06.09.2014 Views

N2O production in a single stage nitritation/anammox MBBR process

N2O production in a single stage nitritation/anammox MBBR process

N2O production in a single stage nitritation/anammox MBBR process

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Water and Environmental Eng<strong>in</strong>eer<strong>in</strong>g<br />

Department of Chemical Eng<strong>in</strong>eer<strong>in</strong>g<br />

N 2 O <strong>production</strong> <strong>in</strong> a s<strong>in</strong>gle <strong>stage</strong><br />

<strong>nitritation</strong>/<strong>anammox</strong> <strong>MBBR</strong> <strong>process</strong><br />

Master’s Thesis by<br />

Sara Ekström<br />

January 2010


Vattenförsörjn<strong>in</strong>gs- och Avloppsteknik<br />

Institutionen för Kemiteknik<br />

Lunds Universitet<br />

Water and Environmental Eng<strong>in</strong>eer<strong>in</strong>g<br />

Department of Chemical Eng<strong>in</strong>eer<strong>in</strong>g<br />

Lund University, Sweden<br />

N 2 O <strong>production</strong> <strong>in</strong> a s<strong>in</strong>gle <strong>stage</strong><br />

<strong>nitritation</strong>/<strong>anammox</strong> <strong>MBBR</strong> <strong>process</strong><br />

Master Thesis number: 2010-01 by<br />

Sara Ekström<br />

Water and Environmental Eng<strong>in</strong>eer<strong>in</strong>g<br />

Department of Chemical Eng<strong>in</strong>eer<strong>in</strong>g<br />

March 2007<br />

Supervisors:<br />

Professor Jes la Cour Jansen<br />

Doctor Magnus Christensson, AnoxKaldnes<br />

Exam<strong>in</strong>er:<br />

Associate professor Kar<strong>in</strong> Jönsson<br />

Picture on front page:<br />

1<br />

1. K1 carriers with <strong>anammox</strong> biofilm from the laboratory <strong>nitritation</strong>/<strong>anammox</strong><br />

<strong>MBBR</strong>.<br />

Postal address: Visit<strong>in</strong>g address: Telephone:<br />

P.O Box 124 Get<strong>in</strong>gevägen 60 +46 46-222 82 85<br />

SE-221 00 Lund. +46 46-222 00 00<br />

Sweden,<br />

Telefax:<br />

+46 46-222 45 26<br />

Web address:<br />

www.vateknik.lth.se


Summary<br />

Wastewaters conta<strong>in</strong> abundant nitrogen that causes eutrophication <strong>in</strong> the receiv<strong>in</strong>g<br />

recipient if not removed before the water is released <strong>in</strong>to nature. Common nitrogen<br />

removal is performed through nitrification and denitrification which are biologic<br />

<strong>process</strong>es. Microorganisms are utilised to convert <strong>in</strong>organic nitrogen compounds <strong>in</strong>to<br />

d<strong>in</strong>itrogen gas through different chemical reactions <strong>in</strong> there metabolism. Nitrous oxide,<br />

(<strong>N2O</strong>), can be an <strong>in</strong>termediate or end product <strong>in</strong> the metabolism of both nitrification and<br />

denitrification. <strong>N2O</strong> is a greenhouse gas, 320 times stronger than carbon dioxide (CO2).<br />

The gas is contribut<strong>in</strong>g to global warm<strong>in</strong>g and is also tak<strong>in</strong>g part <strong>in</strong> depletion of the<br />

protect<strong>in</strong>g ozone layer <strong>in</strong> the stratosphere. If large amounts of <strong>N2O</strong> are emitted from<br />

wastewater treatment facilities the problem with abundant nitrogen <strong>in</strong> aquatic<br />

environments is only transferred <strong>in</strong>to the atmosphere and <strong>N2O</strong> emissions should<br />

therefore be avoided.<br />

The energy demand for biologic nitrogen removal is high s<strong>in</strong>ce aeration is needed for the<br />

aerobe nitrification <strong>process</strong>. Denitrification requires an organic carbon source that often<br />

has to be added to the <strong>process</strong>, generally <strong>in</strong> the form of methanol. Burn<strong>in</strong>g of fossil fuels<br />

for energy coverage of the wastewater treatment plant and dur<strong>in</strong>g transportation of<br />

carbon source is lead<strong>in</strong>g to CO2 emissions with negative effects on the climate. If an<br />

additional organic carbon source is used <strong>in</strong> the denitrification <strong>process</strong> this will also<br />

contribute to <strong>in</strong>creased CO2 emissions from the wastewater treatment plant.<br />

Biological nitrogen removal through anaerobic ammonium oxidation (<strong>anammox</strong>) is a<br />

relatively new <strong>process</strong> solution <strong>in</strong> wastewater treatment. Anammox has the potential to<br />

replace common nitrogen removal of recycled <strong>in</strong>ternal wastewater streams with high<br />

strength of ammonium and low COD content. The bacteria responsible for the <strong>anammox</strong><br />

<strong>process</strong> are convert<strong>in</strong>g ammonium to d<strong>in</strong>itrogen gas with nitrite as electron acceptor<br />

mak<strong>in</strong>g a short cut <strong>in</strong> the nitrogen cycle. Only 50% of the <strong>in</strong>fluent nitrogen load <strong>in</strong> the<br />

form of ammonium has to be converted to nitrite by the nitrifiers and no additional<br />

carbon source is needed. This means that the <strong>process</strong> offers great sav<strong>in</strong>g possibilities,<br />

economical as well as environmental.<br />

Different system configurations are available for the <strong>anammox</strong> <strong>process</strong>, it can either be<br />

operated as a two <strong>stage</strong> <strong>process</strong> where <strong>nitritation</strong> and <strong>anammox</strong> are performed <strong>in</strong><br />

separate reactors, or <strong>in</strong> a s<strong>in</strong>gle <strong>stage</strong> <strong>process</strong> where both <strong>process</strong>es are tak<strong>in</strong>g part <strong>in</strong><br />

one reactor. A <strong>MBBR</strong> is suitable as a s<strong>in</strong>gle <strong>stage</strong> <strong>nitritation</strong>/<strong>anammox</strong> <strong>process</strong> s<strong>in</strong>ce a<br />

biofilm with an outer aerobe layer for the nitrifiers and one <strong>in</strong>ner anoxic layer for the<br />

<strong>anammox</strong> bacteria can develop. To allow the build up of a biofilm structure with<br />

different oxic layers the <strong>process</strong> has to be operated at low dissolved oxygen<br />

concentrations. Insufficient oxygenation <strong>in</strong> the nitrification <strong>process</strong> is known to enhance<br />

nitrous oxide emissions from ammonium oxidis<strong>in</strong>g bacteria. S<strong>in</strong>ce the s<strong>in</strong>gle <strong>stage</strong><br />

<strong>anammox</strong> <strong>process</strong> <strong>in</strong>volves <strong>nitritation</strong> at low dissolved oxygen concentrations the<br />

<strong>process</strong> might lead to significant <strong>N2O</strong> emissions.<br />

i


The ma<strong>in</strong> objective with this master thesis work was to study the <strong>production</strong> of nitrous<br />

oxide from a laboratory s<strong>in</strong>gle <strong>stage</strong> <strong>nitritation</strong>/ <strong>anammox</strong> <strong>MBBR</strong>. The <strong>N2O</strong><br />

measurements were performed onl<strong>in</strong>e <strong>in</strong> the water phase with a Clark–type<br />

microsensor developed by Unisense, Århus, Denmark. The reactor was operated at both<br />

<strong>in</strong>termittent and cont<strong>in</strong>uous aeration. The results from the experiments are summarised<br />

below:<br />

At <strong>in</strong>termittent aeration % reduction and removal rate <strong>in</strong> gN/m 2 d were <strong>in</strong> the range of<br />

47-59% and 0.9-1.1 gN/m 2 d respectively. As the reactor mode was shifted <strong>in</strong>to<br />

cont<strong>in</strong>uous aeration at a lower DO concentration both % reduction and removal rate <strong>in</strong><br />

gN/m 2 d was more stable and higher than dur<strong>in</strong>g <strong>in</strong>termittent aeration. % nitrogen<br />

reduction was between64-65% and the removal rate <strong>in</strong> the <strong>in</strong>terval of 1.3-1.6 gN/m 2 d.<br />

The <strong>MBBR</strong> system produced <strong>N2O</strong> regardless of operation mode. The n<strong>N2O</strong> <strong>production</strong><br />

was determ<strong>in</strong>ed through measurements of <strong>in</strong>itial accumulation of nitrous oxide <strong>in</strong> the<br />

water phase when aeration was turned off Intermittent aeration at high dissolved<br />

oxygen concentrations 3 mg/l was result<strong>in</strong>g <strong>in</strong> significant nitrous oxide <strong>production</strong><br />

rang<strong>in</strong>g from 6-11% of removed <strong>in</strong>organic nitrogen. Operation at cont<strong>in</strong>uous aeration<br />

yielded nitrous oxide emissions correspond<strong>in</strong>g to about 2-3% of removed <strong>in</strong>organic<br />

nitrogen. Higher <strong>process</strong> performance may be an explanation to smaller amounts of<br />

emitted <strong>N2O</strong>.<br />

Conclusions that can be made from the experiments are summarised below:<br />

• The s<strong>in</strong>gle <strong>stage</strong> <strong>nitritation</strong>/<strong>anammox</strong> system produced significant amounts of<br />

<strong>N2O</strong> with a m<strong>in</strong>imum <strong>production</strong> of 2% of removed <strong>in</strong>organic nitrogen.<br />

• Operat<strong>in</strong>g the <strong>MBBR</strong> at <strong>in</strong>termittent aeration with a DO of ~3 mg/l gave the<br />

highest <strong>N2O</strong> <strong>production</strong> with <strong>in</strong>itial and maximum <strong>production</strong>s of 6-11% and 10-<br />

30% respectively.<br />

• Smaller amounts of <strong>N2O</strong> were produced by the partial/<strong>nitritation</strong> <strong>anammox</strong><br />

system dur<strong>in</strong>g cont<strong>in</strong>uous operation at DO <strong>in</strong> the <strong>in</strong>terval 1-1.5 mg/l. The <strong>in</strong>itial<br />

<strong>N2O</strong> <strong>production</strong> was found to be 2-3% and the maximum <strong>N2O</strong> <strong>production</strong><br />

corresponded to 2-6%.<br />

• When the <strong>MBBR</strong> was exposed to a longer period of anoxic conditions both<br />

ammonium oxidation and <strong>N2O</strong> <strong>production</strong> ceased.<br />

• From results of mix<strong>in</strong>g with N2 gas dur<strong>in</strong>g the anoxic period it cannot be said<br />

with certa<strong>in</strong>ty that the <strong>N2O</strong> <strong>production</strong> is the same dur<strong>in</strong>g aeration and anoxic<br />

phase. The absolute number on overall <strong>N2O</strong> <strong>production</strong> for an operation mode<br />

