black</strong> Hole Mass<br />

Ø<br />

Regulates <strong>Galaxy</strong> Mass<br />

Tuesday, December 25, 12


Tuesday, December 25, 12<br />

What Can Quasar <strong>Feedback</strong> Do?


<strong>Feedback</strong> Energy:<br />

SILK & REES ‘98<br />

L = r Ṁ BH c 2 ( r ⇠ 0.1)<br />

! E rad ⇠ 0.1 M BH c 2 ⇠ 10 61 erg<br />

(M BH ⇠ 10 8 M )<br />

E gal ⇠ M gal<br />

2 ⇠ (10 11 M ) (200 km/s) 2 ⇠ 10 59 erg<br />

Tuesday, December 25, 12


M-sigma Suggests Self-Regulated BH Growth<br />

PREVENTS RUNAWAY BLACK HOLE GROWTH<br />

<strong>Black</strong> hole growth<br />

without feedback<br />

with<br />

feedback<br />

Di Matteo et al. 2005<br />

Tuesday, December 25, 12


Tuesday, December 25, 12


Tuesday, December 25, 12


Quasar Outflows: Heat<strong>in</strong>g Halo Gas<br />

SHUT DOWN COOLING AND/OR “SET UP” RADIO MODE<br />

McCarthy et al. 2010,11<br />

No <strong>Feedback</strong><br />

Cox et al. 2006<br />

Quasar<br />

<strong>Feedback</strong><br />

With Quasar<br />

No Quasar<br />

Tuesday, December 25, 12


Expulsion of Gas Turns off Star <strong>Formation</strong><br />

ENSURES ELLIPTICALS ARE SUFFICIENTLY “RED & DEAD”?<br />

Spr<strong>in</strong>gel et al. 2005<br />

No AGN<br />

<strong>Feedback</strong><br />

With AGN<br />

<strong>Feedback</strong><br />

Tuesday, December 25, 12


Tuesday, December 25, 12<br />

But Does Quasar Mode <strong>Feedback</strong> Exist?


Optical (<strong>Stars</strong>)<br />

NGC 5728<br />

OIII Ionization Cone<br />

Tuesday, December 25, 12


Broad Absorption L<strong>in</strong>e Quasars<br />

Ø<br />

Preferentially <strong>in</strong> high-L quasars<br />

Ø Cover<strong>in</strong>g factor ~20%<br />

Ø<br />

~12 (16) objects now,<br />

10/12 confirmed:<br />

Ṁ w<strong>in</strong>d v & L AGN /c<br />

L w<strong>in</strong>d & 0.01 L AGN<br />

R w<strong>in</strong>d 1 20 kpc<br />

v 1000 km s 1<br />

Ṁ w<strong>in</strong>d 100 600 M yr 1<br />

Arav et al.<br />

Wampler et al. 1995<br />

Hamann et al. 2001<br />

de Kool et al. 2001&2<br />

Korista et al. 2008<br />

Moe et al. 2009<br />

Dunn et al. 2010<br />

Aoki et al. 2011<br />

Kaastra et al. 2011<br />

Tuesday, December 25, 12


“Broad w<strong>in</strong>gs <strong>in</strong> Narrow L<strong>in</strong>es” <strong>in</strong> Type-2 (Narrow-L<strong>in</strong>e) Quasars<br />

Laor et al., Crenshaw et al.<br />

(lower-lum<strong>in</strong>osity, v ~ 100-400 km/s)<br />

Humphrey et al. 2010<br />

Green & Zakamska et al. 2011<br />

Shen et al. 2011 (Double-Peaked NLRs)<br />

Ṁ ⇠ 50<br />

1000 M /yr<br />

Ṁv⇠ 1 30 L AGN /c<br />

L w<strong>in</strong>d ⇠ 0.01 L AGN<br />

|DVBLUE|<br />

|DVRED|<br />

Tuesday, December 25, 12


Molecular Outflows <strong>in</strong> AGN ULIRGs<br />

CO:<br />

Rupke & Veilleux 2005,2011<br />

Fischer et al. 2010 (Mrk 231)<br />

Feruglio et al. 2010 (Mrk 231)<br />

Alatalo et al. 2011 (NGC 1266)<br />

Molecular+Ionized Outflows:<br />

R w<strong>in</strong>d 1 4kpc<br />

kpc<br />

v>500 km s 1<br />

Ṁ w<strong>in</strong>d 1000 M yr 1<br />

Tuesday, December 25, 12


Molecular Outflows <strong>in</strong> AGN ULIRGs<br />

Sturm et al. 2011:<br />

Ṁ ⇠ 100 1000 M /yr<br />

Ṁv⇠ 5 30 L AGN /c<br />

L w<strong>in</strong>d ⇠ 0.03 0.10L AGN<br />

Tuesday, December 25, 12


Tuesday, December 25, 12<br />

Where to now? How Do We Model This?


