08.09.2014 Views

On the Ecology of Mountainous Forests in a Changing Climate: A ...

On the Ecology of Mountainous Forests in a Changing Climate: A ...

On the Ecology of Mountainous Forests in a Changing Climate: A ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Appendix 205<br />

Tab. A-7: Values for maximum tree age (years) from <strong>the</strong> literature. n – sample size (number <strong>of</strong> values<br />

found <strong>in</strong> <strong>the</strong> literature); M<strong>in</strong>, Mean, Max – m<strong>in</strong>imum, average and maximum value. kAm used <strong>in</strong><br />

FORCLIM is <strong>the</strong> arithmetic mean <strong>of</strong> <strong>the</strong> average and <strong>the</strong> maximum values, rounded to <strong>the</strong> nearest 10<br />

years.<br />

Species n M<strong>in</strong> Mean Max (Mean+Max)/2 kAm<br />

Abies alba 6 300 600 800 700 700<br />

Larix decidua 6 300 700 1000 850 850<br />

Picea excelsa 8 200 650 1200 925 930<br />

P<strong>in</strong>us cembra 6 600 900 1200 1050 1050<br />

P<strong>in</strong>us montana 1 300 300 300 300 300<br />

P<strong>in</strong>us silvestris 7 400 614 900 757 760<br />

Taxus baccata 7 1000 1714 2500 2107 2110<br />

Acer campestre 4 100 143 200 171 170<br />

Acer platanoides 7 150 264 500 382 380<br />

Acer pseudoplatanus 7 350 493 600 546 550<br />

Alnus glut<strong>in</strong>osa 6 100 182 300 241 240<br />

Alnus <strong>in</strong>cana 5 50 95 200 148 150<br />

Alnus viridis 0 – – – – 100<br />

Betula pendula 7 100 149 300 224 220<br />

Carp<strong>in</strong>us betulus 5 150 180 250 215 220<br />

Castanea sativa 6 600 1017 2000 1508 1510<br />

Corylus avellana 3 5 0 6 7 8 0 7 3 7 0<br />

Fagus silvatica 7 300 357 500 429 430<br />

Frax<strong>in</strong>us excelsior 5 250 300 400 350 350<br />

Populus nigra 4 200 250 300 275 280<br />

Populus tremula 5 100 126 160 143 140<br />

Quercus petraea 4 500 725 1000 863 860<br />

Quercus pubescens 0 – – – – 500<br />

Quercus robur 9 500 922 1200 1061 1060<br />

Salix alba 4 100 143 200 171 170<br />

Sorbus aria 3 100 167 200 183 180<br />

Sorbus aucuparia 6 90 105 120 113 110<br />

Tilia cordata 7 500 871 1000 936 940<br />

Tilia platyphyllos 7 500 914 1000 957 960<br />

Ulmus scabra 4 400 450 500 475 480<br />

kG parameter<br />

Based on yield table data (Anonymous 1983, Schober 1987), identification procedures<br />

(Press et al. 1986) were used <strong>in</strong> an attempt to determ<strong>in</strong>e <strong>the</strong> kG parameters <strong>of</strong> 10 species:<br />

Quercus petraea, Q. robur, Fagus silvatica, Alnus glut<strong>in</strong>osa, Frax<strong>in</strong>us excelsior, Betula<br />

pendula, Picea excelsa, Abies alba, P<strong>in</strong>us silvestris, and Larix decidua. However, for <strong>the</strong><br />

o<strong>the</strong>r 20 species no yield table data could be found, and <strong>the</strong>re was no conv<strong>in</strong>c<strong>in</strong>g<br />

relationship between <strong>the</strong> kG parameters used by Kienast (1987) and those obta<strong>in</strong>ed from<br />

<strong>the</strong> identification algorithms; moreover, yield table data do not reflect <strong>the</strong> maximum<br />

growth <strong>of</strong> s<strong>in</strong>gle trees, but ra<strong>the</strong>r <strong>the</strong> average growth <strong>of</strong> tree populations. To determ<strong>in</strong>e<br />

kG, Kienast (1987) used a qualitative approach based on descriptions <strong>of</strong> tree growth rates<br />

(Mitscherlich 1970), <strong>the</strong> FORET gap model (Shugart & West 1977) and yield tables<br />

(Anonymous 1983); <strong>the</strong> method was designed to yield a correct rank<strong>in</strong>g <strong>of</strong> <strong>the</strong> species<br />

with respect to <strong>the</strong>ir kG parameters, but <strong>the</strong> absolute values <strong>of</strong> kG may not be reliable<br />

(Kienast, personal communication). Competitive success is based ma<strong>in</strong>ly on <strong>the</strong> relative<br />

rank<strong>in</strong>g with respect to a certa<strong>in</strong> parameter; thus <strong>the</strong> procedure taken by Kienast appears<br />

to be appropriate for deriv<strong>in</strong>g kG.<br />

Botk<strong>in</strong> et al. (1972a, p. 872) noted that kG is related to <strong>the</strong> maximum diameter <strong>in</strong>crement<br />

δD max . The relationship between kG and δD max was determ<strong>in</strong>ed both for Botk<strong>in</strong>'s and<br />

for Moore's (1989) growth equation by means <strong>of</strong> simulation studies. Then <strong>the</strong> FORECE<br />

values <strong>of</strong> kG (Kienast 1987) were recalculated via δD max to fit Moore's (1989) growth<br />

equation based on <strong>the</strong> follow<strong>in</strong>g formula, whose derivation will be published elsewhere:<br />

kG ForClim = kG Forece · 0.1765<br />

0.1465 · kH m + 538.27<br />

kH m + 72.01<br />

(A1)<br />

where kHm is <strong>in</strong> [cm]. The result<strong>in</strong>g kG parameters are given <strong>in</strong> section 3.4, Tab. 3.11.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!