07.09.2014 Views

Wyler Technical Document - Swiss Instruments Ltd

Wyler Technical Document - Swiss Instruments Ltd

Wyler Technical Document - Swiss Instruments Ltd

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

INTRODUCTION<br />

to<br />

INCLINATION MEASUREMENT<br />

Introduction in INCLINATION MEASUREMENT


Possible applications with inclination measuring instruments<br />

t<br />

STRAIGHTNESS<br />

GERADHEIT<br />

INCLINATION<br />

NEIGUNG<br />

RECTANGULARITY<br />

RECHTWINKLIGKEIT<br />

PARALLELISM<br />

PARALLELITÄT<br />

FLATNESS<br />

EBENHEIT<br />

MONITORING<br />

ÜBERWACHUNG<br />

Applications


Vials<br />

Precision Spirit Levels for small angles<br />

0<br />

180<br />

Vials / CLINOMETER<br />

Adjustable Precision Spirit Levels for angles<br />

up to 360 degrees (CLINOMETERS)<br />

Capacitive systems<br />

Analogue systems<br />

MINILEVEL / LEVELTRONIC / LEVELMATIC<br />

Digital systems<br />

ZEROTRONIC / CLINOTRONIC<br />

C 1 C 2<br />

Inductive systeme with pendulums<br />

Inductive systeme with pendulums<br />

Analogue systems<br />

NIVELTRONIC<br />

Digital systems<br />

ZEROMATIC 50<br />

Grundsysteme


Vial for a standard precision spirit level<br />

Ground vial for precision spirit levels<br />

radius = 5 ... 200 meter<br />

R<br />

Bent vial (low cost version)<br />

radius = 0.5 ... 1 Meter<br />

R<br />

VIALS


Precision Spirit Levels WYLER<br />

Horizontal Spirit Level<br />

Precision Spirit Level<br />

with magnetic inserts<br />

Precision Frame Spirit Level<br />

Clinometer 80<br />

0 ... 360°<br />

Spirit Levels I


NEW!!! Precision Spirit Levels WYLER „SPIRIT“<br />

Most important advantages of the<br />

new concept:<br />

1. Simple adjustment system<br />

2. Excellent view on the vial<br />

3. Modern design<br />

4. Fully in compliance to<br />

DIN standards<br />

5. Stability of twist to +/- 5 degrees<br />

6. Comfortable handling due to<br />

the use of natural material<br />

Spirit Levels II „SPIRIT“


Most common units used in inclination measurement/<br />

description of an angle<br />

α<br />

Basis length<br />

1m x 1000 = 1km<br />

Height H= 1µm<br />

x 1000<br />

= 1mm<br />

1. Angle α, e.g. in xx°xx‘xx‘‘ or in mRad<br />

2. Height h refering to a basis length, e.g. mm/m or µm/m<br />

Example: 1µm/m = 1mm/km<br />

mm / m ?


