08.09.2014 Views

with Pyramid Probe Cards - Semiconductor Wafer Test Workshop

with Pyramid Probe Cards - Semiconductor Wafer Test Workshop

with Pyramid Probe Cards - Semiconductor Wafer Test Workshop

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Innovating <strong>Test</strong><br />

Technologies<br />

for production<br />

probe cards<br />

Production <strong>Test</strong> of Process<br />

Control Monitors (PCMs) <strong>with</strong><br />

<strong>Pyramid</strong> <strong>Probe</strong> <strong>Cards</strong><br />

Ken Smith, Cascade Microtech<br />

Bill Knauer, Keithley Instruments<br />

Dr. Jerry Broz, Jason Aronoff, Texas Instruments


SWTW 2002: Parametric test<br />

Innovating <strong>Test</strong><br />

Technologies<br />

for production<br />

probe cards<br />

Goal of Presentation<br />

• Communicate a joint evaluation effort<br />

between Texas Instruments, Keithley<br />

Instruments and Cascade Microtech<br />

investigating the use of <strong>Pyramid</strong> <strong>Probe</strong>s for<br />

probing process monitors <strong>with</strong> copper pads<br />

meeting the shrinking requirements of<br />

smaller scribelines.


SWTW 2002: Parametric test<br />

Innovating <strong>Test</strong><br />

Technologies<br />

for production<br />

probe cards<br />

Abstract:<br />

Process monitors are used extensively in semiconductor fabs<br />

to optimize yields, provide process control feedback, and<br />

assure device quality. The scribelines or streets used for<br />

PCMs are under the same unrelenting density pressure as<br />

IC lithography. Reducing the scribeline by 50 microns on<br />

a 5 mm square die, for example, results in a net reduction<br />

in area and cost of 2%. This can provide a huge ROI for<br />

large wafer fabs. <strong>Wafer</strong> saw and blade manufacturers are<br />

continously reducing saw kerf requirements and PCM pad<br />

size is becoming a limiting factor in realizing this<br />

competitive advantage. This paper presents DC<br />

parametric performance measurements in the femtoamp /<br />

femtofarad range for semiconductor test structures <strong>with</strong><br />

<strong>Pyramid</strong> <strong>Probe</strong>s. Results will include probing both normal<br />

aluminum pads and copper pads. Contact resistance,<br />

probe pad damage, multiple probe cycles and probe life<br />

time results for both pad materials are also discussed.


