08.09.2014 Views

Effect of Ground Return Path on Timing Accuracy

Effect of Ground Return Path on Timing Accuracy

Effect of Ground Return Path on Timing Accuracy

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Gert Hohenwarter<br />

GateWave Northern<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> ground return path <strong>on</strong><br />

timing accuracy<br />

Company<br />

Logo<br />

June 8-11, 8<br />

2008<br />

San Diego, CA USA


Objective<br />

• Review problem <str<strong>on</strong>g>of</str<strong>on</strong>g> ground path<br />

• Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> trouble spots<br />

• Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> individual impact<br />

• Dem<strong>on</strong>strate significance<br />

• Summary<br />

June 8 to 11, 2008<br />

IEEE SW Test Workshop 2


Approach<br />

• Examine complete signal path in a probecard<br />

• Develop models (FEA, SPICE)<br />

• Use models to evaluate impact <str<strong>on</strong>g>of</str<strong>on</strong>g> changes<br />

• Provide select measurement results to<br />

corroborate models<br />

June 8 to 11, 2008<br />

IEEE SW Test Workshop 3


Problem<br />

• Signal in transmissi<strong>on</strong> line needs a return path<br />

• This path must be located physically close to the signal<br />

• Disrupti<strong>on</strong>s/detours add inductance and therefore delay<br />

June 8 to 11, 2008<br />

IEEE SW Test Workshop 4


Probe card signal path<br />

June 8 to 11, 2008<br />

IEEE SW Test Workshop 5


Probe card signal path<br />

• The signal path in the probecard begins at the<br />

perimeter with a tester c<strong>on</strong>necti<strong>on</strong> and ends at<br />

the probe tip with a c<strong>on</strong>necti<strong>on</strong> to the DUT<br />

Al<strong>on</strong>gside the signal path a ground return must be provided<br />

June 8 to 11, 2008<br />

IEEE SW Test Workshop 6


Follow the signal…..<br />

• <strong>Timing</strong> verificati<strong>on</strong> begins at the tester<br />

c<strong>on</strong>necti<strong>on</strong> with a time domain reflectometer<br />

and a test probe…..<br />

June 8 to 11, 2008<br />

IEEE SW Test Workshop 7


…through the probe…..<br />

• Comm<strong>on</strong> probes <str<strong>on</strong>g>of</str<strong>on</strong>g>ten have a fixed signal<br />

c<strong>on</strong>tact and movable c<strong>on</strong>necti<strong>on</strong> at ground:<br />

June 8 to 11, 2008<br />

IEEE SW Test Workshop 8


C<strong>on</strong>sequences<br />

• <str<strong>on</strong>g>Ground</str<strong>on</strong>g> path inductance changes<br />

• Signal path capacitance changes<br />

June 8 to 11, 2008<br />

IEEE SW Test Workshop 9


C<strong>on</strong>sequences<br />

• <str<strong>on</strong>g>Ground</str<strong>on</strong>g> path inductance changes<br />