Most common units used in inclination measurement<br />

XX° XX'<br />

XX' XX''<br />

XX , X µm/m<br />

XXX mRad<br />

Degrees and Arcmin<br />

Arcmin and Arcsec<br />

1 µm equivalent to 1/1'000'000 m<br />

1 mRad equivalent to 206,26 Arcsec<br />

1 Rad is equivalent to 57,29 °<br />

1 mRad is equivalent to 206,26 26 Arcsec<br />

1 Degree is equivalent to approx. 17,45 mm/m or 17,45 mRad<br />

1 Arcsec is equivalent to approx. 4,85 µm/m<br />

Display Minilevel "classic" in digits equivalent to µm/m<br />

Display Minilevel "NT" in units like mm/m and Arcsec<br />

Units for +CLINO PLUS+ / CLINO 2000<br />

XX° XX'<br />

X,XXXX°<br />

XX,XX°<br />

XX'XX''<br />

XX,XX mm/m<br />

,XXXX mm/m<br />

XX,XX mRad<br />

UNITS


Electronic inclination measurement in general<br />

Purpose of the instrument:<br />

Transformation of a mechanically measured value into an electronic signal<br />

Existing Systems<br />

Inductive Systems (Niveltronic)<br />

Capacitive Systems (Minilevel, Leveltronic, Zerotronic, Clinotronic)<br />

Resistive Systems (e.g. by means of vials based on electrolysis)<br />

Laser<br />

Capacitive Sensors:<br />

An inclination of 1 μm/m causes a pendulum movement of 10 up to 20 nm<br />

Thickness of a hair<br />

approx. 50 up to 70 μm/m<br />

(Measuring the thickness of a hair as an excercise)<br />

Basics


Exercise<br />

,044 ,430<br />

"diameter of a hair"<br />

ØHair ?<br />

Instrument: Minilevel 1µm/m<br />

Base length: 150mm<br />

140mm<br />

Heigth H = (+430 - +044) x sensitivity<br />

H<br />

Diameter hair ?<br />

140mm<br />

1000mm<br />

Diameter of a hair D H :<br />

Diameter hair D H =<br />

(value 2 - value 1) x sens. instrument x distance “base ... hair”<br />

base length 1000 mm<br />

Diameter hair D H =<br />

(+430 - +044) x 1 µm/m x 140 mm = 54 µm<br />

base length 1000 mm<br />

Hair


Electronic Inclinometers WYLER<br />

Summary of<br />

Electronic Inclinometers<br />

Overview el.<br />

instruments


Analogue and digital measuring systems<br />

Analogue measuring system<br />

Digital measuring system<br />

Measuring value:<br />

Voltage<br />

Output<br />

in mV / unit (digit)<br />

Measuring value :<br />

Frequency<br />

Output<br />

frequencies f1 and f2<br />

Format RS485<br />

MINILEVEL „classic“<br />

LEVELTRONIC „classic“<br />

NIVELTRONIC<br />

LEVELMATIC<br />

MINILEVEL „NT“<br />

LEVELTRONIC „NT<br />

CLINOTRONIC 15<br />

CLINO 2000<br />

ZEROTRONIC<br />

analogue / digital


Sine, tangent and arcus<br />

in accordance with angles<br />

tg α<br />

α<br />

arc α<br />

Important:<br />

t<br />

1 µRad = 1 µm/m<br />

is valid for small angles only<br />

sin α<br />

sin α tg α arc α<br />

α = 0,5° 0,00872660087266 0,00872690087269 0,00872660087266<br />

α = 45° 0,70711 1,00 0,78540<br />

Einheitskreis


Linearity<br />

Sensitivity<br />

Angle<br />

mechanical<br />

input<br />

20µm/m<br />

10µm/m<br />

Measured<br />

characteristic<br />

5µm/m<br />

Nominal<br />

characteristic<br />

maximum<br />

error of linearity<br />

1µm/m<br />

Angle<br />

DIN 2276<br />

Measured value below half the measuring range<br />

Maximum error 1% of the measured value,<br />

at least 0,05% of the measuring range<br />

Output<br />

(mV, digits, ...)<br />

For measured values above half the measuring<br />

range<br />

Maximum error f max = 0,01 (2 x I M v I - 0,5 x M r )<br />

Linearity


Part 2<br />

Inclination measuring instruments<br />

t<br />

of<br />

analogue (and digital)<br />

technique<br />

Analogue Systems / TITEL


NIVELTRONIC 50<br />

Range II: +/- 0.150 mm/m<br />

Range I: +/- 0.750 mm/m<br />

Excellent zero point stability<br />

Measuring priciple:<br />

Pendulum with inductive<br />

probe system<br />

induktiver<br />

Messtaster<br />

L1 L2<br />

U1 U2<br />

Niveltronic


Analogue measuring priciple<br />

t<br />

6Vpp2,9kHz<br />

Amplifier Rectifier Integrator<br />

U a<br />

U g<br />

U out<br />

t<br />

U 1 U 2<br />

-2...0...+2 V DC<br />

Ua Ug Uout<br />

Pendulum closer to C L<br />

Ua Ug Uout<br />

Pendulum in neutral position<br />

Ua Ug Uout<br />

Pendulum closer to C R<br />

Prinzip I


Analogue / digital measuring principle<br />

U1<br />

t<br />

Amplifier Rectifier Integrator<br />

U2<br />

4 Vpp 2.9kHz<br />

t<br />

U 1 U 2<br />

Ua<br />

U g<br />

U out<br />

-2...0...+2 V DC<br />

Ua Ug Uout<br />

A<br />

D<br />

U out<br />

RS 485<br />

Pendulum closer to C L<br />

Ua Ug Uout<br />

Pendulum in neutral position<br />

Ua<br />

Ug<br />

Uout<br />

Pendulum closer to C R<br />

Prinzip II ML/LT NT


Form of the pendulum<br />

Variables depending on<br />

the measuring range<br />

- Thickness of pendulum<br />

50 ... 100μm<br />

- Angle of spiral<br />

300 ... 630°<br />

e.g. Pendulum with 420°<br />

Form Pendulum


Movement of the pendulum depending on the angle<br />

Z<br />

X = Gravitation of pendulum<br />

Y = sin α x X<br />

Z = movement of pendulum<br />

Y<br />

α X<br />

Sine of angle in a range<br />

from 0... 45 degrees<br />

0,0030<br />

0,0015<br />

(Z)<br />

sin α<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

(Z)<br />

sin α<br />

0,2<br />

1 2 3 4 5 6 7 8 9<br />

10 20 30 40 50 60 70 80 90<br />

Arcmin<br />

Sine of angle in a range<br />

degrees<br />

from 0...10 Arcmin<br />

Pendelauslenkung


Movement of the pendulum depending on the angle<br />

Z<br />

α X<br />

X = Gravitation of pendulum<br />

Y = sin α x X<br />

Z = movement of pendulum<br />

Y<br />

Movement of the pendulum<br />

in direction Y<br />

e.g. Minilevel A10:<br />

For an inclination of<br />

1µm/m ... 10 nm<br />

Pendelauslenkung II


Reversal Measurement<br />

Zero Point deviation<br />

of the instrument<br />

Interpretation of the results:<br />

Inclination of the measured<br />

surface in direction X<br />

Measurement A Measurement B<br />

N=(A+B)/2<br />

N=(A - B) / 2<br />

The Zero Point deviation<br />

is +3 equivalentto,3digits<br />

to N=[(+3) + (+3)] / 2 = +3<br />

The surface is absolutely<br />

horizontal<br />

L = [(+3) - (+3)] / 2 = 0<br />

The instrument has no<br />

Zero Point deviation<br />

N=[(-12) + (+12)] / 2 = 0<br />

The measured surface is<br />

declining by -12 digits<br />

L =[(-12) - (+12)] / 2 = -12<br />

The Zero Point deviation<br />

is -3 equivalent to '3 Digits<br />

N=[(+7) + (-13)] / 2 = -3<br />

The measured surface is<br />

rising by +10 Digits<br />

L =[(+7) - (-13)] / 2 = +10<br />

Reversal measurement


MINILEVEL "classic" / A10<br />

,1204<br />

1 Digit = 1mV<br />

Position “0”: Instrument turned off<br />

Position “B”: Battery check (minimum i 700)<br />

Position “I”: Value effective = display in digits<br />

x factor 10 x sensitivity<br />

Position “II”: Value effective = display in digits<br />

x sensitivity<br />

1 µm/m 5 µm/m 10 µm/m<br />

In position “I” 12’040 µm/m 60’200 µm/m 120’400 µm/m<br />

In position “II” 1204 µm/m 6020 µm/m 12’040 µm/m<br />

Sensitivities MINILEVEL / 1 Digit = 1 mV<br />

1µm/m 5µm/m 10 µm/m<br />

In position “I” 10 µm/m 50 µm/m 100 µm/m<br />

In position “II” 1 µm/m 5 µm/m 10 µm/m<br />

ML Overview


MINILEVEL "classic" / A10<br />

,005 means +5 Digits<br />

Position II: Measured value = + 5 digits x<br />

sensitivity<br />

005 Position I: Measured value = + 5 digits x<br />

sensitivity x 10<br />

,005<br />

'125 means -125 Digits<br />