SWTW 2002: Parametric test<br />

Innovating <strong>Test</strong><br />

Technologies<br />

for production<br />

probe cards<br />

Outline:<br />

• DC Parametric requirements<br />

• Design approach<br />

• Electrical performance<br />

• Contact resistance performance<br />

• <strong>Probe</strong> mark budget<br />

• Conclusion


SWTW 2002: Parametric test<br />

Innovating <strong>Test</strong><br />

Technologies<br />

for production<br />

probe cards<br />

DC Parametric Requirements<br />

• General application is for monitoring test<br />

key leakage and capacitance<br />

• Typical production requirements<br />

– 1-2 pA, 1-2 pF measurements<br />

–0.1 pA, 0.1 pF parasitics<br />

• Leading edge engineering requirements<br />

– 10-50 fA measurements<br />

–1-10 fA parasitics<br />

• <strong>Probe</strong> pads shrinking to meet scribe line<br />

shrinks<br />

– 60-70 um typical today >> 50-40 asap


SWTW 2002: Parametric test<br />

Innovating <strong>Test</strong><br />

Technologies<br />

for production<br />

probe cards<br />

Design Approach<br />

• For reference, a typical functional test spec<br />

is 10 nA/volt<br />

– Doesn’t require guards (100 megohm)<br />

• Guards required below 1 nA (1 gigohm)<br />

– milli, micro, nano, pico, femto<br />

– Typical of parametric test equipment<br />

– Guard theory: The guard is driven by a<br />

separate amplifier to the same voltage<br />

as the test pin to reduce current flow to<br />

external conductors


SWTW 2002: Parametric test<br />

Innovating <strong>Test</strong><br />

Technologies<br />

for production<br />

probe cards<br />

<strong>Pyramid</strong> <strong>Probe</strong> Card <strong>with</strong><br />

Keithley S600 Interface<br />

• Coax forcesense<br />

guard<br />

• Twinax routed<br />

cables to lower<br />

board<br />

• Guarded traces<br />

on lower board


SWTW 2002: Parametric test<br />

<strong>Pyramid</strong> Core for Parametric <strong>Test</strong><br />

Innovating <strong>Test</strong><br />

Technologies<br />

for production<br />

probe cards<br />

• Guarded circuit board interface<br />

• Guarded traces to probe tips


SWTW 2002: Parametric test<br />

Innovating <strong>Test</strong><br />

Technologies<br />

for production<br />

probe cards<br />

<strong>Pyramid</strong> Card Looking Down<br />

Through Core<br />

• Linear layout typical of scribe line PCMs<br />

• Guarded traces to probe tips (100 um pitch)<br />

• Staggered routing for fine guard pitch


SWTW 2002: Parametric test<br />

Innovating <strong>Test</strong><br />

Technologies<br />

for production<br />

probe cards<br />

Link to Keithley Electrical<br />

Performance Report<br />

• Please see Bill Knauer’s presentation<br />

Knauer_SWTW2002.ppt for his original<br />

slides in Keithley format


SWTW 2002: Parametric test<br />

Innovating <strong>Test</strong><br />

Technologies<br />

for production<br />

probe cards<br />

Electrical Characterization<br />

Of <strong>Pyramid</strong> <strong>Probe</strong> Card<br />

• Leakage / Settling Time Measurements<br />

• Noise and Offset Measurements<br />

• Capacitance Measurements


SWTW 2002: Parametric test<br />

Innovating <strong>Test</strong><br />

Technologies<br />

for production<br />

probe cards<br />

Leakage / Settling Comparison<br />

• Initial settling curve is the same as the blade and coax<br />

epoxy cards.<br />

• Longer final settling due to slightly higher leakage and<br />

higher dielectric absorption.<br />

5.00E-13<br />

10V 100pA Range 1plc <strong>Probe</strong> Card<br />

Current<br />

4.50E-13<br />

4.00E-13<br />

3.50E-13<br />

3.00E-13<br />

2.50E-13<br />

2.00E-13<br />

1.50E-13<br />

1.00E-13<br />

5.00E-14<br />

0.00E+00<br />

Blade Card<br />

Coax Epoxy<br />

<strong>Pyramid</strong><br />

0.00<br />

1.36<br />

2.71<br />

4.06<br />

5.46<br />

6.81<br />

8.16<br />

9.52<br />

10.87<br />

12.23<br />

13.58<br />

14.93<br />

16.29<br />

17.64<br />

18.99<br />

20.39<br />

21.74<br />

Time


SWTW 2002: Parametric test<br />

Noise and Offset Comparison<br />

Innovating <strong>Test</strong><br />

Technologies<br />

for production<br />

probe cards<br />

• Peak to peak noise and standard deviation of<br />

noise is same as other cards.<br />

• Mean is slightly higher because of leakage.<br />

10V 100pA Range 1plc<br />

5.00E-14<br />

4.50E-14<br />

4.51E-14<br />

4.00E-14<br />

3.50E-14<br />

Current<br />

3.00E-14<br />

2.50E-14<br />

2.00E-14<br />

2.05E-14<br />