(based on the measurements of <strong>N2O</strong> accumulat<strong>in</strong>g dur<strong>in</strong>g the anoxic phase) could<br />

be both overestimated or underestimated and should therefore be used as a<br />

comparative tool.<br />

ii


Acknowledgements<br />

I would like to express my gratitude to everyone who have <strong>in</strong>spired and supported me<br />

dur<strong>in</strong>g the work with my master thesis.<br />

My genu<strong>in</strong>e appreciation goes to:<br />

My supervisor Magnus Christenson at AnoxKaldnes for all guidance, support, shar<strong>in</strong>g off<br />

valuable knowledge and experiences, also for giv<strong>in</strong>g me the opportunity to get to know<br />

the fasc<strong>in</strong>at<strong>in</strong>g <strong>anammox</strong> <strong>process</strong>.<br />

My supervisor Professor Jes la Cour Jansen at Water and Environmental Enigneer<strong>in</strong>g<br />

Department of Chemical Eng<strong>in</strong>eer<strong>in</strong>g, Lund University for scientific guidance and<br />

encouragement, for all your valuable aspects on my work and always rem<strong>in</strong>d<strong>in</strong>g me of<br />

look<strong>in</strong>g <strong>in</strong>to th<strong>in</strong>gs from a wider perspective.<br />

To Lars H. Larsen at Unisense for all help and support with the microsensors.<br />

To everyone at AnoxKaldnes for all k<strong>in</strong>dness, support and for creat<strong>in</strong>g an <strong>in</strong>spir<strong>in</strong>g<br />

environment to work <strong>in</strong>. Special thanks to Maria Ekenberg for always answer<strong>in</strong>g my<br />

questions about the laboratory <strong>MBBR</strong> <strong>process</strong> and for all help <strong>in</strong> the laboratory. To<br />

Carol<strong>in</strong>a Shew Cammernäs for all patients and time while help<strong>in</strong>g me with the FIA<br />

analyses. To Stig Stork for all technical support.<br />

To David Gustavsson at VA SYD for exchang<strong>in</strong>g your ideas and knowledge about <strong>N2O</strong><br />

emissions <strong>in</strong> wastewater treatment <strong>process</strong>es.<br />

Last but not least I would like to thank my mother and my sister, Gustav and Helena for<br />

always encourag<strong>in</strong>g and support<strong>in</strong>g me.<br />

Thank you!<br />

iii


Glossary<br />

Aerobic – <strong>in</strong> the presence of oxygen <strong>in</strong> the form of O2<br />

Anaerobic – an oxygen free environment<br />

Anoxic – environment where oxygen is present as nitrite or nitrate<br />

Autotrophic – organism that can produce organic compounds from carbon dioxide with<br />

light or <strong>in</strong>organic chemical compound as energy source<br />

Carbon dioxide equivalent – is a measurement standard where the weight of a<br />

greenhouse gas released <strong>in</strong> to the atmosphere is converted <strong>in</strong>to the weight of carbon<br />

dioxide that would cause the same temperature rise <strong>in</strong> Earths ecosystem as the gas <strong>in</strong><br />

question<br />

Global warm<strong>in</strong>g potential – a measure of how much a given amount of a greenhouse<br />

gas would contribute to global warm<strong>in</strong>g <strong>in</strong> comparison with the same amount of carbon<br />

dioxide. The global warm<strong>in</strong>g potential of a greenhouse gas depends on (i) the absorption<br />

of <strong>in</strong>frared radiation of the gas, (ii) atmospheric life time, (iii) spectral location of<br />

absorb<strong>in</strong>g wavelengths, where the global warm<strong>in</strong>g potential of carbon dioxide is 1<br />

Heterotrophic – organism requir<strong>in</strong>g organic compounds as energy source<br />

Lithotrophic – organism us<strong>in</strong>g <strong>in</strong>organic nutrients to obta<strong>in</strong> energy<br />

Oxic – environment where oxygen is present<br />

Abbreviations<br />

Anammox – anaerobic ammonium oxidation<br />

AOB – ammonium oxidis<strong>in</strong>g bacteria<br />

ATP – adenos<strong>in</strong>e triphosphate<br />

Canon – completely autotrophic nitrogen removal over nitrite<br />

Deamox – denitrify<strong>in</strong>g ammonium oxidation<br />

DO – dissolved oxygen<br />

FIA – flow <strong>in</strong>jection analysis<br />

<strong>MBBR</strong> – mov<strong>in</strong>g biofilm bed reactor<br />

NH4 + – ammonium<br />

NO2 − – nitrite<br />

NO3 − – nitrate<br />

<strong>N2O</strong> – nitrous oxide<br />

ppm – part per million<br />

Sharon – S<strong>in</strong>gle reactor system for High rate Ammonium Removal Over Nitrite)<br />

v


Table of content<br />

Chapter 1 .................................................................................................................................... 1<br />

1. Introduction ............................................................................................................................ 1<br />

1.3 Objectives ............................................................................................................................................... 3<br />

1.4 Accomplishment and scope ............................................................................................................. 3<br />

Chapter 2 .................................................................................................................................... 5<br />

2. Background ............................................................................................................................. 5<br />

2.1 Biological nitrogen removal <strong>in</strong> wastewater treatment ......................................................... 5<br />

2.1.1 Nitrification ................................................................................................................................... 5<br />

2.1.2 Denitrification .............................................................................................................................. 6<br />

2.1.3 Anaerobic ammonium oxidation........................................................................................... 6<br />

2.2. Environmental factors ...................................................................................................................... 8<br />

2.2.1 Dissolved oxygen ......................................................................................................................... 8<br />

2.2.2 Temperature ................................................................................................................................. 9<br />

2.2.3 pH and alkal<strong>in</strong>ity ......................................................................................................................... 9<br />

2.2.4 Substrate...................................................................................................................................... 10<br />

2.2.5 Mix<strong>in</strong>g ........................................................................................................................................... 10<br />

2.3 Biofilm reactors ................................................................................................................................. 11<br />

2.3.1 Trickl<strong>in</strong>g filter ............................................................................................................................ 11<br />

2.3.2 Biofilters ...................................................................................................................................... 12<br />

2.3.3 Fluidised bed .............................................................................................................................. 12<br />

2.3.4 Mov<strong>in</strong>g bed reactor ................................................................................................................. 13<br />

2.3.5 Rotat<strong>in</strong>g disc .............................................................................................................................. 13<br />

2.4 Biofilm k<strong>in</strong>etics .................................................................................................................................. 13<br />

2.5 System configurations for nitrogen removal by <strong>anammox</strong> .............................................. 15<br />

2.5.1 Sharon/Anammox ................................................................................................................... 15<br />

2.5.2 Canon ............................................................................................................................................ 16<br />

2.5. 3 Deammonification .................................................................................................................. 17<br />

2.5.4 Deamox ........................................................................................................................................ 18<br />

2.5 <strong>N2O</strong> emissions from wastewater treatment ........................................................................... 18<br />

2.5.1 Nitrification as a source of <strong>N2O</strong> emissions ..................................................................... 19<br />

2.5.2 Denitrification as a source of <strong>N2O</strong> emissions ................................................................ 19<br />

2.5.3 Chemical <strong>production</strong> of <strong>N2O</strong> ................................................................................................ 20<br />

2.6 Microsensors ...................................................................................................................................... 22<br />

2.6.1 Nitrous oxide sensor ............................................................................................................... 22<br />

2.6.2 Nitrite biosensor....................................................................................................................... 23<br />

Chapter 3 .................................................................................................................................. 25<br />

3. Material and Methods .......................................................................................................... 25<br />

3.1 Partial <strong>nitritation</strong>/<strong>anammox</strong> laboratory <strong>MBBR</strong> . ................................................................. 25<br />

3.2 Reactor medium ................................................................................................................................ 26<br />

3.3 Analytical methods .......................................................................................................................... 27<br />

3.3 Cycle studies ....................................................................................................................................... 27<br />

3.3.1 Intermittent aeration .............................................................................................................. 27<br />

vii


3.3.2 Prolonged study, <strong>in</strong>termittent aeration........................................................................... 28<br />

3.3.3 Cont<strong>in</strong>uous aeration ................................................................................................................ 28<br />

3.4 Calibration of microsensors ......................................................................................................... 28<br />

3.5 Diffusivity tests of <strong>N2O</strong> ................................................................................................................... 30<br />

Chapter 4 .................................................................................................................................. 31<br />

4. Results .................................................................................................................................. 31<br />

4.1 Process performance ...................................................................................................................... 31<br />

4.3 <strong>N2O</strong> emissions from partial <strong>nitritation</strong>/<strong>anammox</strong> <strong>MBBR</strong> ................................................ 33<br />

4.3.2 Intermittent aeration. ............................................................................................................. 34<br />

4.3.2 Prolonged unaerated period. ............................................................................................... 35<br />

4.3.3 Cont<strong>in</strong>uous operation at DO ~1.5 mg/l ........................................................................... 36<br />

4.3.4 Cont<strong>in</strong>uous operation at DO ~1.0 mg/l ........................................................................... 37<br />

4.3.5 Effect of mix<strong>in</strong>g with N2 gas dur<strong>in</strong>g unaerated phase, cont<strong>in</strong>uous operation at<br />

DO ~1.0 mg/l and ~1.5 mg/l .......................................................................................................... 38<br />

4.4 NO2-N biosensor ............................................................................................................................... 40<br />

4.5 Diffusivity and stripp<strong>in</strong>g test of <strong>N2O</strong> ......................................................................................... 41<br />

Chapter 5 .................................................................................................................................. 44<br />

5. Discussion ............................................................................................................................. 44<br />

5.1 Process performance ...................................................................................................................... 44<br />

5.2 <strong>N2O</strong> <strong>production</strong> .................................................................................................................................. 44<br />

5.3 Measurements with NO2-N biosensor ...................................................................................... 47<br />

5.4 Diffusivity and stripp<strong>in</strong>g test of <strong>N2O</strong> ......................................................................................... 48<br />

6. Conclusions ........................................................................................................................... 51<br />

7. Future research .................................................................................................................... 53<br />

8. References ............................................................................................................................ 55<br />

Appendix A ............................................................................................................................... 63<br />

Calculation of concentrations <strong>in</strong> calibration solutions for <strong>N2O</strong> and NO2-N microsensors<br />

......................................................................................................................................................................... 63<br />

Appendix B ............................................................................................................................... 67<br />

Calculations of <strong>N2O</strong> emissions ............................................................................................................ 67<br />

Appendix C................................................................................................................................ 71<br />

Microsensor measurements ................................................................................................................ 71<br />

Appendix D ............................................................................................................................... 77<br />

Nitrogen grab samples ........................................................................................................................... 77<br />

Appendix E Scientific Article ..................................................................................................... 87<br />

viii


Chapter 1<br />

1. Introduction<br />

Nitrogen is one of the ma<strong>in</strong> build<strong>in</strong>g blocks <strong>in</strong> prote<strong>in</strong>s and is therefore a vital element<br />

for all liv<strong>in</strong>g organisms. The elemental form of nitrogen is made available to the<br />

biosphere through microbial fixation of d<strong>in</strong>itrogen gas which constitutes 79% of the<br />

atmosphere. Combustion of fossil fuels, the use of nitrogen <strong>in</strong> <strong>in</strong>dustry and fertilizers,<br />

waste and wastewater streams results <strong>in</strong> large amounts of anthropogenic nitrogen lost<br />

to nature. The human contribution to nitrogen cycl<strong>in</strong>g impacts the environment<br />

negatively through eutrophication of aquatic environments and emissions of<br />

nitrogenous compounds to the atmosphere. Release of b<strong>in</strong>ary nitrogenous gases<br />

contributes to the greenhouse effect and depletion of ozone layer with consequences on<br />

a global scale last<strong>in</strong>g for centuries.<br />

S<strong>in</strong>ce the start of the <strong>in</strong>dustrialisation human activity has <strong>in</strong>creased the emissions of<br />

greenhouse gases (carbon dioxide, chlorofluorocarbons, methane, ozone and nitrous<br />

oxide), to the atmosphere with about 30%, with global warm<strong>in</strong>g as a result (Liljenström<br />