`125<br />

Position II: Measured value = - 125 digits x<br />

sensitivity<br />

Position I: Measured value = - 125 digits x<br />

sensitivity x 10<br />

ML Overview


LEVELTRONIC "classic" / A40<br />

LEVELMETER<br />

'1204<br />

A B OUT<br />

1 µm/m 5 µm/m 10 µm/m<br />

Display - 1204 µm/m - 6020 µm/m - 12040 µm/m<br />

Sensitivities MINILEVEL / 1 digit = 1 mV<br />

1µm/m 5µm/m 10 µm/m<br />

Display 1 µm/m 5 µm/m 10 µm/m<br />

LT Overview


LEVELTRONIC "classic" with Levelmeter 25,<br />

Differential measurement<br />

Measuring direction<br />

Levelmeter<br />

LEVELMETER<br />

'1204<br />

Measuring instrument<br />

Red<br />

cable<br />

A B OUT<br />

Reference instrument<br />

Grey cable<br />

LT Overview


MINILEVEL “NT" / A11<br />

1 µm/m: 5 µm/m 10 µm/m<br />

Range 1: +/- 20 mm/m +/- 100 mm/m +/- 200 mm/m<br />

Range 2: +/- 2 mm/m +/- 10 mm/m +/- 20 mm/m<br />

Output:<br />

1mV / 1µm/m 1mV / 5µm/m 1mV / 10µm/m<br />

or Angle in µm/m or Arcsec (Format RS485)<br />

WYLER AG SWITZERLAND<br />

Range II<br />

mm/m<br />

+<br />

M<br />

-<br />

M<br />

Aus/Off<br />

Messen / Measuring<br />

Justierung Nullpunkt<br />

Adjustment Zero<br />

Einstellung Messbereich<br />

Changing Range<br />

MINILEVEL NT /<br />

> 5 sec<br />

> 60 min<br />

+ / -<br />

+ / -<br />

ML NT Display


Display / Output<br />

MINILEVEL „classic“<br />

Output: +/- 2000 mV<br />

1 digit =<br />

MINILEVEL „NT“<br />

1 mV Output:<br />

LM C25<br />

LEVELMETER<br />

'1204<br />

Display :<br />

Range II: +/- 2000 digits<br />

Range I: +/- 2000 digits<br />

+/- 2000 mV<br />

and / or<br />

A B OUT<br />

Display:<br />

Range II: Angle in µm/m or Arcsec<br />

Range I: Angle in µm/m or Arcsec<br />

Angle in<br />

format RS485<br />

LM2000<br />

Display/Output


MINILEVEL “NT" / A11<br />

WYLER<br />

SEAL-TEC R<br />

LCD-Print<br />

Processor-<br />

Print<br />

+/-2V DC<br />

or<br />

RS485<br />

Sensor with pendulum / N 2 (nitrogene)<br />

ML NT Display


MINILEVEL NT and LEVELTRONIC NT<br />

The new productline MINILEVEL NT / LEVELTRONIC NT is well suited for<br />

precision i measurements of small angles.<br />

MINILEVEL NT<br />

LEVELTRONIC NT<br />

- Large LCD digital display, two sensitivities can be selected<br />

(MINILEVEL NT only)<br />

- Precise zero point adjustment by using the push buttons<br />

- Rugged precision aluminium housing for protecting against<br />

external influences<br />

- State of the art digital technology combined with the use of<br />

modern electronic components allows signal output<br />

in digital it and analogue form<br />

- Possibility of connection to a Levelmeter C25 or<br />

Levelmeter 2000, as well as to the Leveladapterset 2000<br />

combined with the flatness measurement software<br />

“WYLER LEVELSOFT”<br />

- Power supply with common 1,5 V-Batteries<br />

- Fulfils the CE requirements (immunity against<br />

electromagnetic smog)<br />

- All standard measuring bases are available<br />

- Available with calibration in Arcsec or µm/m<br />

ML vs LT


Choice of the ideal instrument<br />

MINILEVEL "classic"<br />

"<br />

- Installation and adjustment of machines<br />

- Measurement of surface flatness<br />

- No interference by magnetic<br />

fields (Electric motors etc.)<br />

- Highly shock resistant<br />

- Integrated display<br />

- 2 ranges of measurement, useful<br />

for coarse adjustment<br />

MINILEVEL "NT"<br />

LEVELTRONIC "classic"<br />

- Installation and adjustment of machines<br />

- No interference by magnetic<br />

fields (Electric motors etc.)<br />

-Highly shock resistant<br />

- External display (Levelmeter)<br />

- More accurately than Minilevel when<br />

differential mode is applied<br />

- Measurement of surface flatness LEVELTRONIC "NT"<br />

Auswahl ML-LT


WYLER PROGRAM LEVELSOFT / Introduction<br />

Line /<br />

Straightness<br />

Parallels<br />

with/without twist<br />

Flatness<br />

WYLER Standard<br />

and U-Jack<br />

Rectangularity<br />

Introduction SW LEVELSOFT


Adjustment of Measuring results<br />

The following methods of adjustments are used:<br />

Adjustment<br />

- End points method<br />

- ISO1101<br />

- Linear regression<br />

Example: Measurement of a line<br />

Linear<br />

regression<br />

9.5µm<br />

+6<br />

+4<br />

+2<br />

0<br />

-2<br />

End points<br />

-4<br />

ISO 1101 10µm<br />

-6<br />

9µm<br />

Adjustment ISO1101 Line


Adjustment of Measuring results<br />

The following methods of adjustments are used:<br />

Adjustment<br />

End points method<br />

Example: Measurement of a line<br />

+6<br />

+4<br />

+2<br />

0<br />

-2<br />

End points<br />

-4<br />

10µm<br />

-6<br />

Adjustment ISO1101 Line


Adjustment of Measuring results<br />

The following methods of adjustments are used:<br />

Adjustment<br />

ISO1101<br />

Example: Measurement of a line<br />

+6<br />

+4<br />

+2<br />

0<br />

-2<br />

-4<br />

-6<br />

ISO 1101<br />

9µm<br />

Adjustment ISO1101 Line


Adjustment of Measuring results<br />

The following methods of adjustments are used:<br />

Adjustment t Linear regression<br />

Example: Measurement of a line<br />

Linear<br />

regression<br />

9.5µm<br />

+6<br />

+4<br />

+2<br />

0<br />

-2<br />

-4<br />

-6<br />

Adjustment ISO1101 Line


Measuring a line<br />

(as preparation for flatness<br />

measurement)<br />

SW WYLER according to ISO1101<br />

LEVELMETER<br />

Moving direction '1204<br />

A B OUT<br />

Example:<br />

Sensitivity of instrument: 1 µm/m<br />

Base length: 200 mm<br />

Step length: 180 mm<br />

- -4 + +16 + +2 + -4 -2 +7<br />

Maximum error:<br />

13,5 µm x 180 mm<br />

1000 mm<br />

+16<br />

+2 -4<br />

= 2,43 µm =13,5µm<br />

0<br />

-2<br />

+7<br />

(reduced to the step length of 180 mm)<br />

-4<br />

Linienmessung


Measuring a line<br />

(as preparation for flatness measurement)<br />

Moving direction<br />

- -4<br />

Remark:<br />

0.72 µm<br />

When using the<br />

WYLER-Software for<br />

measuremnt the<br />

effective value will be<br />

read in<br />

-4 µm/m<br />

180 mm<br />

1000 mm<br />

Linienmessung II


Measurement of two guide ways<br />

Exercise<br />

Prosedure:<br />

1. Measuring the reference line<br />

2. Measuring the parallel guide way<br />

3. Measuring the transversal lines<br />

Remarks:<br />

The reliability of the measurement may be<br />

judged by the resulting closure error<br />

Parallel guide way<br />

Reference line<br />

Vermessung von Führungsbahnen


Measurement of 90° angles on<br />

measuring bases and workpieces<br />

1 2<br />

+ -<br />

+ -<br />

α<br />

2 Referenz<br />

1<br />

α<br />

+ -<br />

+ -<br />

Correction =<br />

C + D<br />

2<br />

A + B<br />

2<br />

+ -<br />

2 1<br />

+ -<br />

-<br />

Referenz<br />

α + -<br />

α<br />

Referenz<br />

1 2<br />

+ -<br />

B<br />

A<br />

D<br />

C<br />

Vermessung von Messbasen und rechten Winkeln


Measurement of a 90° angle<br />

Exercise:<br />

4µm<br />

6µm<br />

Vermessung eines rechten Winkels


Measurement of a 90° angle<br />

with Software LEVELSOFT<br />

1. Step: Determining the angular error of the instrument using a master<br />

square with parallel sides<br />

A B C D<br />

Angular error = C + D<br />

2<br />

-<br />

A + B<br />

2<br />

2. Step: Measurement of the 90 deg. angle of the object / 4 different possibilities<br />