2.61E-14<br />

2.34E-14<br />

2.59E-14<br />

2.15E-14<br />

P To P<br />

Stddev<br />

Mean<br />

1.50E-14<br />

1.00E-14<br />

5.00E-15<br />

3.52037E-15<br />

5.21966E-15<br />

3.99263E-15<br />

0.00E+00<br />

Blade Card Coax Epoxy <strong>Pyramid</strong>


SWTW 2002: Parametric test<br />

Innovating <strong>Test</strong><br />

Technologies<br />

for production<br />

probe cards<br />

Capacitance Comparison<br />

• Capacitance is the same as other probe cards<br />

Capacitance Measurement<br />

Capacitance<br />

6.00E-13<br />

5.00E-13<br />

4.00E-13<br />

3.00E-13<br />

2.00E-13<br />

1.00E-13<br />

0.00E+00<br />

-1.00E-13<br />

-2.00E-13<br />

-3.00E-13<br />

Blade Card<br />

Coax Epoxy<br />

PYRAMID<br />

13 - 10<br />

20 - 1<br />

18 - 7<br />

6 - 2<br />

4 - 1<br />

20 - 19<br />

13 - 12<br />

8 - 7<br />

4 - 3<br />

3 - 2<br />

D.U.T. Pins


SWTW 2002: Parametric test<br />

Innovating <strong>Test</strong><br />

Technologies<br />

for production<br />

probe cards<br />

Characterization Conclusions<br />

• <strong>Pyramid</strong> probe card design shows<br />

excellent performance for low current<br />

measurements down to 100fA as<br />

compared to other low current<br />

technologies.<br />

• Increased settling related to dielectric<br />

absorption and not capacitance.<br />

• <strong>Probe</strong>s up offset measurements will allow<br />

card to perform as well as other low current<br />

technologies.


SWTW 2002: Parametric test<br />

Contact Resistance <strong>Test</strong> Conditions<br />

Innovating <strong>Test</strong><br />

Technologies<br />

for production<br />

probe cards<br />

• Loop resistance between each of 20 adjacent channels<br />

• 13000 cycles, measure every 20 cycles, no cleaning cycles<br />

• 17 particle hits: class 10K environment (shown as 50 ohms)<br />

• Room temperature<br />

60<br />

Core A1 on Blanket Copper FT + 140 um<br />

50<br />

CRES (Ohms)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 2000 4000 6000 8000 10000 12000 14000<br />

touchdowns


SWTW 2002: Parametric test<br />

Innovating <strong>Test</strong><br />

Technologies<br />

for production<br />

probe cards<br />

Cres <strong>with</strong> Low Overtravel on<br />

Oxidized Copper <strong>Wafer</strong><br />

• Relationship between overtravel, Cres, and<br />

copper oxidation time under investigation<br />

Core A3 after IPA FT + 125 um OT (run 5/17)<br />

60<br />

50<br />

CRES (Ohms)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000<br />

touchdowns


SWTW 2002: Parametric test<br />

Innovating <strong>Test</strong><br />

Technologies<br />

for production<br />

probe cards<br />

Contact Resistance Performance<br />

on clean Copper wafers<br />

• Loop resistance: 1.14 to 1.27 ohms<br />

• Cres average: 0.091 ohms<br />

• Cres std dev: 0.032 ohms<br />

2<br />

Core A1 on Blanket Copper FT + 140 um<br />

CRES (Ohms)<br />

1<br />

0<br />

0 2000 4000 6000 8000 10000 12000 14000<br />

touchdowns


SWTW 2002: Parametric test<br />

Innovating <strong>Test</strong><br />

Technologies<br />

for production<br />

probe cards<br />

<strong>Probe</strong> Mark Budget<br />

• Maximum mark size 15 x 20 um<br />

• Positional accuracy +/- 5 um<br />

• Mark budget 25 x 30 um<br />

• Typical marks on 30 x 50 um pads


SWTW 2002: Parametric test<br />

Innovating <strong>Test</strong><br />

Technologies<br />

for production<br />

probe cards<br />

Conclusion:<br />

• <strong>Pyramid</strong> <strong>Probe</strong> <strong>Cards</strong> show excellent<br />

performance for low current measurements<br />

on Aluminum or Copper pads


Innovating <strong>Test</strong><br />

Technologies<br />

for production<br />

probe cards<br />

Production <strong>Test</strong> of Process<br />

Control Monitors (PCMs) <strong>with</strong><br />

<strong>Pyramid</strong> <strong>Probe</strong> <strong>Cards</strong><br />

Ken Smith, Cascade Microtech<br />

Bill Knauer, Keithley Instruments<br />

Dr. Jerry Broz, Jason Aronoff, Texas Instruments


SWTW 2002: Parametric test<br />

KGD <strong>Workshop</strong> Commercial:<br />

Innovating <strong>Test</strong><br />

Technologies<br />

for production<br />

probe cards<br />

Flip Chip KGD <strong>Workshop</strong><br />

June 24-26 Austin, Texas<br />

IMAPS www.imapsflipchip.com<br />

<strong>Pyramid</strong> <strong>Probe</strong> high volume solder ball<br />

probing results for Known-Good-Die

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!