& Kvarnbäck, 2007). In 2004 the global amount of anthropogenic emitted greenhouse<br />

gases corresponded to 49 billion tons carbon dioxide equivalents, (a measurement<br />

standard where the weight of a greenhouse gas released <strong>in</strong> to the atmosphere is<br />

converted <strong>in</strong>to the weight of carbon dioxide that would cause the same temperature rise<br />

<strong>in</strong> Earths ecosystem). Carbon dioxide stands for the greatest proportion of the emissions<br />

with 79% followed by methane and nitrous oxide contribut<strong>in</strong>g with 14% and 8%<br />

respectively, (Naturvårdsverket, 2009).<br />

Wastewater treatment plants produces greenhouse gases through; (i) burn<strong>in</strong>g of fossil<br />

fuels for coverage of the energy demand, (ii) transportation of chemicals for on-site<br />

usage and f<strong>in</strong>al disposal of solids, (iii) biologic treatment <strong>process</strong>es where nutrients,<br />

(organic matter, nitrogen and phosphorus) are removed through microbial <strong>process</strong>es.<br />

Biologic wastewater treatment <strong>process</strong>es are known to produce three of the major<br />

greenhouse gases carbon dioxide(CO2), methane (CH4) and nitrous oxide (<strong>N2O</strong>) (Bani<br />

Shahabadi et al., 2009). Nitrous oxide which is the strongest of these greenhouse gases is<br />

known to be produced dur<strong>in</strong>g nitrification and denitrification, <strong>process</strong>es used to remove<br />

nitrogen from the wastewater. The global warm<strong>in</strong>g potential of <strong>N2O</strong> is 320 times<br />

stronger than that of CO2. Release <strong>in</strong> to the atmosphere not only amplifies the warm<strong>in</strong>g<br />

of Earth’s surface temperature it also contributes to depletion of the ozone layer (Jacob,<br />

1999). Dur<strong>in</strong>g a thirty year period from 1990 to 2020 the <strong>N2O</strong> emissions associated with<br />

microbial nitrogen degradation of both treated and untreated wastewaters are<br />

estimated to <strong>in</strong>crease with 25% from 80 to 100 megaton carbon dioxide equivalents.<br />

Emissions from the post-consumer waste sector are approximately 1300 megaton<br />

carbon dioxide equivalents which corresponds to


stricter it might lead to elevated emissions of nitrous oxide from the biological removal<br />

<strong>process</strong>es. It is therefore of great importance to design and operate these <strong>process</strong>es to<br />

m<strong>in</strong>imise the emissions of nitrous oxide to the atmosphere.<br />

Wastewater treatment plants us<strong>in</strong>g biologic treatment <strong>process</strong>es for nutrient removal<br />

are produc<strong>in</strong>g excessive sludge giv<strong>in</strong>g rise to ammonium rich effluent from the<br />

anaerobic sludge digestion. This <strong>in</strong>ternal wastewater stream is recomb<strong>in</strong>ed with the<br />

<strong>in</strong>fluent of the treatment plant and corresponds to 15-20% of the total nitrogen load of<br />

the wastewater treatment plant (Fux et al., 2003). In the early 1990s a new biological<br />

treatment <strong>process</strong> for nitrogen removal through anaerobic ammonium oxidation<br />

(<strong>anammox</strong>) was discovered by research teams <strong>in</strong> Holland, Germany and Switzerland<br />

(Mulder et al., 1995, Hippen et al., 1997, Siegrist et al., 1998). The technology has turned<br />

out to be suitable for treatment of reject waters and other problematic wastewaters<br />

with a low COD/N ratio and high ammonium concentrations. The bacteria perform<strong>in</strong>g<br />

the microbial conversion of nitrite <strong>in</strong>to d<strong>in</strong>itrogen gas are strict anaerobe autotrophs<br />

and the <strong>process</strong> has the potential to replace conventional nitrification/denitrification of<br />

recirculated high strength ammonium streams with<strong>in</strong> the wastewater treatment plant<br />

(Strous et al., 1997). No additional carbon source is needed, the oxygen demand is<br />

reduced by 50% <strong>in</strong> the nitrify<strong>in</strong>g step and the aeration can thereby be strongly reduced<br />

(Jetten et al., 2001, Fux et al., 2002). This means that the <strong>process</strong> offers an opportunity to<br />

decrease the carbon footpr<strong>in</strong>t of the wastewater treatment plant <strong>in</strong> terms of sav<strong>in</strong>g<br />

possibilities of both additional carbon source and power consumption (Jetten et al.,<br />

2004). Further advantages with the <strong>anammox</strong> <strong>process</strong> is that the <strong>production</strong> of surplus<br />

sludge is m<strong>in</strong>imized and that high volumetric load<strong>in</strong>g rates can be obta<strong>in</strong>ed result<strong>in</strong>g <strong>in</strong><br />

reduced operational and <strong>in</strong>vestment costs (Abma et al., 2007). However there are<br />

doubts that the <strong>process</strong> could produce significant amounts of <strong>N2O</strong> gas with negative<br />

environmental impacts detract<strong>in</strong>g the <strong>process</strong> advantages.<br />

2


1.3 Objectives<br />

The aim with this master thesis was to estimate the <strong>N2O</strong> emissions from a partial<br />

<strong>nitritation</strong>/<strong>anammox</strong> laboratory mov<strong>in</strong>g bed biofilm reactor (<strong>MBBR</strong>) treat<strong>in</strong>g<br />

ammonium-rich synthetic wastewater. Measurements were carried out with a<br />

microsensor record<strong>in</strong>g the <strong>N2O</strong> concentration onl<strong>in</strong>e <strong>in</strong> the water phase, ma<strong>in</strong> objectives<br />

were:<br />

• To determ<strong>in</strong>e the <strong>N2O</strong> emission from the system under <strong>in</strong>itial operation<br />

conditions which were <strong>in</strong>termittent aeration at a dissolved oxygen, (DO),<br />

concentration of ~3 mg/l.<br />

• To evaluate <strong>N2O</strong> <strong>production</strong> when chang<strong>in</strong>g the operation mode <strong>in</strong>to cont<strong>in</strong>uous<br />

aeration to a lower DO concentration. Cont<strong>in</strong>uous operation at two different DO<br />

concentrations were tested ~1.5 mg/l and ~1.0 mg/l.<br />

• Determ<strong>in</strong>e how the <strong>N2O</strong> <strong>production</strong> was <strong>in</strong>fluenced dur<strong>in</strong>g a longer period of<br />

anoxic conditions.<br />

• Investigate whether the <strong>N2O</strong> accumulation observed <strong>in</strong> the water phase as<br />

aeration is turned off was due to term<strong>in</strong>ation of <strong>N2O</strong> stripp<strong>in</strong>g or if the <strong>N2O</strong><br />

<strong>production</strong> actually <strong>in</strong>creases dur<strong>in</strong>g the anoxic period.<br />

• To exam<strong>in</strong>e if a biosensor for onl<strong>in</strong>e measurements of NO2-N concentrations can<br />

replace traditional analyse methods for determ<strong>in</strong>ation of NO2-N dur<strong>in</strong>g this<br />

master thesis work.<br />

1.4 Accomplishment and scope<br />

The master thesis was based on both experimental work and a literature study.<br />

Laboratory studies were performed on an exist<strong>in</strong>g partial laboratory<br />

<strong>nitritation</strong>/<strong>anammox</strong> <strong>MBBR</strong> at AnoxKaldnes <strong>in</strong> Lund. The study took it’s start with a<br />

def<strong>in</strong>ition of the exist<strong>in</strong>g system and sett<strong>in</strong>g up the equipment for the microsensors used<br />

dur<strong>in</strong>g onl<strong>in</strong>e measurements. The laboratory work proceeded with measurement<br />

sessions where the <strong>N2O</strong> concentration was registered <strong>in</strong> the water phase at different<br />

operational conditions of the <strong>MBBR</strong>. S<strong>in</strong>ce no equipment for measurement of <strong>N2O</strong> <strong>in</strong> the<br />

off-gas were available experiments to estimate how much <strong>N2O</strong> that was stripped off<br />

from the water phase by diffusion and aeration were made.<br />

The collected data was analysed and the <strong>N2O</strong> <strong>production</strong> from the <strong>MBBR</strong> could be<br />

estimated with mass balance calculations of the system. The evaluation of the estimated<br />

<strong>N2O</strong> emission from the <strong>nitritation</strong>/<strong>anammox</strong> <strong>MBBR</strong> laboratory system was based on a<br />

literature study of <strong>N2O</strong> emissions <strong>in</strong> wastewater treatment. No calculations were made<br />

to estimate whether the <strong>anammox</strong> <strong>process</strong> is reduc<strong>in</strong>g or <strong>in</strong>creas<strong>in</strong>g the carbon footpr<strong>in</strong>t<br />

<strong>in</strong> comparison to common nitrogen removal <strong>process</strong>es.<br />

3


For simplicity a synthetic wastewater was used, this water may both be easier to<br />

degrade and not as complex as a normal wastewater which may impact the microbial<br />

performance.<br />

4


Chapter 2<br />

2. Background<br />

2.1 Biological nitrogen removal <strong>in</strong> wastewater treatment<br />

Nitrogen removal is one of the major tasks <strong>in</strong> wastewater treatment. Biologic nitrogen<br />

removal is the most efficient way to elim<strong>in</strong>ate nitrogen from the wastewater and a<br />

variety of system configurations like activated sludge plants with suspended growth,<br />

biofilters designed for attached growth and comb<strong>in</strong>ations of the two have been<br />

developed. These systems are built on the knowledge of microbial nitrogen cycl<strong>in</strong>g<br />

where nitrogen compounds like NH4+, NO2 − and NO3 − are removed by conversion <strong>in</strong>to<br />

elemental N2 gas released to the atmosphere, see Figure 1. The well known nitrification<br />

and denitrification <strong>process</strong>es are commonly used to achieve satisfactory nitrogen<br />

removal. Today anaerobic ammonium oxidation, a relatively new technology for<br />

nitrogen removal is also <strong>in</strong> use at several places.<br />

Figure 1. Major biological transformations of nitrogen <strong>in</strong> wastewater treatment. (Kampschreur et<br />

al., 2009).<br />

2.1.1 Nitrification<br />

Nitrification is oxidation of ammonium <strong>in</strong>to nitrate under aerobic conditions, the<br />

<strong>process</strong> occurs <strong>in</strong> two separated reaction steps, each <strong>in</strong>volv<strong>in</strong>g different species of<br />

bacteria. The nitrifiers are chemo-lithoautotrophs which means that they use carbon<br />

dioxide or carbonate as carbon source and <strong>in</strong>organic nitrogen is used for both energy<br />

supply and cellular growth (Gray, 2004). In the first <strong>nitritation</strong> step ammonium<br />

oxidis<strong>in</strong>g species like Nitrosomonas and Nitrosospira oxidises ammonium <strong>in</strong>to nitrite:<br />