1<br />

2<br />

Referenz<br />

2<br />

1<br />

The <strong>Wyler</strong> LEVELSOFT is leading the way<br />

through the different software menus<br />

2<br />

1<br />

1<br />

2<br />

Vermessung eines rechten Winkels


Measurement of a 90° angle<br />

with Software LEVELSOFT<br />

3. Step: Alignment of the measuring object and determining the error<br />

a) Alignment of the reference line according to ENDPOINTS<br />

ANGLE / ENDPOINTS<br />

0.5 µm<br />

0.4 µm<br />

0.3 µm<br />

02µm 0.2 0.1 µm<br />

0,0 µm<br />

ERROR REFERENCE LINE 0.6 µm<br />

ERROR 2ND LINE BASED ON ISO1101 0.6 µm<br />

The error of the second line is shown<br />

according to the various<br />

alignment methods:<br />

- ISO 1101<br />

- ENPOINTS<br />

- LINEAR REGRESSION<br />

END POINTS 0.2 µm<br />

LINEAR REGRESSION 0.1 µm<br />

CORRECTION OF INSTRUMENT -2,58 µm/m<br />

Vermessung eines rechten Winkels


Measurement of a 90° angle<br />

with Software LEVELSOFT<br />

3. Step: Alignment of the measuring object and determining the error<br />

b) Alignment of the reference line according to ISO 1101<br />

ANGLE / ISO1101<br />

0.5 µm<br />

0.4 µm<br />

0.3 µm<br />

02µm 0.2 0.1 µm<br />

0,0 µm<br />

ERROR REFERENCE LINE 0.5 µm<br />

ERROR 2ND LINE BASED ON ISO1101 0.7 µm<br />

The error of the second line is shown<br />

according to the various alignment<br />

methods:<br />

- ISO 1101<br />

- ENPOINTS<br />

- LINEAR REGRESSION<br />

END POINTS 0.1 µm<br />

LINEAR REGRESSION 0.2 µm<br />

CORRECTION OF INSTRUMENT -2,58 µm/m<br />

Vermessung eines rechten Winkels


Measurement of a 90° angle<br />

with Software LEVELSOFT<br />

3. Step: Alignment of the measuring object and determining the error<br />

c) Alignment of the reference line according to LINEAR REGRESSION<br />

ANGLE / LINEAR REGRESSION<br />

0.5 µm<br />

0.4 µm<br />

0.3 µm<br />

02µm 0.2 0.1 µm<br />

0,0 µm<br />

ERROR REFERENCE LINE 0.5 µm<br />

ERROR 2ND LINE BASED ON ISO1101 0.6 µm<br />

The error of the second line is shown<br />

according to the various alignment<br />

methods:<br />

- ISO 1101<br />

- ENPOINTS<br />

- LINEAR REGRESSION<br />

END POINTS 0.0 µm<br />

LINEAR REGRESSION 0.1 µm<br />

CORRECTION OF INSTRUMENT -2,58 µm/m<br />

Vermessung eines rechten Winkels


Adjustment of Measuring results at an object<br />

with a square angle<br />

Reference measurement ( Reference line)<br />

Adjusted<br />

measuring line<br />

Reference<br />

ISO 1101<br />

9µm<br />

Original<br />

measurement<br />

Tilting the<br />

reference<br />

line<br />

Line<br />

Original<br />

measurement<br />

Adjusted<br />

measuring line<br />

Linear<br />

Regression<br />

Procedure:<br />

1. Measuring the square object<br />

2. Tilting the reference line according to ISO 1101<br />

(square line is tilting identically)<br />

3. Display of the total rectangular error<br />

(in the example measuring line to reference line)<br />

a) according to “End points”<br />

b) according to “ISO 1101” End points 4.5µm<br />

c) according to “linear regression”<br />

Linear Regression<br />

2.1µm<br />

Tilting the line the<br />

same way the<br />

reference line<br />

was tilted<br />

Ausrichtung rechtwinklige Objekte<br />

ISO 1101 9.6µm


Flatness Measurement with WYLER Inclinometers<br />

and WYLER Software<br />

SURFACE GRID WYLER<br />

Length: 1200 mm<br />

Witdh: 800 mm<br />

Maximum error: 4,0 μm<br />

Graphic display of profile<br />

Closure error: 0,3 μm<br />

As an option the connection to a PC is available:<br />

Options:<br />

- Leveladapter<br />

- Measurement-Software<br />

Engineer Set consists of:<br />

- 2 Minilevel "NT"<br />

Operating Systems:<br />

DOS / Win 3.11 / WIN 95 / Win NT 3.5 or higher - Levelmeter 2000<br />

- Cable with „dongle“<br />

Ebenheitsmessungen mit WYLER Messgeräten<br />

und Mess-Software


Flatness measurement with LEVELTRONIC "classic"<br />

Moving direction<br />

Measuring instrument<br />

Personal Computer<br />

LEVELMETER<br />

'1204<br />

Leveladapter 2000<br />

A B OUT<br />

Reference instrument<br />

ATTENTION: - Connect the red cable to the measuring instrument<br />

- Always measure in the direction of the cable<br />

Flächenmessung mit LEVELTRONIC "classic"


Flatness measurement with MINILEVEL "classic"<br />

Moving direction<br />

Personal Computer<br />

Measuring instrument<br />

Leveladapter 2000<br />

Reference instrument<br />

ATTENTION: - Remove batteries (MINILEVEL "classic" only)<br />

- Check the correct sensitivity<br />

- Connect the red cable to the measuring instrument<br />

- Always measure in the direction of the cable<br />

Flächenmessung mit MINILEVEL "classic"


Flatness measurement with LEVELTRONIC NT<br />

Measuring instrument<br />

Personal Computer<br />

LEVELMETER<br />

'1204<br />

Leveladapter 2000<br />

A B OUT<br />

Reference instrument<br />

ATTENTION: - Check the sensitivity when using MINILEVEL NT<br />

- Connect the red cable to the measuring instrument<br />

-Always measure in the direction of the cable<br />

LT NT ML25/Leveladapter 2000


Flatness measurement with MINILEVEL NT<br />

Personal Computer<br />

Measuring instrument<br />

Leveladapter 2000<br />

Reference instrument<br />

ATTENTION: - Check the sensitivity when using MINILEVEL NT<br />

- Connect the red cable to the measuring instrument<br />

-Always measure in the direction of the cable<br />

LT NT Leveladapter 2000


Flatness measurement with MINILEVEL NT or<br />

LEVELTRONIC NT with Levelmeter 2000<br />

Measuring<br />

instrument<br />

Levelmeter 2000<br />

Reference instrument<br />

t<br />

Using a Levelmeter 2000 instead of a Levelmeter C25<br />

additional features are available like:<br />

"ZERO"-Setting, various measuring units, and so on<br />

LT NT Levelmeter 2000


NEW !!!<br />

„Remote Display“ for MINILEVEL and LEVELTRONIC „NT“<br />

LT NT with remote display


Preparation for Flatness Measurement<br />

1. Cleaning of the surface plate (on the previous day)<br />

2. Place the instruments on the surface plate for acclimatization<br />

3. Connecting the instruments (and Levelmeter) to the computer;<br />

remove batteries (Levelmeter, Minilevel “classic” only)<br />

4. Turn on the Leveladapter 2000<br />

5. Turn on the computer (after connecting the<br />

instruments)<br />

6. Adjust surface plate to within +/- 50 µm/m with<br />

Spirit Level or Leveltronic/Minilevel.<br />

Attention: Loosen the safety supports first !<br />

7. Prepare the software programme for the<br />

measurement with the necessary data<br />

Attention: When measuring with 2 Leveltronics<br />

and Levelmeter,<br />

INPUT: "Measurement with one<br />

instrument"<br />

Adjust correct sensitivity<br />

8. Calculation of the best fit grid and draw it on the<br />

surface plate, after that cleaning of the plate again.<br />

Free space at edge minimum 1/2 base width.<br />

9. Execute test measurement, line with<br />

approx. 20 steps without moving the instrument<br />

10. Start with flatness measurement, check correct<br />

switch position of MINILEVEL<br />

11. After the measurement apply MICROPOLISH for conditioning the plate<br />

Vorbereitungen Ebenheit


Basics on surface flatness measurement<br />

Influence of temperature:<br />

A temperature difference of 1 degree Celsius between the upper and the lower side of a plate of<br />