• Signal path capacitance changes<br />

• Delay changes<br />

FEA analysis<br />

dLprobe [nH]<br />

2<br />

1<br />

0<br />

‐1<br />

‐2<br />

‐3<br />

‐50 0 50<br />

Angle<br />

dT [ps]<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

SPICE model<br />

dT [ps]<br />

0 2 4 6<br />

Lg [nH]<br />

June 8 to 11, 2008<br />

IEEE SW Test Workshop 10


Verificati<strong>on</strong><br />

• Measurement at actual probecard PCB<br />

• At first glance everything is fine….<br />

Multiple TDR<br />

Multiple TDR<br />

rho<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

-0.2<br />

-0.4<br />

-0.6<br />

0 1 2 3 4<br />

t [ns]<br />

rho<br />

1.000<br />

0.800<br />

0.600<br />

0.400<br />

0.200<br />

0.000<br />

3 3.5<br />

t [ns]<br />

straight<br />

l<strong>on</strong>g inline<br />

short inline<br />

ortho 30<br />

gnd2<br />

gnd3<br />

gnd4<br />

June 8 to 11, 2008<br />

IEEE SW Test Workshop 11


Delay extracti<strong>on</strong><br />

• When processing the data, differences become noticeable<br />

10.0<br />

8.0<br />

Delay variati<strong>on</strong>s<br />

2.0<br />

0.0<br />

Delay variati<strong>on</strong>s<br />

6.0<br />

-2.0<br />

dt [ps]<br />

4.0<br />

2.0<br />

0.0<br />

-2.0<br />

-4.0<br />

-6.0<br />

-8.0<br />

-10.0<br />

meas 1 meas 2 meas 3 meas 4 meas 5<br />

dt [ps]<br />

-4.0<br />

-6.0<br />

-8.0<br />

-10.0<br />

-12.0<br />

-14.0<br />

l<strong>on</strong>g inline<br />

short inline<br />

ortho 30<br />

gnd2<br />

C<strong>on</strong>diti<strong>on</strong><br />

gnd3<br />

gnd4<br />

least favorable<br />

Measurement to measurement<br />

For different probe positi<strong>on</strong>s<br />

(probe straight)<br />

dT = 5 ps<br />

dT tot= 5 ps<br />

dT counter: -><br />

(average, not max. dT)<br />

June 8 to 11, 2008<br />

IEEE SW Test Workshop 12


Follow the signal…..<br />

• <str<strong>on</strong>g>Ground</str<strong>on</strong>g> via selecti<strong>on</strong> (<strong>on</strong>ly <strong>on</strong>e ground via present for each case):<br />

dL [nH]<br />

dL for 0.5 mm pitch<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

near side side far<br />

Inductance difference for 0.5 mm pitch<br />

dT = 3 ps<br />

dT tot= 8 ps<br />

June 8 to 11, 2008<br />

IEEE SW Test Workshop 13


Follow the signal…..<br />

• The signal travels into the PCB through a<br />

c<strong>on</strong>nector and returns through an array <str<strong>on</strong>g>of</str<strong>on</strong>g> vias:<br />

Disorganized<br />

Organized<br />

dT = 10 ps<br />

dT tot= 18 ps<br />

June 8 to 11, 2008<br />

IEEE SW Test Workshop 14


Follow the signal…..<br />

• PCB via positi<strong>on</strong> (vias must be provided near level shifts):<br />

dT [ps]<br />

dT [ps]<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 50 100<br />

dy [mils]<br />

Inductance change as a functi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> lateral via positi<strong>on</strong><br />

dT = 5 ps<br />

dT tot= 23 ps<br />

June 8 to 11, 2008<br />

IEEE SW Test Workshop 15


Follow the signal…..<br />

• <str<strong>on</strong>g>Ground</str<strong>on</strong>g> planes are disrupted in LGA/interposer area<br />

Inductance per unit length changes<br />

If traces get close to via antipads,<br />

capacitance per unit length changes,<br />

too<br />

Example (inductance <strong>on</strong>ly):<br />

Uniform array <str<strong>on</strong>g>of</str<strong>on</strong>g> 1mm pitch vias<br />

<str<strong>on</strong>g>Ground</str<strong>on</strong>g> path inductance changes by<br />

12% for a 40 mm l<strong>on</strong>g path<br />

dT = 16 ps<br />

dT tot= 39 ps<br />

June 8 to 11, 2008<br />

IEEE SW Test Workshop 16


Follow the signal…..<br />

• <str<strong>on</strong>g>Ground</str<strong>on</strong>g> via positi<strong>on</strong>s in the interposer c<strong>on</strong>tact array<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Inductance [nH]<br />

1 2 3 4<br />

# gnds<br />

Inductance as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> via distance from signal and number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

ground vias<br />

dT = 10 ps<br />

dT tot= 49 ps<br />

0.5<br />

1<br />

1.5<br />

2<br />

mm<br />

June 8 to 11, 2008<br />

IEEE SW Test Workshop 17


Follow the signal…..<br />

Delay change as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> branch imbalance in ground path<br />

150<br />

dT [ps]<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

dT top 10k<br />

dT bot 10k<br />

dT top 50<br />

dT bot 50<br />

-150<br />

0 0.5 1 1.5 2<br />

Lg [nH]<br />

Different load c<strong>on</strong>diti<strong>on</strong>s result in<br />

different delay changes<br />

dT = 30 ps<br />

dT tot= 79 ps<br />

June 8 to 11, 2008<br />

IEEE SW Test Workshop 18


….to the DUT<br />

Delay change as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> grounding c<strong>on</strong>figurati<strong>on</strong> at the DUT<br />