5


NH 1.5O NO 2H 2H O (2.1.1)<br />

The <strong>in</strong>termediate of the nitrification <strong>process</strong> (NO2 − ) is then further oxidised <strong>in</strong>to nitrate<br />

by nitrite oxidisers:<br />

NO 0.5O NO <br />

<br />

(2.1.2)<br />

The nitratation step is performed by species like Nitrobacter and Nitrococcus (Prescott<br />

et al., 2005). The overall nitrification reaction can be described by:<br />

NH 2O NO 2H 2H O (2.1.3)<br />

Energy ga<strong>in</strong>ed by the bacteria dur<strong>in</strong>g nitrification is used <strong>in</strong> the electron transport cha<strong>in</strong><br />

to make adenos<strong>in</strong>e triphosphate, (ATP is the energy currency of the cell mak<strong>in</strong>g<br />

chemical transport possible), (Prescott et al., 2005). Nitrify<strong>in</strong>g bacteria are slow<br />

growers s<strong>in</strong>ce nitrification <strong>process</strong>es gives a low energy yield, (see Table 1) and the<br />

nitrifiers have to oxidise large amount of <strong>in</strong>organic material for their growth and<br />

re<strong>production</strong>, (Prescott et al., 2005).<br />

2.1.2 Denitrification<br />

Denitrification is nitrate respiration under anoxic conditions carried out by a large<br />

number of different heterotrophic bacteria. Nitrate is used to oxidate organic carbon<br />

<strong>in</strong>to elemental nitrogen and carbon dioxide:<br />

NO organic carbon N CO (2.1.4)<br />

Denitrify<strong>in</strong>g bacteria need an easily biodegradable carbon source and their demand for<br />

removal of one gram of nitrogen corresponds to 3-6 grams of chemical oxygen demand,<br />

(COD). If the COD/N ratio of the wastewater becomes too low an additional carbon<br />

source like methanol must be added <strong>in</strong> order to achieve nitrogen removal of nitrate<br />

through denitrification (Gillberg et al., 2003)<br />

Pseudomonas, Paraccocus, and Bacillus are examples of bacteria denitrifiy<strong>in</strong>g under<br />

anoxic conditions. Most denitrifiers are facultative anaerobes which means that they<br />

generally respire with oxygen as f<strong>in</strong>al electron acceptor, this s<strong>in</strong>ce the oxygen route<br />

yields more energy than nitrate respiration (Prescott et al., 2005).<br />

2.1.3 Anaerobic ammonium oxidation<br />

Anammox bacteria are obligate anaerobe autotrophs us<strong>in</strong>g <strong>in</strong>organic nitrogen and<br />

carbon for energy supply and growth, the <strong>process</strong> offers a short cut <strong>in</strong> the nitrogen cycle<br />

as illustrated <strong>in</strong> Figure 1(Jetten et al., 1999). Ammonium is converted <strong>in</strong>to d<strong>in</strong>itrogen gas<br />

with nitrite as electron acceptor (2.1.6), hydraz<strong>in</strong>e (N2H4) and hydroxylam<strong>in</strong>e (NH2OH)<br />

6


are <strong>in</strong>termediates <strong>in</strong> the chemical reaction. This reaction is the catabolic and energy<br />

supply<strong>in</strong>g part <strong>in</strong> <strong>anammox</strong> metabolism, it has to be carried out 15 times to fix one<br />

molecule of carbon dioxide with nitrite as electron donor <strong>in</strong> the cellular synthesis or<br />

anabolism (2.1.7) which produces nitrate (van Niftrik et al., 2004).<br />

<br />

NH NO N 2H O (2.1.6)<br />

CO 2NO <br />

H O CH O 2NO (2.1.7)<br />

Broda, (1977), predicted this microbial <strong>process</strong> through thermodynamic calculations for<br />

over thirty years ago. The <strong>anammox</strong> <strong>process</strong> was discovered <strong>in</strong> the early n<strong>in</strong>eties <strong>in</strong> a<br />

rotat<strong>in</strong>g-disk plant treat<strong>in</strong>g landfill leachate at Mechernich, Germany (Rosenw<strong>in</strong>kel &<br />

Cornelius, 2005). Mulder et al. also identified the <strong>anammox</strong> <strong>process</strong> <strong>in</strong> a denitrify<strong>in</strong>g<br />

fluidised bed reactor <strong>in</strong> Deltft, the Netherlands, at about the same time (Mulder et al.,<br />

1995). Total stoichiometry of the <strong>anammox</strong> <strong>process</strong> has been estimated by Strous et al.,<br />

(1998):<br />

1NH <br />

<br />

1.32NO 0.066HCO <br />

<br />

0.13H <br />

1.02 N 0.26NO <br />

<br />

0.066CH2O . N . 2.03 H O. (2.1.7)<br />

The bacterium perform<strong>in</strong>g the <strong>anammox</strong> reaction has been identified as a new member<br />

of the order Planctomycete (Strous et al., 1999). Until now totally five <strong>anammox</strong> genera<br />

have been identified, four from enriched wastewater sludge: Kuenenia, Brocadia,<br />

Anammoxoglobus and Jettenia, the fifth genera of <strong>anammox</strong> bacteria Scal<strong>in</strong>dua is often<br />

found <strong>in</strong> mar<strong>in</strong>e environments (Jetten et al., 2009).<br />

Planctomycetes are gram-negative bacteria with phenotypic properties such as absence<br />

of peptidoglycan <strong>in</strong> the cell wall, budd<strong>in</strong>g re<strong>production</strong> and <strong>in</strong>ternal cell<br />

compartmentalisation due to two membranes on the <strong>in</strong>side of the cell wall (Prescott et<br />

al., 2005). Anammox bacteria are characterized by their deep red colour and ability to<br />

form bio-films (Abma et al., 2006). Anammox cell structure is divided <strong>in</strong>to three<br />

compartments. The outer region closest to the cell wall called the paryphoplasm<br />

encloses the second compartment which is the riboplasm. The riboplasm conta<strong>in</strong>s the<br />

nucleoid and the <strong>anammox</strong>osome, the third compartment where <strong>anammox</strong> catabolism<br />

takes place, see Figure 2. All compartments are separated by bilayer membranes<br />

constituted of impermeable and high density ladderane lipids (van Niftrik et al., 2004).<br />

The higher membrane density is of importance to the <strong>anammox</strong> bacteria of two reasons,<br />

one that it creates an electro potential force driv<strong>in</strong>g the ATP synthesis, and two it keeps<br />

the toxic <strong>in</strong>termediates from the <strong>anammox</strong> <strong>process</strong> hydroxylam<strong>in</strong>e and hydraz<strong>in</strong>e <strong>in</strong>side<br />

the <strong>anammox</strong>osome (van Niftrik et al., 2004).<br />

7


Figure 2. Illustration of <strong>anammox</strong> bacteria. (Adapted from van Niftrik et al., 2004).<br />

Anammox bacteria are extremely slow growers, their doubl<strong>in</strong>g time has been found to<br />

11 days <strong>in</strong> activated sludge (Strous et al., 1999). However it might be possible to<br />

<strong>in</strong>crease this doubl<strong>in</strong>g rate with optimal operation conditions s<strong>in</strong>ce other researchers<br />

have found a much shorter doubl<strong>in</strong>g rate of 3.6-5.4 days for <strong>anammox</strong> bacteria <strong>in</strong> a upflow<br />

fixed-bed biofilm column reactor (Tsushima et al., 2007).<br />

The microbial <strong>process</strong>es and chemical reactions of nitrification, denitrification and<br />

<strong>anammox</strong> are summarized <strong>in</strong> Table 1.<br />

Table 1. Microbial <strong>process</strong>es and chemical reactions tak<strong>in</strong>g part <strong>in</strong> the nitrogen cycle showed <strong>in</strong><br />

Figure 1.<br />

Energy yield<br />

ΔG ̊’ eq.<br />

Process<br />

Chemical reaction<br />

+<br />

kJ/mol NH 4<br />

Nitritation: NH 1.5O NO 2H H O -271 (2.1.1)<br />

Nitratation: NO 0.5O <br />

<br />

NO -72.8 (2.1.2)<br />

Nitrification: NH 2O NO 2H H O - (2.1.3)<br />

Denitrification: NO org. carbon N 2CO <br />

-<br />

(2.1.4)<br />

Anammox: NH <br />

NO N 2H O -358.8 (2.1.6)<br />

2.2. Environmental factors<br />

Dissolved oxygen, temperature, pH, substrate concentrations and turbulence are abiotic<br />

conditions that are of great importance for the growth and survival of the microbiology<br />

<strong>in</strong> a wastewater treatment system.<br />

2.2.1 Dissolved oxygen<br />

Depend<strong>in</strong>g on the electron donor <strong>in</strong> the respiratory cha<strong>in</strong> of the microorganism can be<br />

limited or <strong>in</strong>hibited by either to low or to high DO concentrations. It is the oxygen<br />

concentration with<strong>in</strong> the biofilm experienced by the bacteria that is of importance for<br />

the wellness of the organism (Henze et al., 1997).<br />

Nitrify<strong>in</strong>g bacteria utilis<strong>in</strong>g oxygen as electron donor are sensitive for too low oxygen<br />

concentrations and are limited by DO concentrations


m<strong>in</strong>imum concentration of 2 mg/l should be ma<strong>in</strong>ta<strong>in</strong>ed (Gray, 2004). The nitrify<strong>in</strong>g rate<br />

<strong>in</strong>creases up to DO levels of 3-4 mg/l, (Metcalf & Eddy). All figures given here yields for<br />

DO concentrations <strong>in</strong> the water bulk phase of activated sludge <strong>process</strong>es, higher DO<br />

concentrations are needed to satisfy the microbial oxygen demand <strong>in</strong> biofilm <strong>process</strong>es.<br />

This s<strong>in</strong>ce the oxygen concentration <strong>in</strong> the biofilm depends on diffusion of oxygen from<br />

the water phase <strong>in</strong>to the biofilm which is further expla<strong>in</strong>ed <strong>in</strong> chapter 2.4.<br />

Both denitrification and <strong>anammox</strong> <strong>process</strong>es are <strong>in</strong>hibited by oxygen. Denitrification has<br />

been observed to be <strong>in</strong>hibited at DO concentrations above 0.2 mg/l (Metcalf & Eddy,<br />

2003) and <strong>anammox</strong> organisms are reversibly <strong>in</strong>hibited by DO concentrations as low as<br />

2 µmole/l or 0.032 mg/l, (Jetten et al., 1998).<br />

2.2.2 Temperature<br />

The temperature impacts the structure of the microbial community and is crucial for<br />

growth and reaction rates <strong>in</strong> the system. Microbial reactions are often dependent on<br />

enzyme-catalysed reactions that <strong>in</strong>crease <strong>in</strong> velocity at higher temperatures. When the<br />

time for a reaction to be catalysed is shortened the metabolism is more active and the<br />

microorganism is allowed to grow faster (Prescott et al., 2005). Temperature does also<br />

impact non viable factors like settl<strong>in</strong>g characteristics, gas solubility and transfer rates<br />