1m length results already in a deformation of the plate of 6 to 7 µm<br />

Surface flatness according to DIN 876 / ISO1101:<br />

Flatness of granite surface plates (DIN 876 / ISO1101)<br />

Quality Maximum error in µm<br />

00 2 x ( 1 + Länge in [m] )<br />

0 4 x ( 1 + Länge in [m] )<br />

1 10 x ( 1 + Länge in [m] )<br />

2 20 x ( 1 + Länge in [m] )<br />

Length: 1200 mm<br />

SURFACE GRID WYLER<br />

Witdh: 800 mm<br />

Choice of measuring base:<br />

Ideal measuring base: Flat steel base with dust groves<br />

Measuring step length:<br />

Maximum error: 4,0 μm<br />

Length of the base Optimal step length Recommended step length<br />

110 mm 90 mm 85 ... 105 mm<br />

150 mm 126 mm 120 ... 145 mm<br />

200 mm 170 mm 160 ... 190 mm<br />

Closure error: 0,3 μm<br />

Schrittlänge


Basics on surface flatness measurement<br />

Prerequisite:<br />

• Max. temp. difference top/bottom = 2°C<br />

• After cleaning: 2 hours drying time<br />

SURFACE GRID WYLER<br />

Length: 1200 mm<br />

Witdh: 800 mm<br />

Grade t 1 in µm<br />

00<br />

0<br />

1<br />

2<br />

2 (1 + Länge in m)<br />

4 (1 + Länge in m)<br />

10 (1 + Länge in m)<br />

20 (1 + Länge in m)<br />

Maximum error: 4,0 μm<br />

Closure error: 0,3 μm<br />

Flatness error of a partial area<br />

Size of area Max. tolerance t 2 in µm<br />

00 0 1 2<br />

250 x 250 mm 3µm 5µm 13µm 25µm<br />

Accepted border zone:<br />

2% of width of plate, max. 20mm<br />

Schrittlänge


Preparation of a granite<br />

surface plate for<br />

flatness measuring<br />

Size of granite plate: 1200 x 800 mm<br />

Measuring system used::<br />

1 LEVELTRONIC 1 µm/m, Base length 200 mm<br />

1 LEVELTRONIC 1 µm/m, Base length 150 mm<br />

Preparation:<br />

1. Preparation according to special<br />

instructions, like e.g. set to level.<br />

cleaning, etc.<br />

2. Defining the edge zone (about ½ of the<br />

width of base, max. 20 to 30 mm)<br />

3. Definition of the measuring step length<br />

4. Drawing the grid on the plate<br />

Vorbereitungen einer Mess- und Kontrollplattefür die Ebenheitsmessung<br />

Supporting points<br />

22% of length<br />

according to “Bessel”<br />

22% of length<br />

edge 30 mm<br />

6 x 190mm<br />

For the example :<br />

Baselength: 200mm<br />

(recommended step length: 160 ... 190 mm)<br />

Step length:<br />

longitudinal 6 x 190 mm + 2 x 30 mm edge<br />

transversal 4 x 190 mm + 2 x 20 mm edge<br />

22%<br />

of width<br />

4 x 190m mm<br />

edge 30 mm


Remarks: Determining the maximum error is always according to ISO 1101<br />

SURFACE GRID WYLER<br />

Flatness according to ISO1101 without<br />

correction of the closure error<br />

Length: 1200 mm<br />

Witdh: 800 mm<br />

The closure error should not exceed<br />

20% to 25% of the max. error<br />

Maximum error: 4,0 μm Closure error: 0,3 μm SURFACE GRID WYLER<br />

Length: 1200 mm<br />

Witdh: 800 mm<br />

Flatness according to ISO1101 with<br />

correction of the closure error<br />

Maximum error: 4,0 μm<br />

Closure error: 0,3 μm<br />

Vermessung von Messbasen und rechten Winkeln


Geometrical inspection of<br />

machine tools<br />

“ROLL” error<br />

“PITCH” error<br />

Roll / Pitch


Geometrical inspection of<br />

machine tools<br />

Inspection of<br />

machine tool table<br />

R<br />

M<br />

R<br />

M<br />

R<br />

M<br />

Geometrical inspection of<br />

an instable structure<br />

Vermessung Maschinen


LEVELMATIC<br />

Precision transducer<br />

Various transducers in different<br />

configurations available<br />

e.g. precision transducers are available<br />

also in two axis configuration with<br />

LED bar display<br />

Levelmatic 30 Levelmatic 31 Levelmatic 34<br />

Measuring range +/- 2 mRad ... +/- 2 mRad... +/- 5 ...<br />

+/- 45 degrees +/- 30 degrees +/- 60 degrees<br />

Linearity 0.5% FS 0.5% FS 0.5% FS<br />

Output signal Levelmeter B25 +/- 2 V DC und +/- 2 V DC<br />

Levelmeter C25<br />

Levelmatic


Inclination measuring instruments<br />

based on<br />

digital technique<br />

Part 3<br />

Digitaltechnik Titel


ZEROTRONIC<br />

Objectives for the development of<br />

the new sensor<br />

•High resolution, high accuracy<br />

•Low temperature dependency<br />

•Digital technique; use of microprocessors<br />

•Measuring range from +/- 1 up to +/- 60 degrees<br />

•Measurement under dynamic conditions<br />

•Display for graphical analysis and on-line monitoring<br />

•Galvanic disconnection for outdoor applications<br />

Ziele ZERO


ZEROTRONIC / Housing gastight<br />

Design of ZEROTRONIC:<br />

- Sensor including pendulum held by<br />

Archimedes helical springs<br />

- RC - Oscillator<br />

- Voltage stabilisator with level-shifter<br />

- Digital frequency counter with calibration data<br />

memory and asynchronous serial port<br />

- Housing and mounting bracket<br />

Pendelum<br />

- Voltage stabilisator<br />

- Digital frequency counter<br />

- Calibration data memory<br />

- Asynchronous serial port<br />

Connector<br />

for RS 485<br />

Elektrodes<br />

Mounting bracket<br />

RC-Oscillator<br />

Housing<br />

gastight<br />

Aufbau ZERO


ZEROTRONIC / Housing gastight<br />

Design of ZEROTRONIC:<br />

- Sensor including pendulum held by<br />

Archimedes helical springs<br />

- RC - Oscillator<br />

- Voltage stabilisator with level-shifter<br />

- Digital frequency counter with<br />

calibration data<br />

memory and asynchronous<br />

serial port<br />

- Housing and mounting bracket<br />

Pendelum<br />

- Voltage stabilisator<br />

- Digital frequency counter<br />

- Calibration data memory<br />

- Asynchronous serial port<br />

WYLER<br />

SEAL-TEC R<br />

Connector<br />

for RS 485<br />

Querschnitt ZERO mit 3 Prints gastight<br />

Elektrodes<br />