Step 1: Inflow<br />

Ø<br />

Beg<strong>in</strong>n<strong>in</strong>g to directly follow <strong>in</strong>flow<br />

to sub-pc scales<br />

R < 0.1 pc:<br />

~ few M⊙ yr -1<br />

PFH & Quataert 2009,10,11<br />

Lev<strong>in</strong>e, Gned<strong>in</strong>, Kravtsov 09,10<br />

Mayer, Callegari, 09,10<br />

Tuesday, December 25, 12


Step 1: Inflow<br />

Ø<br />

Beg<strong>in</strong>n<strong>in</strong>g to directly follow <strong>in</strong>flow<br />

to sub-pc scales<br />

R < 0.1 pc:<br />

~ few M⊙ yr -1<br />

PFH & Quataert 2009,10,11<br />

Lev<strong>in</strong>e, Gned<strong>in</strong>, Kravtsov 09,10<br />

Mayer, Callegari, 09,10<br />

Tuesday, December 25, 12


Bars w/<strong>in</strong> Bars<br />

(Shlosman et al. 1989)<br />

(PFH & Quataert 2010)<br />

“It’s Bars all the Way Down ...”<br />

Tuesday, December 25, 12


Bars w/<strong>in</strong> Bars<br />

(Shlosman et al. 1989)<br />

(PFH & Quataert 2010)<br />

“It’s Bars all the Way Down ...”<br />

Derive ‘Instability’ Rate:<br />

Ṁ 10 M yr 1 Disk<br />

Total<br />

5/2<br />

1/6 M<br />

BH, 8 M gas, 9 R 3/2<br />

0,100<br />

Tuesday, December 25, 12


(PFH & Quataert 2010)<br />

Bars w/<strong>in</strong> Bars<br />

(Shlosman et al. 1989)<br />

“It’s Bars all the Way Down ...”<br />

More accurately ...<br />

“It’s Non-axisymmetric<br />

Features all the Way Down ...”<br />

Derive ‘Instability’ Rate:<br />

Ṁ 10 M yr 1 Disk<br />

Total<br />

5/2<br />

1/6 M<br />

BH, 8 M gas, 9 R 3/2<br />

0,100<br />

Tuesday, December 25, 12


Step 2: Stellar <strong>Feedback</strong> & the ISM<br />

Ø<br />

High-resolution (~1pc), molecular cool<strong>in</strong>g (1000 cm -3 )<br />

Ø<br />

Heat<strong>in</strong>g:<br />

Ø<br />

Ø<br />

Ø<br />

SNe (II & Ia)<br />

Stellar W<strong>in</strong>ds<br />

Photoionization (HII Regions)<br />

Ø<br />

Explicit Momentum Flux:<br />

Ø<br />

Radiation Pressure<br />

˙ P rad ⇠ L c (1 + IR)<br />

Ø<br />

Ø<br />

SNe<br />

˙ P SNe ⇠ ĖSNe v 1<br />

ejecta<br />

Stellar W<strong>in</strong>ds<br />

˙ P W ⇠<br />

Tuesday, December 25, 12<br />

Ṁv w<strong>in</strong>d<br />

ESA


Tuesday, December 25, 12


Do we still need ‘Quasar Mode’ <strong>Feedback</strong>?<br />

100<br />

Spr<strong>in</strong>gel et al. 2005<br />

10<br />

No Quasar<br />

<strong>Feedback</strong><br />

1<br />

0.1<br />

With Quasar<br />

<strong>Feedback</strong><br />

Tuesday, December 25, 12


Do we still need ‘Quasar Mode’ <strong>Feedback</strong>?<br />

100<br />

Spr<strong>in</strong>gel et al. 2005<br />

10<br />

Stellar <strong>Feedback</strong>, No Quasar<br />

No Quasar <strong>Feedback</strong><br />

1<br />

0.1<br />

With Quasar<br />

<strong>Feedback</strong><br />

Tuesday, December 25, 12


Step 3: Physical Sources of AGN <strong>Feedback</strong><br />

mechanical (jets & w<strong>in</strong>ds) & radiative<br />

Tuesday, December 25, 12<br />

• Jets<br />

• heat IGM/ICM (low ρ), but not dense ISM<br />