(Gray, 2004).<br />

Nitrification can be operated <strong>in</strong> a temperature <strong>in</strong>terval of 0-40 °C with a temperature<br />

optimum between 30-35 °C (Gray, 2004). Denitrify<strong>in</strong>g bacteria are less sensitive to<br />

temperature than nitrifiers and denitrification can take place <strong>in</strong> a temperature <strong>in</strong>terval<br />

from 2-75 °C with an optimum around 30 °C (Pierzynski et al., 2005)<br />

Anammox bacteria are active <strong>in</strong> temperature range from 6-43 °C with an optimum at 30<br />

̊C (Anammox onl<strong>in</strong>e).<br />

2.2.3 pH and alkal<strong>in</strong>ity<br />

pH, which is the measurement of a solutions acidity or alkal<strong>in</strong>ity, is another important<br />

environmental factor that impacts the growth rate of the microbial community. S<strong>in</strong>ce pH<br />

is def<strong>in</strong>ed as the <strong>in</strong>verse logarithm of H + ions <strong>in</strong> solution a change of one pH unit<br />

corresponds to a tenfold <strong>in</strong>crease <strong>in</strong> the activity of H + ions. Each bacteria species have a<br />

pH growth range and optimum.<br />

Nitrification consumes alkal<strong>in</strong>ity s<strong>in</strong>ce two moles of OH − are used per mole ammonium<br />

oxidised. Nitrification is favoured by mild alkal<strong>in</strong>e conditions with pH optimum <strong>in</strong> the<br />

range of pH 8.0-8.4 (Gray, 2004). The nitrification rate is significantly decl<strong>in</strong>ed by low<br />

pH values


Denitrification produces alkal<strong>in</strong>ity and pH is generally raised by the <strong>process</strong>. pH<br />

optimum is rang<strong>in</strong>g from 7-9 depend<strong>in</strong>g on local conditions (Henze et al., 1997).<br />

Cell synthesis <strong>in</strong> the <strong>anammox</strong> reaction is <strong>in</strong>creas<strong>in</strong>g pH and the <strong>process</strong> is active <strong>in</strong> a pH<br />

range from 6.5-9 with an optimum around 8 (Egli et al., 2001).<br />

2.2.4 Substrate<br />

Nitrify<strong>in</strong>g, denitrify<strong>in</strong>g and <strong>anammox</strong> bacteria are all dependent on different substrates<br />

for energy and cellular growth as discussed above. The ability to utilise their substrate<br />

varies between bacterial species. This implies that a species with high aff<strong>in</strong>ity for its<br />

substrate will be better at utilis<strong>in</strong>g the substrate at low concentration and therefore<br />

outcompete species with lower aff<strong>in</strong>ity for the substrate. The half saturation constant,<br />

which is the substrate concentration when the growth rate is half of maximum, is often<br />

used to compare how well adapted different microorganisms are to their substrates.<br />

The half saturation constant or Ks value for ammonium oxidisers <strong>in</strong> a nitrify<strong>in</strong>g biofilm<br />

airlift reactor was found to correspond to a NH4-N concentration of 11 mg/l. And the<br />

microorganisms were <strong>in</strong>hibited by NH4-N concentrations of 3300 ±1400 mg/l. (Carvallo<br />

et al., 2002)<br />

Denitrification rate and capacity is very dependent on available organic carbon source.<br />

External carbon sources like methanol, ethanol and acetic acid are readily biodegradable<br />

and give much higher denitrification rates than denitrification with organic compounds<br />

found <strong>in</strong> the waste water (Ødegaard, 1993).<br />

Anammox bacteria have high aff<strong>in</strong>ity for their substrates ammonia and nitrite, the Ks<br />

values are below chemical detection level (


2.3 Biofilm reactors<br />

Biofilm reactors can be used for nutrient removal <strong>in</strong> wastewater treatment and are<br />

commonly used <strong>in</strong> biological nitrogen removal. Bacteria with the ability to adhere to<br />

solid surfaces are colonis<strong>in</strong>g and grow<strong>in</strong>g <strong>in</strong> high concentrations <strong>in</strong> a biofilm attached to<br />

a fixed surface. The carrier material can be solid or free mov<strong>in</strong>g made out of stone, wood<br />

or plastic. Biofilm thickness varies with the hydrodynamics and growth conditions of the<br />

system, (Metcalf & Eddy, 2003). The fixed polymer film formed by the bacteria protects<br />

them from toxics and be<strong>in</strong>g washed out of the system (Henze et al., 1997).<br />

Figure 3. Illustration of different types of bioflim reactors. (Adapted from Ødegaard, 1993).<br />

Biofilters are designed to achieve high and efficient nutrient removal rates <strong>in</strong> compact<br />

and energy efficient systems. Operat<strong>in</strong>g conditions should be such that transfer rates of<br />

substrates from the water bulk phase to the microbial community assures efficient<br />

removal rates and development of a biofilm thickness satisfy<strong>in</strong>g the microbial demands<br />

<strong>in</strong> a certa<strong>in</strong> biologic <strong>process</strong>. This makes different available biofilm technologies suitable<br />

for varied microbial <strong>process</strong>es. Figure 3 illustrates some of the available biofilm<br />

technologies shortly described <strong>in</strong> the follow<strong>in</strong>g text.<br />

2.3.1 Trickl<strong>in</strong>g filter<br />

Trickl<strong>in</strong>g filters are biological reactors where the wastewater is spr<strong>in</strong>kled over a filter<br />

bed at the top. The water is then allowed to percolate through a fixed bed material made<br />

out of stone or plastic. Volumetric flow rates are controll<strong>in</strong>g the biofilm thickness and<br />

11


aeration takes place through self drag from bottom to top of the filter (Henze et al.,<br />

1997). S<strong>in</strong>ce the wastewater is spr<strong>in</strong>kled over and percolated through the filter media<br />

there is little hydraulic control of the biofilm thickness result<strong>in</strong>g <strong>in</strong> uneven growth<br />

throughout the filter. This causes local clogg<strong>in</strong>g that h<strong>in</strong>ders free flow of water and air<br />

through the filter result<strong>in</strong>g <strong>in</strong> decreased nutrient removal rate. Modern fill<strong>in</strong>g materials<br />

<strong>in</strong> plastic have a specific fill<strong>in</strong>g area of about 100-250 m 2 /m 3 while the carry<strong>in</strong>g material<br />

<strong>in</strong> older treatment plants often is crushed stone or pumice that only has a specific area of<br />

40-60 m 2 /m 3 , (Gillberg et al., 2003).<br />

2.3.2 Biofilters<br />

The carrier material <strong>in</strong> these filters can be either a granulated media or corrugated<br />

sheets. In the granulated reactor wastewater passes through a stationary filter bed made<br />

out of sand or plastic beads, the filter media is aerated from the bottom <strong>in</strong> the aerobic<br />

version. The specific area of the filter media is high and ranges from 1000-1200 m 2 /m 3 ,<br />

the effective area is however not this high s<strong>in</strong>ce only 50% of the reactor volume is filled<br />

with the carrier material (Ødegaard, 1993). This reactor clogs easily and has to be<br />

backwashed. Clogg<strong>in</strong>g and substrate decrease from top to bottom <strong>in</strong> the reactor rules<br />

out efficient nutrient removal throughout the whole reactor volume. The second type of<br />

media is a stationary carrier material constituted of plastic sheets that are welded<br />

together <strong>in</strong> cubes, the specific area of these filters ranges from 150-200 m 2 /m 3 . The<br />

system is aerated from the bottom with blower systems and has to be backwashed at<br />

<strong>in</strong>tervals to prevent clogg<strong>in</strong>g (Ødegaard, 1993).<br />

2.3.3 Fluidised bed<br />

In a fluidised bed the biofilm grows on sand gra<strong>in</strong>s with a size of 0.4-0.5 mm. To keep the<br />

sand gra<strong>in</strong>s <strong>in</strong> suspension at all times wastewater is pumped through the bottom of the<br />

reactor at a high constant flow rate. The turbulence created from high volumetric flow<br />

rates pass<strong>in</strong>g through the reactor implies great shear forces and very th<strong>in</strong> biofilms. With<br />

bed depths rang<strong>in</strong>g from 3 to 4 m a specific surface area of 1000 m 2 /m 3 can be achieved<br />

(Metcalf & Eddy, 2004). High turbulence <strong>in</strong> comb<strong>in</strong>ation with very high contact area<br />

between microorganisms and wastewater assures efficient substrate transmission and<br />

high conversion rates. The draw back with this <strong>process</strong> design <strong>in</strong> nitrification is that<br />

oxygen transfer rates to the water phase are too slow to ma<strong>in</strong>ta<strong>in</strong> sufficient oxygen<br />

concentrations for microbial activity (Gillberg et al., 2003) S<strong>in</strong>e the biofilm is very th<strong>in</strong> <strong>in</strong><br />

this reactor configuration it does not allow development of a biofilm with layers of<br />

different oxygen concentration. This reactor type can there for not comb<strong>in</strong>e microbial<br />

communities with different dissolved oxygen demands. Recirculation is necessary to<br />

ma<strong>in</strong>ta<strong>in</strong> the high fluid velocity.<br />

12


2.3.4 Mov<strong>in</strong>g bed reactor<br />

Another way to design a compact biofilm <strong>process</strong> is to use a suspended <strong>in</strong>ert carrier that<br />

moves freely with<strong>in</strong> the reactor. The first carrier materials were small polyethylene<br />

(density 0.95 g/cm 3 ) cyl<strong>in</strong>ders with a cross <strong>in</strong> side provid<strong>in</strong>g the microorganisms with a<br />

protected surface to grow on. The carriers are kept <strong>in</strong> motion by aeration or mechanical<br />

stirr<strong>in</strong>g, a sieve <strong>in</strong> the outlet keeps the mov<strong>in</strong>g carriers <strong>in</strong> the reactor. The reactor does<br />

not clog and there is no need for backwash<strong>in</strong>g or biomass recycl<strong>in</strong>g. (Ødegaard et al.,<br />

1994). Different shapes and sizes of the carrier material provides an effective specific<br />

area rang<strong>in</strong>g from 220 -1200 m 2 /m 3 (AnoxKaldnes, 2009). Biofilm thickness depends on<br />

carrier design and hydraulic conditions <strong>in</strong> the reactor. If a stagnant lam<strong>in</strong>ar layer is<br />

formed around the carrier material this will <strong>in</strong>crease the diffusional resistance that is<br />

limit<strong>in</strong>g <strong>in</strong> biofilm <strong>process</strong>es. The mov<strong>in</strong>g bed technology can also be comb<strong>in</strong>ed with the<br />

activated sludge <strong>process</strong> result<strong>in</strong>g <strong>in</strong> higher removal rates and more compact systems.<br />

2.3.5 Rotat<strong>in</strong>g disc<br />

Rotat<strong>in</strong>g filters are constituted of flat discs often made out of plastic, 2-3 meters <strong>in</strong><br />

diameter mounted <strong>in</strong> rows on a horizontal shaft. The filter medium that is semisubmerged<br />

is alternately rotated through the water phase at right angles to the flow.<br />