Mounting bracket<br />

Housing<br />

gastight<br />

RC-Oscillator


ZEROTRONIC / OUTPUT<br />

TYPE 2<br />

RS485<br />

OUT<br />

IN<br />

F 1 and F 2 [Hz] Measuring rate<br />

Calibration data<br />

Temp [Hz]<br />

OUT<br />

IN<br />

RS485<br />

F 1 and F 2 [Hz]<br />

Calibration data<br />

Temp [Hz]<br />

Measuring rate<br />

TYPE 3<br />

RS485<br />

Angle in [Rad]<br />

(Angle calculated<br />

in sensor)<br />

Measuring rate<br />

Analogue<br />

Output<br />

0.5 ... 2.5 ... 4.5 [V] / 5.0 [V] V DD<br />

4 ... 12 ... 20 [mA] / 12 ... 24 [V] V DD<br />

ZERO gastight OUTPUT digital analog


ZEROTRONIC<br />

Comparison between ZEROTRONIC type 2 and type 3<br />

ZEROTRONIC TYPE 2 ZEROTRONIC TYPE 3<br />

Power consumption<br />

50%<br />

100%<br />

Interface electronic<br />

Identical<br />

Identical<br />

Interface data format<br />

Data volume<br />

transmitted<br />

Host computer<br />

performance<br />

Internal measuring rate<br />

Various<br />

Identical<br />

LARGE<br />

When starting a measurement the<br />

calibration data must be transmitted.<br />

With every measurement the<br />

frequencies F1 & F2 as well as the<br />

calibration data must be transmitted<br />

HIGH<br />

Computing the angle from frequencies<br />

and calibration data received<br />

Depending on the host‘s sampling<br />

rate set:<br />

measurements of objects with low<br />

frequency vibration is difficult<br />

Identical<br />

SMALL<br />

Only the angle in RAD is<br />

transmitted from sensor to host<br />

LOW<br />

Angle is computed in the sensor<br />

The sampling rate in the sensor is<br />

100/ sec.; this allows high quality<br />

measurements on objects with low<br />

frequency vibrations.<br />

- VI for LabVIEW (National Instr)<br />

- Easy programming for customer<br />

ZERO gastight OUTPUT digital analog


Digital measuring gpriciplep<br />

(ZEROTRONIC / CLINO / CLINO 2000)<br />

Pendelum<br />

Selector<br />

Oscillator<br />

Voltagestabilisator<br />

Digital frequency<br />

counter<br />

asynchronous serial<br />

port<br />

(EXT)<br />

GND<br />

+5V<br />

RTA<br />

RTB<br />

PWM<br />

RTS<br />

C1 C2<br />

Connector<br />

(AUX)<br />

R const<br />

Frequency<br />

= f (C)<br />

Inverter<br />

1<br />

SIGNAL<br />

2 Position “Selector”<br />

C var<br />

Frequency<br />

Messproinzip ZERO


Digital measuring principle<br />

principle function of a RC-Oscillator / part 1<br />

U A<br />

R<br />

U A<br />

R<br />

C var U C<br />

C var U C<br />

U C<br />

U A<br />

U C<br />

U A<br />

Charge<br />

t<br />

Discharge<br />

t<br />

Laden/Entladen Kondensator


Digital measuring principle<br />

principle function of a RC-Oscillator / part 2<br />

Simplified description of<br />

“principle function of a Schmittrigger”<br />

U in<br />

U out<br />

Schmitttrigger<br />

U+<br />

U-<br />

U+<br />

U-<br />

t<br />

U+ positive threshold<br />

U - negative threshold<br />

Schmitt-Trigger


Digital measuring principle<br />

RC Oscillator<br />

R const<br />

1 2<br />

Inverter<br />

C left C rigth<br />

Funktion ZERO


Calibration of a digital measuring system<br />

1. Calibration of the<br />

system<br />

F1/F2 (F1,F2)<br />

Number of calibration points:<br />

Clinotronic: 21<br />

Zerotronic: free to chose<br />

2. The calibration points<br />

will be stored<br />

F1/F2 (F1,F2)<br />

Angle<br />

Angle<br />

Kalibrierung I


Calibration of a digital measuring system<br />

F1/F2 (F1,F2)<br />

3. Calculation of the individual<br />

values between the calibration<br />

points by means of interpolation<br />

T=40°C<br />

T=20°C<br />

T= 0°C<br />

Calibration<br />

point<br />

F1/F2 (F1,F2)<br />

Angle<br />

F1 30°<br />

F2 30°<br />

Angle<br />

Setting of calibration device<br />

e.g. -30 degrees<br />

4. Calibration at different<br />

temperatures<br />

Kalibrierung II


Calibration of a digital measuring system<br />

T=40°C<br />

T=20°C<br />

T= 0°C<br />

F1/F2 (F1,F2)<br />

Angle<br />

-50° -40° -30° -20° -10° 10° 20° 30° 40° 50°<br />

Calibration<br />

Measurement<br />

Kalibrierung II


Calibration of a digital measuring system<br />

Typical curves of the frequencies of +CLINO PLUS+<br />

Frequency in [Hz]<br />

Frequency F1<br />

Frequency F2<br />

500‘000<br />

480‘000<br />

460‘000<br />

440‘000<br />

420‘000<br />

400‘000<br />

-50° -40° -30° -20°<br />

-10°<br />

10° 20° 30°<br />

40°<br />

50°<br />

0°<br />

Kalibrierung II


Elimination of ZERO-Offset<br />

Offset<br />

Angle eff<br />

45°<br />

Angle nominal<br />

ZERO-Offset<br />

z.B. 45°<br />

The ZERO-Offset can<br />

be eliminated with a<br />

reversal measurement<br />

ZERO Offset


Elimination of ZERO- and GAIN-Offset<br />

1. ZERO- and Gain-Offset<br />

Angle eff.<br />

2. Eliminating the ZERO-Offset<br />

Angle eff.<br />

Gain-Offset<br />

Angle<br />

nominal<br />

e.g. 45°<br />

45°<br />

ZERO-OffsetOffset<br />

The ZERO-Offset can<br />

be eliminated with a<br />

reversal measurement<br />

(Zerotronic, Clino45<br />

and Clino2000)<br />

Gain-Offset<br />

Angle<br />

nominal<br />

e.g. 45°<br />

45°<br />

3. Eliminating Gain-Offset<br />

Angle eff.<br />

45°<br />

Angle nominal<br />

z.B. 45°<br />

The GAIN-Offset can<br />

be eliminated with a<br />

„stick calibration“<br />

(Clino2000 and ZEROTRONIC only)<br />

Zero-/Gain-Offset


CLINOTRONIC<br />

Most important features:<br />

- Digital measuring system<br />

- Easy to calibrate by the user<br />

- Various units to select<br />

- Standard: Measuring range +/- 45°<br />

Options: +/-30° and +/-10 °<br />

Specifications:<br />

- Settling time / Display < 5 Seconds<br />

- Repetition < 20 Arcsec<br />

- Linearity < 2 Arcmin + 1 digit<br />