• W<strong>in</strong>ds<br />

• BAL-QSO w<strong>in</strong>ds<br />

✓ equatorial<br />

✓ Ṗ up to ~ 5L/c (Arav+)<br />

• Photons<br />

• UV: Ṗ ~ L/c (absorbed by dust): κUV ~ 10 3 cm 2 g -1 ~ 10 3 e scatt<br />

• FIR: Ṗ ~ τL/c (τ ~ dust FIR optical depth ~ 10-100): κFIR ~10 e scatt<br />

• Compton Heat<strong>in</strong>g (only low density gas)<br />

• Outstand<strong>in</strong>g Problem: Which Dom<strong>in</strong>ates?<br />

• Different physics <strong>in</strong> ISM & IGM<br />

ESA


Step 2: <strong>Feedback</strong><br />

Proga et al. 00-07; Kurosawa et al. 08-11<br />

Ø L/LEdd >~ 0.1<br />

Ø Cover<strong>in</strong>g factor ~10-30%<br />

z<br />

Ø Launched at < pc<br />

Ṁ launch ⇠<br />

ṀBH<br />

v launch ⇠ 30, 000 km/s<br />

z<br />

Tuesday, December 25, 12<br />

ESA<br />

R


BAL W<strong>in</strong>ds on ~1pc - 1kpc scales:<br />

PFH <strong>in</strong> prep<br />

Wada et al.<br />

No BAL W<strong>in</strong>ds<br />

With BAL W<strong>in</strong>ds<br />

Ṁ launch (0.1 pc) = 0.5 ṀBH<br />

v launch (0.1 pc) = 10, 000 km/s<br />

Tuesday, December 25, 12


BAL W<strong>in</strong>ds on Galactic Scales<br />

CAN IT REALLY AFFECT STAR FORMATION?<br />

Novak et al. 2010,11<br />

Debuhr, Ma, Quataert 2010,11<br />

Ø<br />

Ø<br />

Recover M-s<br />

Ø Normalization ~ (efficiency) -1<br />

Launch ~1000 km/s<br />

“tail” <strong>in</strong> w<strong>in</strong>ds<br />

Only Long-Range<br />

<strong>Feedback</strong><br />

Ø<br />

Suppress SFR<br />

with BAL w<strong>in</strong>ds<br />

Tuesday, December 25, 12


Ø<br />

Ø<br />

Summary:<br />

Global Star formation is <strong>Feedback</strong>-Regulated: <strong>in</strong>dependent of small-scale SF ‘law’<br />

Ø<br />

Need ‘enough’ stars to offset dissipation (set by gravity)<br />

Ø<br />

Ø<br />

<strong>Feedback</strong> leads to Kennicutt relation & super-w<strong>in</strong>ds:<br />

⇣<br />

V<br />

⌘ 1.1 ⇣<br />

c<br />

⌃<br />

⌘ 0.5<br />

gas<br />

Ṁ w<strong>in</strong>d ⇡ 10 Ṁ⇤ 100 km s 1 10 M pc 2<br />

Different mechanisms dom<strong>in</strong>ate different regimes:<br />

Ø High densities: radiation pressure<br />

Ø<br />

Ø<br />

Intermediate: HII heat<strong>in</strong>g, stellar w<strong>in</strong>d momentum<br />

Low densities: SNe & stellar w<strong>in</strong>d shock-heat<strong>in</strong>g<br />

Ø No one mechanism works<br />

Thanks!<br />

Ø Quasar feedback is here to stay:<br />

Ø<br />

BAL W<strong>in</strong>ds:<br />

Ø<br />

Ø<br />

Ø<br />

CAN expla<strong>in</strong> MBH-s<br />

WILL suppress SFRs<br />

SHOULD heat & help clear IGM & Proto-Group Environments<br />

Ø<br />

Inflows: “Stuff with<strong>in</strong> Stuff”: Cascade of <strong>in</strong>stabilities with diverse morphology<br />

Ṁ BH / f(B/T) M gas (R)/t dyn<br />

Tuesday, December 25, 12


Tuesday, December 25, 12


Tuesday, December 25, 12


Tuesday, December 25, 12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!