The filters are 10-20 mm thick, spaced about 20 mm apart and have an active surface<br />

area of about 150-200 m 2 /m 3 (Gray N, 2004). Rotation of the filter discs keeps the<br />

biofilm oxygenated and the motion creates an efficient contact between the water phase<br />

and biofilm. Revolution speed of the filter is controll<strong>in</strong>g the biofilm thickness (Henze et<br />

al., 1997).<br />

2.4 Biofilm k<strong>in</strong>etics<br />

The k<strong>in</strong>etics of substrate conversion <strong>in</strong> a biofilm reactor is dependent of the reactor<br />

configuration that decides the biofilm structure and of available nutrients <strong>in</strong> the<br />

wastewater. Substrates <strong>in</strong> the water bulk phase are converted to biomass, energy and<br />

end products through cellular metabolism <strong>in</strong> the bacteria. The mass balance for an<br />

<strong>in</strong>f<strong>in</strong>itely small section of the biofilm is described by:<br />

(2.4.1)<br />

(2.4.2)<br />

where: Q is the volumetric flow, (dimension L -3 ∙T -1 ), C is the concentration, (dimension<br />

M∙L -3 ), r describes the biological growth rate, (dimension M∙L -3 ∙ T -1 ) and V is the reactor<br />

volume, (dimension L -3 ), (Warfv<strong>in</strong>ge, 2008).<br />

The substrate conversion rate <strong>in</strong> a biofilm reactor is dependent on three ma<strong>in</strong><br />

mechanisms, the diffusion resistance of substrates from the well mixed water bulk phase<br />

13


to the liquid film, diffusion of substrates through the biofilm and substrate turnover <strong>in</strong><br />

the cellular mass (Ødegaard, 1993), see Figure 4. The diffusion dependent transport of<br />

substrate from the liquid bulk and the diffusion with<strong>in</strong> the biofilm is driven by a<br />

concentration gradient. The substrate concentration profile decreases with biofilm<br />

depth and has a downward curvature due to the substrate utilisation rate illustrated <strong>in</strong><br />

Figure 4, (Henze et al., 1997). Conversion rate on cellular level is dependent on<br />

enzymatic <strong>process</strong>es. Available amount of enzymes handl<strong>in</strong>g the specific substrate will<br />

decide how fast the conversion takes place. When substrate concentrations are low, the<br />

accessible substrate S is the rate limit<strong>in</strong>g factor and the rate equation is said to be of first<br />

order with respect to S, see (2.4.3). At high substrate concentrations the substrate<br />

turnover is limited by the amount of available enzymes. The reaction rate is now of zero<br />

order s<strong>in</strong>ce it is <strong>in</strong>dependent of the substrate concentration, see (2.4.4), (Warfv<strong>in</strong>ge,<br />

2008).<br />

First and zero order approximations are given by the follow<strong>in</strong>g equations:<br />

, <br />

<br />

· <br />

<br />

(2.4.3)<br />

, <br />

<br />

(2.4.4)<br />

where: rv,s describes the biological growth rate <strong>in</strong> a certa<strong>in</strong> volume of biofilm at a certa<strong>in</strong><br />

substrate concentration, (dimension M∙ L -3 ∙ T -1 ), µmax is the maximum specific growth<br />

rate, (dimension T -1 ), XB is the concentration of biomass, (dimension M∙L -3 ), Ymax gives<br />

the maximum yield constant, (dimension MXB∙Ms -1 ) and Ks is the saturation constant for<br />

the substrate, (dimension M∙L -3 ), (Henze et al., 1997).<br />

Figure 4. Schematic overview of substrate transport from liquid bulk phase to microorganisms<br />

grow<strong>in</strong>g on carrier material. The concentration gradient profile <strong>in</strong> the biofilm depends on<br />

transport <strong>in</strong>to the biofilm and substrate utilisation rate <strong>in</strong> the film. (Adapted from Metcalf & Eddy,<br />

2003, and Warfv<strong>in</strong>ge, 2008).<br />

14


To enable efficient nutrient removal the hydraulic conditions should prevent the buildup<br />

of a lam<strong>in</strong>ar layer and the contact surface between water phase and biofilm should be<br />

as large as possible (Metcalf & Eddy, I. 2003).<br />

2.5 System configurations for nitrogen removal by <strong>anammox</strong><br />

Nitrogen removal by <strong>anammox</strong> can be implemented either as a two <strong>stage</strong> or one <strong>stage</strong><br />

system. 50% of the <strong>in</strong>fluent ammonium is oxidised to nitrite by nitrify<strong>in</strong>g bacteria <strong>in</strong><br />

both cases. In a two <strong>stage</strong> system this conversion takes place <strong>in</strong> a <strong>nitritation</strong> reactor<br />

followed by an <strong>anammox</strong> reactor where the oxidation of ammonium <strong>in</strong>to d<strong>in</strong>itrogen gas<br />

with nitrite takes place. In s<strong>in</strong>gle <strong>stage</strong> technology both <strong>process</strong>es takes place <strong>in</strong> the<br />

same reactor (Abma et al., 2007). S<strong>in</strong>ce the <strong>anammox</strong> <strong>process</strong> was discovered by<br />

different research teams and <strong>in</strong> slightly diverse environments the system configurations<br />

evolved have been given different names but are <strong>in</strong> practice quite similar. Ma<strong>in</strong><br />

differences are reactor configuration and operational mode. Some of the available<br />

<strong>anammox</strong> <strong>process</strong>es are shortly described <strong>in</strong> this chapter.<br />

2.5.1 Sharon/Anammox<br />

A Sharon (s<strong>in</strong>gle reactor system for high rate ammonium removal over nitrite)<br />

reactor followed by an <strong>anammox</strong> reactor is a possible system configuration to achieve<br />

nitrogen removal with <strong>anammox</strong> bacteria. The Sharon <strong>process</strong> is used to nitrify 50% of<br />

the <strong>in</strong>fluent ammonium to nitrite. The effluent from the Sharon reactor is then used as<br />

feed for the <strong>anammox</strong> reactor where nitrite and ammonium is converted to elemental<br />

nitrogen, see Figure 5, (Stowa, 2009).<br />

Figure 5. Sharon/Anammox <strong>process</strong> scheme.<br />

To achieve partial nitrification to only 50% the Sharon reactor is operated <strong>in</strong> a manner<br />

that benefits the ammonium oxidizers, wash<strong>in</strong>g out the nitrite oxidizers from the system<br />

(van Dongen et al., 2001). This is obta<strong>in</strong>ed by operation above 25 ̊C, keep<strong>in</strong>g the sludge<br />

15


age equal to the hydraulic retention time, and by controll<strong>in</strong>g the pH to get the desired<br />

ammonium/nitrite ratio:<br />

NH HCO 0.75O 0.5NH 0.5NO CO 1.5H O (2.5.1)<br />

The effluent from the Sharon reactor is then feed<strong>in</strong>g the <strong>anammox</strong> <strong>process</strong> that converts<br />

nitrite and ammonium to elemental nitrogen accord<strong>in</strong>g to eq. (2.1.7).<br />

Some nitrate is formed <strong>in</strong> the <strong>anammox</strong> <strong>process</strong> as biomass is formed from <strong>in</strong>organic<br />

carbon with nitrite as electron donor (van Dongen et al., 2001).<br />

2.5.2 Canon<br />

The Canon <strong>process</strong> (completely autotrophic nitrogen removal over nitrite) is a s<strong>in</strong>gle<br />

<strong>stage</strong> <strong>process</strong> for nitrogen removal with ammonium oxidisers and <strong>anammox</strong> bacteria,<br />

(Third et al., 2001), see Figure 6 for system description.<br />

Figure 6. Canon <strong>process</strong> scheme<br />

The Canon reactor has to be oxygen limited to allow the co-existence of both ammonium<br />

oxidisers and <strong>anammox</strong> bacteria <strong>in</strong> the same environment. Ammonium oxidation <strong>in</strong>to<br />

nitrite is performed under oxygen limitation by aerobic ammonium oxidisers eq. (2.5.3).<br />

Anammox bacteria are oxidis<strong>in</strong>g ammonium with nitrite <strong>in</strong>to d<strong>in</strong>itrogen gas eq. (2.5.4).<br />

The result<strong>in</strong>g over all chemical reaction for the Canon <strong>process</strong> is described by eq. (2.5.5),<br />

(Third et al., 2005).<br />

Partial nitrification:NH 1.5O NO 2H H O (2.5.3)<br />

Anammox: NH 1.3NO N 0.26NO 2H O (2.5.4)<br />

Canon <strong>process</strong>: NH 0.85O 0.4N 0.13NO 1.3H O 1.4H (2.5.5)<br />

16


The Canon <strong>process</strong> is often implemented with granular sludge and it is important that<br />

large biomass flocs with decreas<strong>in</strong>g oxygen gradient with<strong>in</strong> the floc are allowed to form.<br />

This <strong>in</strong> order to achieve an environment suitable for both aerobic ammonium oxidisers<br />

and <strong>anammox</strong> bacteria <strong>in</strong> the same reactor set up (Third et al., 2005).<br />

2.5. 3 Deammonification<br />

The deammonification <strong>process</strong> is also a one <strong>stage</strong> <strong>process</strong> for nitrogen removal through<br />

partial nitrification and <strong>anammox</strong>. The <strong>process</strong> scheme resembles that of the Canon<br />

<strong>process</strong> illustrated <strong>in</strong> Figure 6. The greatest difference between deammonification and<br />

the Canon <strong>process</strong> is that deammonification is a biofilm <strong>process</strong> utilis<strong>in</strong>g a carrier<br />

material to support biofilm growth.<br />

Conversion of ammonium <strong>in</strong>to d<strong>in</strong>itrogen gas takes place at different biofilm depths.<br />

Nitrification of ammonium <strong>in</strong>to nitrite is carried out by nitrifiers <strong>in</strong> the outer aerobic<br />

layers of the biofilm. This <strong>process</strong> together with diffusion provides the <strong>anammox</strong><br />

bacteria <strong>in</strong> the deeper anaerobic layers with their substrates (Egli et al., 2003), see<br />

Figure 7. The diffusion depth of oxygen is dependent on the DO concentration <strong>in</strong> the<br />

water bulk phase and it <strong>in</strong>fluences to which extent the conventional <strong>nitritation</strong> <strong>process</strong><br />

takes part <strong>in</strong> the biofilm (Helmer et al., 2001).<br />

Figure 7. Conversion of ammonium to d<strong>in</strong>itrogen gas takes place through two separate reactions at<br />

different biofilm depths. (Adapted from Rosenw<strong>in</strong>kel and Cornelius, 2005)<br />

To ensure anoxic conditions for the <strong>anammox</strong> bacteria the system must be operated at<br />

low oxygen concentrations or with alternat<strong>in</strong>g aeration. Low oxygen concentrations <strong>in</strong> a<br />

biofilm system also <strong>in</strong>hibits aerobic nitrite oxidisers which is needed to make sure that<br />

only the first step of nitrification is performed. The growth rate of aerobic ammonium<br />

oxidisers (AOB) is higher than for nitrite oxidisers at low oxygenation, AOB are also<br />

faster at recover<strong>in</strong>g <strong>in</strong> activity after the anoxic phase.Temperatures over 20°C are also<br />

favour<strong>in</strong>g the growth rate of AOB over nitrite oxidisers (Rosenw<strong>in</strong>kel and Cornelius,<br />