Improvements compared to the existing version:<br />

- Reinforced housing / greater stability<br />

- Sensor cell in SEALTEC-quality<br />

- Shorter response time<br />

- No loss of calibration date by battery change<br />

- Standard batteries 1,5V Size AA<br />

- Connection to RS 232 output of PC<br />

Clino 45 Uebersicht


CLINOTRONIC<br />

Exercise:<br />

1. Change and store unit<br />

of measurement<br />

2. Eliminating the zero-offset<br />

offset<br />

by means of a reversal<br />

measurement<br />

3. HOLD function<br />

4. Calibration<br />

a) Calibration manually<br />

b) Calibration at automatically<br />

at Clino Uebung


CLINO 2000<br />

The new digital inclination measuring<br />

instrument for a great variety of<br />

measuring tasks, fulfils all requirements<br />

Most important features:<br />

- Highest possible precision over the large measuring range<br />

of +/- 45° with integrated temperature compensation<br />

- Effortless zero adjustment by using the integrated software<br />

and a reversal measurement<br />

- Most modern digital electronic components<br />

- Fulfils the strict CE requirements (immunity against<br />

electromagnetic smog)<br />

- Easy to calibrate due to the implemented software guidance<br />

and the calibration aids<br />

- Most common units available<br />

- Standard: Measuring range +/- 45°<br />

Options: +/- 60°, +/- 30° und +/- 10 °<br />

Specifications:<br />

- Settling time < 5 seconds<br />

- Resolution 5 Arcsec<br />

- Limits of error: < 5 Arcsec + 0.07% R.O.<br />

- Data connection: RS485, asynchr., 7 Bit, 2 Stopbits,<br />

no parity, 9600 Baud<br />

Clino 2000


ZEROTRONIC / „ANALOGUE“ OUTPUT<br />

Angle = 0<br />

Vcc=5V<br />

0V<br />

Output<br />

Ø 2.5V<br />

Angle = +FS<br />

Ø 4.5V<br />

Angle = -FS Ø 0.5V<br />

F=3.6kHz<br />

100%=277.7µS<br />

10%=27.77µS<br />

Analogue Output<br />

(PWM)<br />

+5V<br />

PWM<br />

GND<br />

Interface<br />

Power supply 12 ... 24V<br />

4 ... 20mA<br />

GND<br />

„Current loop“<br />

R<br />

U R<br />

ZERO gastight OUTPUT analog


ZEROTRONIC<br />

Angle 0 degrees<br />

Sensor-Type<br />

Angle positive;<br />

e.g. +10 degrees<br />

xA - xxx 1° - Sensor<br />

xB - xxx 5° - Sensor<br />

xC - xxx 10° - Sensor<br />

xD - xxx 30° - Sensor<br />

xE - xxx 60° - Sensor<br />

Angle negative;<br />

e.g. -10 degrees<br />

Zero, Nummern


ZEROTRONIC<br />

External<br />

power supply<br />

Transceiver/<br />

Converter<br />

RS232<br />

T<br />

C<br />

ZEROTRONIC-Sensors<br />

with T/C (Transceiver/Converter)<br />

connected to a Personal Computer<br />

RS485<br />

Zero mit T/C


ZEROTRONIC<br />

Transceiver/<br />

Converter<br />

T<br />

C<br />

Levelmeter 2000<br />

RS485<br />

ZEROTRONIC-Sensors<br />

with T/C (Transceiver/Converter)<br />

connected to a Levelmeter 2000<br />

Zero/TC/LM2000


ZEROTRONIC<br />

RS 485<br />

Frequencies f1 und f2<br />

Calibration data<br />

Measuring rate<br />

RS 485<br />

RS 232<br />

Angle and<br />

measuring unit<br />

RS 485<br />

RS 232<br />

DDE /Dynamic<br />

Data Exchange)<br />

Format of data transfer<br />

Header (4) Address (3) Opcode (1) Data (8)<br />

Check-sum (2) Trailer (1)<br />

Transmission data format: asynchron / 7 Bit / 2 Stopbits / no parity<br />

Bit-System


ZEROTRONIC<br />

ASCII in RS232- and RS485-Format<br />

Binary code "7 Bit"<br />

BINARY 2 0 2 1 2 2 2 3 2 4 2 5 2 6<br />

DECIMAL 1 2 4 8 16 32 64<br />

ASCII (Basic Code CCITT) - Display of ...<br />

Number “3” 1 1 0 0 1 1 0<br />

Letter “F” 0 1 1 0 0 0 1<br />

Basic Code<br />

RS 232 - Format / V28<br />

V1 < -3V<br />

“1” OFF<br />

V1 > +3V<br />

“0” ON<br />

RS 485 - Format / V11<br />

Delta Va ... Vb < -0.3V “1” OFF<br />

Delta Va ... Vb > +0.3V<br />

“0” ON<br />

Number “3”<br />

S 1 1 0 0 1 1 0 S<br />

Number “3”<br />

S 1 1 0 0 1 1 0 S<br />

+ 3V<br />

> +0.3V<br />

-3V<br />

< -0.3V<br />

Binär-System


ZEROTRONIC<br />

Software-Structure DYNAM<br />

Operating Systems<br />

DYNAM Basic-Software<br />

- very flexible configured<br />

- Parameters like<br />

- Display on the monitor<br />

- Measuring rate<br />

- Selection of filters, and so on are free<br />

selectable<br />

Additional SW for customer<br />

specific applications<br />

The complete SW package will be<br />

prepared by WYLER according to<br />

customers requirements<br />

MS-DOS<br />

Windows 3.11<br />

Windows 95<br />

WIN NT<br />

DYNAM WYLER<br />

WYBASE RS 485-Driver WYANGLE<br />

Sampler Display Printer Analyzer Sender Server<br />

Specific customer’s applications<br />

DYNAM-Struktur


ZEROTRONIC<br />

Software-Structure DYNAM<br />

PANEL<br />

the “cockpit”<br />

DISPLAY<br />

with actual values<br />

Display on the monitor<br />

of a measurement with 2 ZEROTRONIC-<br />

Sensors and continuous monitoring of all<br />

previously measured values<br />

ANALYZER<br />

which displays all<br />

measured measuring<br />

values<br />

Panel/Display


ZEROTRONIC<br />

Software-Structure DYNAM<br />

ANALYZER<br />

Tool to analyse all<br />

previously recorded<br />

measuring values<br />

stored in different files<br />

Analyzer


ZEROTRONIC<br />

Software-Structure DYNAM NEW !!!<br />

Measurements and<br />

Analyzations with<br />

VI‘s from WYLER<br />

for<br />

ZEROTRONIC Type 3<br />

LabVIEW


ZEROTRONIC<br />

Data transmission from short distances<br />

up to several kilometers / 1<br />

Distance up to approx. 15 meters<br />

Distance up to approx. 15 meters<br />

Levelmeter 2000<br />

Levelmeter 2000<br />

Transceiver / Converter<br />

Sensor A<br />

RS 485 BUS<br />

RS 485 BUS<br />

Sensor B<br />

PC<br />

2 Sensors without external<br />

power supply<br />

With additional T/C´s and external<br />

