08.09.2014 Views

On the Ecology of Mountainous Forests in a Changing Climate: A ...

On the Ecology of Mountainous Forests in a Changing Climate: A ...

On the Ecology of Mountainous Forests in a Changing Climate: A ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

208 Appendix<br />

• Prentice & Helmisaari (1991) judged Fagus silvatica to be very tolerant, which<br />

means that Fagus would dom<strong>in</strong>ate <strong>the</strong> forests also <strong>in</strong> dry central alp<strong>in</strong>e valleys,<br />

where it is absent <strong>in</strong> reality. <strong>On</strong> <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong>ir value <strong>of</strong> 0 for alder most<br />

probably is exaggerated, imply<strong>in</strong>g that alder can grow only at sites with soil<br />

moisture permanently at or above field capacity.<br />

• The values by Jahn (1991) are not differentiated enough (only three tolerance<br />

classes).<br />

F<strong>in</strong>ally, <strong>the</strong> drought tolerance classes [1..5] obta<strong>in</strong>ed like this (kDrT', Tab. A-10) were<br />

converted l<strong>in</strong>early to evapotranspiration deficits (correspond<strong>in</strong>g to uDrStr) by assum<strong>in</strong>g<br />

that a tolerance class <strong>of</strong> 5 corresponds to 30% evapotranspiration deficit (cf. Prentice &<br />

Helmisaari 1991), i.e. kDrT = 0.3 (Tab. A-10).<br />

Tab. A-10: Drought tolerance <strong>of</strong> tree species accord<strong>in</strong>g to Landolt (1977, 1 = tolerant, 5 = <strong>in</strong>tolerant, x =<br />

<strong>in</strong>different), Prentice & Helmisaari (1991, 0 = <strong>in</strong>tolerant, 0.36 = tolerant), Jahn (1991, 1 = tolerant, 3 =<br />

<strong>in</strong>tolerant), and Ellenberg (1986, 1 = <strong>in</strong>tolerant, 5 = tolerant). All data were converted to <strong>the</strong> scale [1…5]<br />

where 1 = <strong>in</strong>tolerant and 5 = tolerant (columns with headers <strong>in</strong> italics).<br />

Species<br />

Landolt<br />

(1977)<br />

Prentice &<br />

Helmisaari<br />

(1991)<br />

Jahn<br />

(1991)<br />

Ellenberg<br />

(1986)<br />

Landolt<br />

(1977)<br />

classes<br />

Prentice &<br />

H. classes<br />

Jahn<br />

(1991)<br />

classes<br />

Abies alba 4 2 3 2 3 3 0.18<br />

Larix decidua 3 2 2 3 3 2 0.12<br />

Picea excelsa 3 0.12 2 1 3 3 3 1 0.06<br />

P<strong>in</strong>us cembra 3 5 3 5 0.30<br />

P<strong>in</strong>us montana 2 1 5 4 5 5 0.30<br />

P<strong>in</strong>us silvestris x 0.24 1 5 5 4 5 5 0.30<br />

Taxus baccata 2 0.06 2 4 4 2 3 4 0.24<br />

Acer campestre 3 1 4 3 5 4 0.24<br />

Acer platanoides 3 0.24 1 3 3 4 5 3 0.18<br />

Acer pseudoplatanus 3 3 3 3 1 3 0.18<br />

Alnus glut<strong>in</strong>osa 5 0 1 1 1 1 0.06<br />

Alnus <strong>in</strong>cana 4 0 1 2 1 1 0.06<br />

Alnus viridis 4 2 2 3 2 0.12<br />

Betula pendula x 0.24 1 2 5 4 5 2 0.12<br />

Carp<strong>in</strong>us betulus 3 0.24 2 3 3 4 3 3 0.18<br />

Castanea sativa 3 1 4 3 5 4 0.24<br />

Corylus avellana 3 0.24 3 4 4 0.24<br />

Fagus silvatica 3 0.36 2 2 3 5 3 2 0.12<br />

Frax<strong>in</strong>us excelsior 2–4 0.12 3 2 3 3 1 2 0.12<br />

Populus nigra 4 1 2 1 0.06<br />

Populus tremula 3 0.12 3 3 3 3 0.18<br />

Quercus petraea 2 0.36 2 3 4 5 3 3 0.18<br />

Quercus pubescens 2 1 4 4 5 4 0.24<br />

Quercus robur 3 0.24 1 5 3 4 5 5 0.30<br />

Salix alba 4 1 2 1 0.06<br />

Sorbus aria 2 2 4 4 3 4 0.24<br />

Sorbus aucuparia 3 0.06 2 4 3 2 3 4 0.24<br />

Tilia cordata 2 0.36 2 4 4 5 3 4 0.24<br />

Tilia platyphyllos 3 2 3 3 3 3 0.18<br />

Ulmus scabra 4 0.12 3 3 2 3 1 3 0.18<br />

kDrT'<br />

kDrT<br />

kBrow, kLy & kLa parameters<br />

No coherent data could be found on <strong>the</strong> brows<strong>in</strong>g susceptibility <strong>of</strong> tree species (except for<br />

scarce data <strong>in</strong> Ellenberg 1986 and Dengler et al. 1990); thus <strong>the</strong> values from Kienast<br />

(1987) were used (section 3.4, Tab. 3.11).<br />

For deriv<strong>in</strong>g <strong>the</strong> light parameters (kLy, kLa), <strong>the</strong> follow<strong>in</strong>g sources were consulted:<br />

Amann (1954), Landolt (1977), Bernatzky (1978), Ellenberg (1986) and Jahn (1991).<br />

Amann (1954) gives qualitative descriptions for a few species (see footnotes <strong>in</strong> Tab. A-<br />

11). Ellenberg (1986) is <strong>the</strong> only author who differentiates light tolerance values for<br />

sapl<strong>in</strong>gs (pp. 915ff.) and older trees (p. 82) for most species used <strong>in</strong> FORCLIM<br />

(Tab. A-11). Hence, it was decided to use ma<strong>in</strong>ly Ellenberg's values, but to modify<br />

<strong>the</strong>m where <strong>in</strong>consistencies became apparent; for example, Amann (1954) and Prentice &<br />

Helmisaari (1991) agree that Acer spp. and Frax<strong>in</strong>us excelsior are more shade tolerant as<br />

sapl<strong>in</strong>gs than as adults, which is not reflected <strong>in</strong> Ellenberg (1986).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!