2005). Biofilm systems are suitable for the <strong>anammox</strong> <strong>process</strong> s<strong>in</strong>ce the bacteria are slow<br />

growers that require high biomass retention (Abma et al., 2006).<br />

17


2.5.4 Deamox<br />

Deamox (denitrify<strong>in</strong>g ammonium oxidation) comb<strong>in</strong>es the <strong>anammox</strong> <strong>process</strong> with<br />

autotrophic denitrification utilis<strong>in</strong>g sulphide as an electron donor for <strong>production</strong> of<br />

nitrite from nitrate. The Deamox reactor can therefore be used <strong>in</strong> the treatment <strong>process</strong><br />

of wastewaters conta<strong>in</strong><strong>in</strong>g organic bound nitrogen and SO4 2− (Kalyuzhnyi et al., 2006).<br />

The organic nitrogen content <strong>in</strong> these wastewaters firstly has to be anaerobic<br />

m<strong>in</strong>eralised before nitrification can proceed. If the Deamox <strong>process</strong> is utilised not all<br />

effluent water from the anaerobic m<strong>in</strong>eralisation reactor has to be nitrified, it can<br />

<strong>in</strong>stead be partially fed to the Deamox reactor. Anammox activity is stimulated by the<br />

denitrify<strong>in</strong>g conditions <strong>in</strong> the Deamox reactor and s<strong>in</strong>ce nitrite concentrations are kept<br />

low the <strong>process</strong> is not thought to produce unwanted emissions of NOx-gases (Kalyuzhnyi<br />

et al., 2006). S<strong>in</strong>ce sulphide rich waters are not common <strong>in</strong> municipal wastewater<br />

treatment the Deamox <strong>process</strong> has been further developed utilis<strong>in</strong>g volatile fatty acids<br />

as a more widespread electron donor for the partial denitrification (Kalyuzhnyi et al.,<br />

2008).<br />

2.5 <strong>N2O</strong> emissions from wastewater treatment<br />

It has been known for decades that <strong>N2O</strong> is produced both as an <strong>in</strong>termediate and end<br />

product <strong>in</strong> the metabolism of microorganisms perform<strong>in</strong>g nitrification and<br />

denitrification <strong>process</strong>es (Hooper, 1968, Poth and Focht, 1986, Firestone et al., 1979).<br />

Until recently, <strong>anammox</strong> activity has not been believed to produce any <strong>N2O</strong>, however<br />

Kartal et al., (2007) have shown that <strong>anammox</strong> bacteria produces small amounts of <strong>N2O</strong><br />

as a result of detoxification of NO which is an <strong>in</strong>termediate <strong>in</strong> the <strong>anammox</strong> <strong>process</strong>.<br />

Variable temperature and load<strong>in</strong>g rates of <strong>in</strong>organic nitrogen compounds, low pH,<br />

alternat<strong>in</strong>g aerobic and anaerobic conditions together with growth rate and microbial<br />

composition are parameters that have great <strong>in</strong>fluence on <strong>N2O</strong> emissions from a<br />

wastewater treatment plant (Kampschreur et al., 2008 b). <strong>N2O</strong> <strong>production</strong> as a<br />

consequence of these environmental conditions dur<strong>in</strong>g nitrification and denitrification<br />

will be described <strong>in</strong> the chapter 2.5.1-2.5.2.The possibility of chemical <strong>N2O</strong> <strong>production</strong> <strong>in</strong><br />

wastewater treatment is shortly described <strong>in</strong> 2.4.3. Table 2 gives molecular weight of<br />

<strong>N2O</strong> and the water solubility both <strong>in</strong> mol/l and g/l.<br />

Table 2. Physical properties of N 2O<br />

Property:<br />

Unit:<br />

Molecular weight 44.0 g/mol<br />

Water solubility (0 sal<strong>in</strong>ity at 20 ̊C)<br />

27.05∙10 − 3 mol/l<br />

1.19 g/l<br />

18


2.5.1 Nitrification as a source of <strong>N2O</strong> emissions<br />

Ammonium oxidis<strong>in</strong>g bacteria (AOB) are the organisms believed to be responsible for<br />

<strong>N2O</strong> <strong>production</strong> dur<strong>in</strong>g nitrification. <strong>N2O</strong> can be produced both through aerobic<br />

oxidation of ammonium and through nitrifier denitrification of nitrite with ammonium<br />

as an electron donor (Schmidt and Bock, 1997, Kampschreur et al., 2006).<br />

In the presence of oxygen <strong>N2O</strong> is produced dur<strong>in</strong>g oxidation of ammonium with oxygen.<br />

2NH O 2HCO N O H O CO (2.5.1)<br />

(Trela et al., 2005)<br />

Hooper, (1968) detected hydroxylam<strong>in</strong>e-nitrite reductase, an enzyme <strong>in</strong> Nitrosomonas<br />

europaea that reduces nitrite <strong>in</strong> the presence of hydroxylam<strong>in</strong>e with NO and <strong>N2O</strong> as<br />

products. Nitrite is reduced anaerobically to <strong>N2O</strong> with hydroxylam<strong>in</strong>e:<br />

HN OH HNO N O 2H O (2.5.2)<br />

The denitrify<strong>in</strong>g activity of Nitrosomonas is only related to life support<strong>in</strong>g energy yield<br />

and is probably a survival mechanism <strong>in</strong> anaerobic habitats (de Bruijn et al., 1995). Low<br />

DO concentrations <strong>in</strong> the nitrification <strong>process</strong> has been shown to give higher <strong>N2O</strong><br />

emissions than a <strong>process</strong> operated under well aerated conditions (Magnaye et al., 2008).<br />

High nitrite and ammonium concentrations, high organic load<strong>in</strong>g, low temperature<br />

together with short sludge age are other factors known to give rise to <strong>in</strong>creased <strong>N2O</strong><br />

emissions <strong>in</strong> the nitrification <strong>process</strong> (Kampschreur et al., 2009).<br />

2.5.2 Denitrification as a source of <strong>N2O</strong> emissions<br />

Denitrify<strong>in</strong>g organisms are produc<strong>in</strong>g <strong>N2O</strong> as an <strong>in</strong>termediate when nitrate or nitrite is<br />

reduced to N2 (Kampschreur et al., 2007). Production of <strong>N2O</strong> takes place as the nitrate<br />

reductase system for electron transport is <strong>in</strong>duced to produce ATP under anoxic<br />

conditions (Gray, 2004), the <strong>process</strong> occurs <strong>in</strong> the follow<strong>in</strong>g sequence:<br />

NO <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

(2.5.3)<br />

A low pH (


found that when the added quantities of carbon source only allowed between 66-88%<br />

denitrification, <strong>N2O</strong> emissions from the system were <strong>in</strong>creased from an average of 0.2%<br />

up to 1.3% of reduced nitrate. Long residence times for <strong>N2O</strong> <strong>in</strong> denitrify<strong>in</strong>g sludge have<br />

been shown to result <strong>in</strong> smaller amounts of emitted <strong>N2O</strong>. S<strong>in</strong>ce <strong>N2O</strong> is an <strong>in</strong>termediate <strong>in</strong><br />

the denitrification <strong>process</strong> dissolved <strong>N2O</strong> <strong>in</strong> the water phase can be turned over by the<br />

denitrifiers and a long residence time for <strong>N2O</strong> <strong>in</strong>creases the possibility that the gas is<br />

converted <strong>in</strong>to d<strong>in</strong>itrogen gas. The experiments show<strong>in</strong>g these results were performed<br />

<strong>in</strong> 100 ml bottles with different sludge volumes which also <strong>in</strong>dicates that <strong>N2O</strong> emission<br />

is greater from wastewater treatment bas<strong>in</strong>s with large surface to volume ratio<br />

(Gejlsbjerg et al., 1997).<br />

2.5.3 Chemical <strong>production</strong> of <strong>N2O</strong><br />

<strong>N2O</strong> can be produced by chemical denitrification <strong>in</strong> a wastewater treatment plant, the<br />

reduction follows the same pathway as dur<strong>in</strong>g biologic denitrification shown <strong>in</strong> eq.<br />

(2.5.3). The difference is that chemical reductants are reduc<strong>in</strong>g the nitrogen compounds<br />

<strong>in</strong>stead of microbial enzymes (Debruyn et al., 1994).<br />

Figures of <strong>N2O</strong> emissions from microbial nitrogen conversion found dur<strong>in</strong>g the literature<br />

study are summarised <strong>in</strong> Table 3.<br />

20


Table 3. N 2O emission from different wastewater treatment facilities given <strong>in</strong> % of <strong>in</strong>fluent N-concentrations.<br />

Reactor type<br />

Influent N-concentrations mg/l<br />

DO N 2O emission % of <strong>in</strong>fluent<br />

NH 4-N NO 2-N NO 3-N COD mg/l N-concentration<br />

Reference<br />

<strong>nitritation</strong> – <strong>anammox</strong> SBR 650 ±50


2.6 Microsensors<br />

Microsensors measure changes <strong>in</strong> the chemical composition of complex and<br />

heterogeneous environments <strong>in</strong> a micrometer scale with a very short response time.<br />

The sensors can therefore be used <strong>in</strong> a broad range of scientific research, for example <strong>in</strong><br />

cell and tissue analysis, microrespiration, mar<strong>in</strong>e ecology, biofilm analysis and<br />

wastewater treatment. Laboratory experiments <strong>in</strong> this master thesis are based on onl<strong>in</strong>e<br />

measurements with one microsensor for nitrous oxide and one for nitrite. Both sensors<br />

that are developed by Unisense, Århus, Denmark rely on electrochemical detection of<br />

<strong>N2O</strong>.<br />

2.6.1 Nitrous oxide sensor<br />

The <strong>N2O</strong> microsensor is a Clark-type microsensor constituted of a cathode shaft (tapered<br />

glass cas<strong>in</strong>g) equipped with silicone tip membrane. A <strong>N2O</strong> reduc<strong>in</strong>g cathode is<br />

positioned <strong>in</strong> an electrolyte beh<strong>in</strong>d the silicone membrane. The reference for the <strong>N2O</strong><br />

reduction is a silver anode and the sensor is equipped with an oxygen front guard (with<br />

an silicone membrane <strong>in</strong> the tip. The front guard prevents oxygen from <strong>in</strong>terfer<strong>in</strong>g with<br />

the nitrous oxide measurements. The guard is filled with an alkal<strong>in</strong>e ascobate solution,<br />

an effective reduc<strong>in</strong>g agent, to prevent oxygen <strong>in</strong>terference with nitrous oxide<br />

measurements (Andersen et al., 2001). The silicone membranes <strong>in</strong> the sensor tip only<br />

allows passage of gases and small uncharged molecules, shield<strong>in</strong>g the electrolyte from<br />

the outer environment (Unisense b, 2007).<br />

Figure 8. Photo of the N 2O microsensor.<br />

22


The microsensor is connected to a piccoameter that polarises the cathode surface where<br />

the nitrous oxide that diffuses through the silicone membrane is reduced to N2 gas. As<br />

nitrous oxide is reduced at the cathode surface two electrons from the silver anode is<br />

used for each reduced <strong>N2O</strong> molecule. The electron transport gives rise to a current<br />

proportional to the amount of reduced nitrous oxide. The current is registered and<br />

converted to an out signal by the piccoameter. The guard cathode is also polarised to<br />

deplete oxygen <strong>in</strong> the electrolyte which m<strong>in</strong>imizes zero current (Unisense b, 2007).<br />