power supply more than 2 sensors<br />

can be connected<br />

2 Sensors with external<br />

power supply<br />

With additional T/C´s and external<br />

power supply more than 2 sensors<br />

can be connected<br />

Distance up to approx. 15 meters<br />

RS 232<br />

2 Sensors with external<br />

power supply and 1 T/C<br />

Up to 31 T/C´s with 2 sensors each<br />

can be connected<br />

Zero Konfig I


ZEROTRONIC<br />

Data transmission from short distances<br />

up to several kilometers / 2<br />

Distance up to 1000 m<br />

Transceiver / Converter<br />

Sensor A<br />

RS 485 BUS<br />

RS 485 BUS<br />

Sensor B<br />

PC<br />

Up to 31 T/C´s with<br />

2 sensors each<br />

can be connected<br />

Distance up to 1000 m<br />

Up to 31 T/C´s with<br />

2 sensors each<br />

can be connected<br />

Up to 30 OPTO transceivers<br />

can be connected<br />

Distance up to<br />

several 1000 m<br />

OPTO-Transceiver<br />

Zero Konfig II


ZEROTRONIC<br />

Applications<br />

A few typical applications for ZEROTRONIC Sensors:<br />

Precision inclination measurement on unstable objects like<br />

Machine tools<br />

Adjustment of moving platforms on boats and vessels<br />

Long term monitoring with data collection and -transfer<br />

Buildings<br />

Construction sites<br />

Bid<br />

Bridges<br />

Dams<br />

Tunnels<br />

Inclination measurement by driving on a road<br />

Various applications<br />

Adjustment of printing machines<br />

Measurement of profiles (aircrafts, racing cars “formula 1”, and so on)<br />

Anwendungen ZERO


ZEROTRONIC<br />

Specifications<br />

ZEROTRONIC ZEROMATIC 50<br />

Measuring range +/- 1 degrees +/- 10 degrees +/- 30 degrees +/- 60 degrees +/- 0.5 degrees<br />

Resolution<br />

1 Measurement/sec<br />

without filter +/- 0.0128 % F.S. +/- 0.00315 % F.S. +/- 0.00454 % F.S. +/- 0.00430 % F.S. +/- 0.00286 % F.S.<br />

with filter +/- 0.00429 % F.S. +/- 0.00100 % F.S. +/- 0.00124 % F.S. +/- 0.00122 % F.S. +/- 0.00100 % F.S.<br />

10 Measurements /sec<br />

without filter +/- 0.0358 % F.S. +/- 0.00888 % F.S. +/- 0.01430 % F.S. +/- 0.01310 % F.S. +/- 0.00859 % F.S.<br />

with filter +/- 0.01280128 % F.S. +/- 0.0031500315 % F.S. +/- 0.0045400454 % F.S. +/- 0.0043000430 % F.S. +/- 0.0028600286 % F.S.<br />

Limits of error in Arcsec Null/Gain Null/Gain Null/Gain Null/Gain Null/Gain<br />

Range incl. drift 0.017 % F.S. 0.0042 % F.S. 0.0046 % F.S. 0.0037 % F.S. 0.015 % F.S.<br />

within 24h/20°C + 0.07 % R.O. + 0.02 % R.O. + 0.01 % R.O. + 0.01 % R.O. + 0.04 % R.O.<br />

Limits of error in Arcsec<br />

Range incl. drift 0.014 % F.S. 0.055 % F.S. 0.037 % F.S. 0.028 % F.S. 0.15 % F.S.<br />

within 6 months/20°C + 0.25 % R.O. + 0.15 % R.O. + 0.1 % R.O. + 0.06 % R.O. + 0.10 % R.O.<br />

Temperatur stability<br />

in Arcsec/°C<br />

Zero point 0.04 % F.S. 0.008 % F.S. 0.005 % F.S. 0.004 % F.S. 0.04 % F.S.<br />

Gain +02% 0.2 R.O. RO +003% 0.03 RO R.O. +002% 0.02 R.O. RO +001 0.01 % R.O. + 0.2 % R.O.<br />

Remarks: F.S. Fullscale<br />

R.O. Readout<br />

Spezifikationen ZERO


ZEROTRONIC<br />

Possible concept for data transfer<br />

Zerotronic Sensors<br />

PC with<br />

WYLER-SW DYNAM<br />

Office<br />

Field<br />

Modem<br />

Modem<br />

Transceiver /<br />

Converter<br />

Data report Alarm Transmission<br />

to another<br />

station<br />

Uebermittlung Daten


ZEROTRONIC<br />

Adjustment of platforms on boats with ZEROTRONIC<br />

Reference platform<br />

1. Step:<br />

“ZERO-Setting” with both sensors<br />

Platform to be adjusted<br />

Reference platform<br />

2. Step:<br />

Measuring the difference<br />

between the two platforms<br />

Platform to be adjusted<br />

3. Step:<br />

Adjustment of the platform according to the measured deviation until the display shows “ZERO”<br />

Schiffs-Plattformen


ZEROTRONIC PROJECT 50<br />

ZEROTRONIC Easy finding of the 90 deg. Deviation<br />

when swivelling the spindle from „horizontal“ to „vertical“.<br />

1. „Zero setting“ by means of reversal<br />

measurement on horizontal<br />

position of the spindle.<br />

saving values (manually or PC)<br />

2. Swivelling spindle 90 deg.<br />

3. „Zero setting“ by means of reversal<br />

measurement on vertical position<br />

of the spindle.<br />

Levelmeter 2000<br />

saving values (manually or PC)<br />

4. Calculating angular difference<br />

between the two positions of the<br />

spindle by means of pocket<br />

calculator or PC.<br />

Maschinen ZERO


ZEROTRONIC<br />

ZEROTRONIC PROJECT 51<br />

Adjustment of various platforms in<br />

large aircrafts during assembly and<br />

maintenance<br />

Reference plate situated at<br />

the forward end of the<br />

cargo floor<br />

1. Easy simultaneous „zero setting“<br />

of 4 sensors<br />

2. Angular difference between the<br />

pairs of sensors easily visualized<br />

on the Levelmeter<br />

Differential measurement easily<br />

possible at various positions.<br />

Aircraft ZERO


ZEROTRONIC Measurement of a road profile<br />

Task:<br />

Continous measurement of inclination by driving on a road<br />

and taking the influence of acceleration into consideration<br />

f 1 , f 2<br />

β 1 = f (f 1 and f 2 )<br />

ASIC WYLER<br />

β 1<br />

Zerotronic<br />

Sensor<br />

β = β 1 - β 2<br />

DYNAM<br />

Encoder ASIC WYLER DYNAM DYNAM<br />

Device for<br />

measuring<br />

the distance<br />

Calculation of the effective inclination β<br />

β = β 1 - β 2<br />

β 2 = f (arcsin a) = f {arcsin [f (s, t)]}<br />

s = f (t) a = f (s, t) β 2 = f (arcsin a)<br />

β 2<br />

β<br />

EMPA<br />

a: Acceleration [m/s 2 ] (=dv/dt = v’ = s’’)<br />

s: Distance [m] f 1 , f 2 : Frequencies Sensors


ZEROTRONIC Measurement of a road profile<br />

EMPA Analyzer

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!