Dense ground<br />

With typical dimensi<strong>on</strong>s assumed the<br />

inductance difference for the two<br />

different c<strong>on</strong>figurati<strong>on</strong>s is 0.88 nH<br />

Sparse ground<br />

dT = 5 ps<br />

dT tot= 84 ps<br />

June 8 to 11, 2008<br />

IEEE SW Test Workshop 19


Overall changes<br />

Graphic representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> relative change as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

where change occurs<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

ps<br />

Delay as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> locati<strong>on</strong><br />

meas<br />

via pos<br />

TR vias<br />

Sum<br />

Individual<br />

trace vias<br />

interposer vias<br />

interposer gp holes<br />

Space TR - SDR<br />

probes/DUT<br />

Comment:<br />

Line length matching to<br />

within 20 mils results in<br />

an inaccuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> 3.5 ps<br />

June 8 to 11, 2008<br />

IEEE SW Test Workshop 20


The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> locati<strong>on</strong><br />

Delay change as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> inductance change at<br />

different locati<strong>on</strong>s al<strong>on</strong>g the signal path<br />

Approximate equivalent circuit <str<strong>on</strong>g>of</str<strong>on</strong>g> signal path<br />

June 8 to 11, 2008<br />

IEEE SW Test Workshop 21


The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> locati<strong>on</strong><br />

Delay change as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> inductance change at<br />

different locati<strong>on</strong>s al<strong>on</strong>g the signal path<br />

dt [ps]<br />

dT at different positi<strong>on</strong>s (50%)<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

1n<br />

2n<br />

3n<br />

1 2 Pos # 3 4<br />

Signal at DUT (SPICE simulati<strong>on</strong>)<br />

Delay change<br />

June 8 to 11, 2008<br />

IEEE SW Test Workshop 22


Waveform change<br />

Wave form changes as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> inductance change<br />

dT at different positi<strong>on</strong>s (85%)<br />

50<br />

0<br />

dt [ps]<br />

-50<br />

-100<br />

-150<br />

1n<br />

2n<br />

3n<br />

1 2 Pos # 3 4<br />

Signal at DUT (SPICE simulati<strong>on</strong>)<br />

Delay change<br />

June 8 to 11, 2008<br />

IEEE SW Test Workshop 23


Different loads<br />

Delay change for 3 different cases (10kOhm 2pF, 150 Ohm 2pF, 50 Ohm)<br />

50.0<br />

dT all loads (50%)<br />

40.0<br />

dt [ps]<br />

30.0<br />

20.0<br />

10.0<br />

0.0<br />

1 2<br />

Pos #<br />

3 4<br />

Load has additi<strong>on</strong>al impact <strong>on</strong> skew<br />

June 8 to 11, 2008<br />

IEEE SW Test Workshop 24


Shared resources<br />

Delay change as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> inductance change in<br />

case <str<strong>on</strong>g>of</str<strong>on</strong>g> split lines/ shared drivers<br />

Simplified equivalent circuit<br />

Signal change<br />

June 8 to 11, 2008<br />

IEEE SW Test Workshop 25


Shared resources<br />

Delay change as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> inductance change in<br />

case <str<strong>on</strong>g>of</str<strong>on</strong>g> split lines/ shared drivers<br />

Delay change at 85% level<br />

Delay change at 85% level<br />

(10kOhm/2pF load)<br />

June 8 to 11, 2008<br />

IEEE SW Test Workshop 26


Summary<br />

• Overview to problem <str<strong>on</strong>g>of</str<strong>on</strong>g> ground path provided<br />

• <strong>Timing</strong> accuracy is sensitive to locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ground disc<strong>on</strong>tinuity<br />

• <strong>Timing</strong> accuracy depends <strong>on</strong> architecture <str<strong>on</strong>g>of</str<strong>on</strong>g> signal delivery system<br />

• Budgeting should be performed<br />

• Compensati<strong>on</strong> seems possible, if trends are known<br />

• Other c<strong>on</strong>tributi<strong>on</strong>s to timing arise from line length matching, fabricati<strong>on</strong><br />

variances such as dielectric c<strong>on</strong>stant changes, coupled secti<strong>on</strong>s,<br />

transiti<strong>on</strong>s and other disc<strong>on</strong>tinuities <strong>on</strong> the signal itself and must be<br />

accounted for separately. These c<strong>on</strong>tributi<strong>on</strong>s have NOT been taken<br />

into account here, yet a significant skew has already accumulated …..<br />

Thank you!<br />

June 8 to 11, 2008<br />

IEEE SW Test Workshop 27

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!