08.09.2014 Views

On the Ecology of Mountainous Forests in a Changing Climate: A ...

On the Ecology of Mountainous Forests in a Changing Climate: A ...

On the Ecology of Mountainous Forests in a Changing Climate: A ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

78 Chapter 3<br />

COV m,l =<br />

2<br />

σ T,m,l<br />

r PT,m,l · σ T,m,l · σ P,m,l<br />

r TP,m,l · σ T,m,l · σ P,m,l<br />

2<br />

σ P,m,l<br />

(3.65)<br />

The load<strong>in</strong>gs <strong>of</strong> <strong>the</strong> pr<strong>in</strong>cipal component factors <strong>of</strong> <strong>the</strong> covariance matrix are calculated<br />

next (i.e. its denormalized Eigenvectors E 1 and E 2 , Eq. 3.66; Flury & Riedwyl 1983).<br />

Like this it is possible to obta<strong>in</strong> cross-correlated variates <strong>of</strong> temperature and precipitation<br />

accord<strong>in</strong>g to Eq. 3.67 & 3.68:<br />

E 1 = eig(COV) 1 =<br />

E 11<br />

E 12<br />

, E 2 = eig(COV) 2 =<br />

E 21<br />

E 22<br />

(3.66)<br />

T m,y,l = µ T,m,l + cl T,m,y,l (3.67)<br />

P m,y,l = µ P,m,l + cl P,m,y,l (3.68)<br />

where X m,y,l is <strong>the</strong> actual mean monthly value <strong>of</strong> <strong>the</strong> variable (X ∈ {T,P}), and cl X,m,y,l<br />

is a l<strong>in</strong>ear comb<strong>in</strong>ation <strong>of</strong> two <strong>in</strong>dependent normal variates v (v ~ N (0,1) ) multiplied by<br />

<strong>the</strong> components <strong>of</strong> <strong>the</strong> Eigenvectors (Eq. 3.69 & 3.70):<br />

cl T,m,y,l = v 1 · E 11 + v 2 · E 21 (3.69)<br />

cl P,m,y,l = v 1 · E 12 + v 2 · E 22 (3.70)<br />

CALCULATION OF BIOCLIMATIC VARIABLES<br />

W<strong>in</strong>ter m<strong>in</strong>imum temperature<br />

The approach presented by Fischl<strong>in</strong> et al. (1994) is used <strong>in</strong> FORCLIM-E (Eq. 3.71).<br />

uWiT ≡ Tw y,l = MIN( T Dec,y-1,l , T Jan,y,l , T Feb,y,l ) (3.71)<br />

Annual sum <strong>of</strong> degree-days<br />

In our analysis <strong>of</strong> climate-dependent factors <strong>in</strong> forest gap models (Fischl<strong>in</strong> et al. 1994) we<br />

compared <strong>the</strong> conventional method for calculat<strong>in</strong>g <strong>the</strong> annual degree-day sum (Botk<strong>in</strong> et al<br />

1972a,b) with <strong>the</strong> more precise s<strong>in</strong>e-wave method by Allen (1976), and we conjectured<br />

that <strong>the</strong> difference between <strong>the</strong> two methods <strong>in</strong>creases <strong>the</strong> closer <strong>the</strong> mean monthly tem-

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!