The nitrous oxide sensor has a measur<strong>in</strong>g range of about 0-1 atmosphere p<strong>N2O</strong> with a<br />

response time less than 10 seconds. The stirr<strong>in</strong>g sensitivity is smaller than 2% and the<br />

out signal is temperature dependent with a temperature coefficient of about 2-3% per<br />

°C. Interference <strong>in</strong> the out signal might occur from electrical noise <strong>in</strong> the surround<strong>in</strong>g<br />

environment (Unisense b, 2007).<br />

2.6.2 Nitrite biosensor<br />

The nitrite biosensor is a nitrous oxide sensor equipped with a replaceable biochamber<br />

(Figure 9a), (Unisense e, 2009). A plastic tube conta<strong>in</strong><strong>in</strong>g a carbon source and a bacterial<br />

culture constitutes the biochamber that is mounted <strong>in</strong> the front of the sensor tip (Figure<br />

9b), (Unisense e, 2009). The biomass <strong>in</strong> the reaction chamber is positioned between the<br />

carbon source required for their growth and an ion-permeable membrane separat<strong>in</strong>g<br />

the microorganisms from the external environment (Unisense c, 2007).<br />

The denitrify<strong>in</strong>g bacterial culture used <strong>in</strong> the biochamber is deficient <strong>in</strong> NO3 − and <strong>N2O</strong><br />

reductase which means that it is only able to reduce NO2 − <strong>in</strong>to <strong>N2O</strong>. As NO2 − diffuses <strong>in</strong>to<br />

the biochamber it is reduced to <strong>N2O</strong> by the biomass (Nielsen et al., 2004). S<strong>in</strong>ce<br />

denitrify<strong>in</strong>g bacteria are facultative aerobic they can use both oxygen and nitrite as<br />

oxidation agent for their respiration (Larsen et al., 1997). Oxygen is used preferential to<br />

nitrite as it results <strong>in</strong> a higher energy yield. This will create a NO2 − reduc<strong>in</strong>g gradient <strong>in</strong><br />

the biochamber with the bacteria closest to the membrane respir<strong>in</strong>g with oxygen. The<br />

NO2 − reduc<strong>in</strong>g capacity of the biosensor will depend on the length of the aerobic zone<br />

result<strong>in</strong>g <strong>in</strong> higher maximum detectable concentrations of NO2 − <strong>in</strong> anaerobic<br />

environments (Larsen et al., 1997).<br />

Produced <strong>N2O</strong> diffuses through the silicone membrane and is reduced at the cathode <strong>in</strong><br />

the transducer part of the biosensor. A piccoameter measures the current aris<strong>in</strong>g from<br />

the electron transport just as <strong>in</strong> the case with the nitrous oxide sensor. The output signal<br />

is proportional to the amount of NO2 − that has been reduced after diffusion <strong>in</strong>to the<br />

biochamber (Unisense c, 2007).<br />

23


Figure 9 A) Nitrite biosensor with removable biochamber(Unisense e, 2009). B) Enlargement of<br />

biochamber (Unisense e, 2009).<br />

At 20 °C the biosensor has a measur<strong>in</strong>g range <strong>in</strong> the <strong>in</strong>terval 0-1000 µM NO2-N, (0-14<br />

mg/l), and gives about 1.25-4 nA <strong>in</strong> output signal per 100 µM NO2-N (1.4 mg/l) added.<br />

The sensor signal depends on both ionic composition and temperature of the sample. It<br />

might vary up to 30% due to sal<strong>in</strong>ity and it has a temperature coefficient of about 2-4%<br />

per °C. Sensitivity to stirr<strong>in</strong>g of the sample depends both on temperature and sal<strong>in</strong>ity.<br />

The 90% response time <strong>in</strong> a stirred sample is less than 90 seconds (Unisense c, 2007).<br />

Nitrous oxide diffus<strong>in</strong>g <strong>in</strong>to the biochamber from the external environment is detected<br />

by the <strong>N2O</strong> transducer and is therefore <strong>in</strong>terfer<strong>in</strong>g with the NO2 − signal. The theoretical<br />

sensitivity to <strong>N2O</strong> should be a signal 2.5 times higher than for equal concentrations of<br />

NO2 − . This s<strong>in</strong>ce it takes two NO2 − molecules to form one <strong>N2O</strong> molecule and the diffusion<br />

coefficient for NO2 − is 0.8 times that of <strong>N2O</strong> (Nielsen et al., 2004).<br />

24


Chapter 3<br />

3. Material and Methods<br />

3.1 Partial <strong>nitritation</strong>/<strong>anammox</strong> laboratory <strong>MBBR</strong> .<br />

A 7.5 litre laboratory <strong>MBBR</strong> fed with a synthetic medium was used to estimate the <strong>N2O</strong><br />

emissions from a s<strong>in</strong>gle <strong>stage</strong> <strong>nitritation</strong>/<strong>anammox</strong> system. The reactor was <strong>in</strong>itially<br />

started <strong>in</strong> October 2008 with a carrier material with already established biofilm derived<br />

from Himmerfjärdsverkets full scale DeAmmon ® reactor which is a s<strong>in</strong>gle <strong>stage</strong> reactor<br />

for ammonium reduction to d<strong>in</strong>itrogen gas. The used carrier was AnoxKaldnes K1<br />

biocarrier with a protected surface area of 500 m 2 /m 3 . The total volume of carriers <strong>in</strong><br />

the reactor was 3.5 litres which corresponds to about 3400 carriers, a total protected<br />

area of 1.7 m 2 and a fill<strong>in</strong>g degree of 46.7%. Figure 10 shows the laboratory set up of the<br />

<strong>MBBR</strong> system.<br />

Figure 10. The left part of the figure shows a photograph of the <strong>MBBR</strong> system, the schematic<br />

draw<strong>in</strong>g to the right shows the ma<strong>in</strong> features of the <strong>MBBR</strong> system.<br />

The temperature of the <strong>MBBR</strong> was kept at around 30 °C. A thermostat bath recirculat<strong>in</strong>g<br />

warm water through the jacketed double walls of the reactor was used to ma<strong>in</strong>ta<strong>in</strong> the<br />

temperature. pH of the reactor was controlled with a pH electrode connected to a<br />

regulator unit. The regulator controlled a peristaltic pump supply<strong>in</strong>g the reactor with<br />

2M H2SO4 when needed. The synthetic medium was fed to the reactor with a Watson<br />

Marlow peristaltic pump. Aeration and mix<strong>in</strong>g of the system was obta<strong>in</strong>ed with two<br />

aquarium pumps that supplied the reactor with air through a punched bottom plate, (2<br />

mm Ø). A top mounted stirrer was used to keep the system mixed dur<strong>in</strong>g anoxic periods,<br />

see Figure 10 for system description. A timer was used to control the duration of aerated<br />

and mechanical mixed periods.<br />

25


3.2 Reactor medium<br />

The reactor was fed with a synthetic wastewater with an <strong>in</strong>organic nitrogen<br />

concentration correspond<strong>in</strong>g to 314 mg/l. The synthetic wastewater conta<strong>in</strong>ed all vital<br />

nutrients the microorganisms needed, <strong>in</strong>clud<strong>in</strong>g trace elements, see Table 4 and Table 5<br />

for composition of reactor medium and trace element stock solution.<br />

Table 4. Composition of synthetic medium fed to the <strong>MBBR</strong>.<br />

Component<br />

NaHCO3 2.6<br />

NH4Cl 1.2<br />

Concentration g/l<br />

KH2PO4 5.67∙10 -3<br />

Peptone 3.0∙10 -3<br />

trace element solution 1 0.40 ml/l<br />

trace element solution 2 0.40 ml/l<br />

Table 5. Composition of trace element stock solution.<br />

Component<br />

Stock solution 1<br />

MgSO4∙7H2O 4.80<br />

MnCl2∙2H2O 1.60<br />

CoCl2∙6H2O 0.48<br />

NiCl2∙6H2O 0.24<br />

ZnCl2 0.26<br />

CuSO4∙5H2O 0.10<br />

FeCl2∙4H2O 1.44<br />

BH3O3 0.104<br />

Na2MoO4∙2H2O 0.440<br />

Na2SeO3∙5H2O 0.288<br />

Na3WO3∙2H2O 0.280<br />

Stock solution 2<br />

CaCl2∙2H2O 5.80<br />

Concentration g/l<br />

Initially the medium was mixed <strong>in</strong> a 600 litres conta<strong>in</strong>er situated <strong>in</strong> the workshop and<br />

pumped to the second floor where the laboratory is situated. Microbial growth <strong>in</strong> the<br />

tank and pump tub<strong>in</strong>g were caus<strong>in</strong>g large differences <strong>in</strong> composition of the <strong>in</strong>fluent<br />

medium to the reactor. Due to these problems the medium was mixed <strong>in</strong> a 100 litres<br />

tank kept <strong>in</strong> the laboratory <strong>in</strong> close connection to the reactor set up.<br />

26


3.3 Analytical methods<br />

Concentrations of NH4-N, NO2-N and NO3-N were determ<strong>in</strong>ed with Dr Lange’s<br />

spectrophotometry kit after filtration through Munktel 1.6 µm glass fibre filters. Dur<strong>in</strong>g<br />

cycle studies NO2-N and N-tot were analyzed directly with Dr Lange’s method. Samples<br />

were frozen and flow-<strong>in</strong>jection analysis was used to determ<strong>in</strong>e NH4-N and NOx, the sum<br />

of NO2-N and NO3-N. The NO3-N content was calculated by subtraction of NO2-N from the<br />

sum of the two NOx species. Dissolved oxygen and pH was sampled with a portable<br />

meter, HQ40d with mounted oxygen and pH probe. Parameters analysed and method<br />

used are summarised <strong>in</strong> Table 6.<br />

Table 6. Analysed parameters and methods.<br />

Analysed parameter Method<br />

NH4-N<br />

LCK 303/FIA<br />

NO2-N<br />

LCK 342/341/Bio sensor<br />

NO3-N LCK 339<br />

NOx<br />

FIA<br />

N-tot LCK 238<br />

DO<br />

HQ40d<br />

pH<br />

HQ40d<br />

3.3 Cycle studies<br />

To exam<strong>in</strong>e which operation conditions which seemed to produce the largest amounts<br />

of <strong>N2O</strong> gas, the reactor was operated at different DO concentrations dur<strong>in</strong>g <strong>in</strong>termittent<br />

and constant aeration. A study where the anoxic phase was prolonged to two hours was<br />

performed to observe how the <strong>N2O</strong> <strong>production</strong> was <strong>in</strong>fluenced. Mix<strong>in</strong>g with N2 gas at the<br />

same aeration flow as <strong>in</strong> the aerated period was tested to see how stripp<strong>in</strong>g <strong>in</strong>fluenced<br />

the amount of <strong>N2O</strong> <strong>in</strong> the water phase.<br />

Parameters monitored onl<strong>in</strong>e <strong>in</strong> the reactor, every m<strong>in</strong>ute were; DO, pH, <strong>N2O</strong> and NO2-N.<br />

To exam<strong>in</strong>e the concentration changes of NH4-N, NO2-N and NO3-N grab samples were<br />

taken <strong>in</strong> both <strong>in</strong>fluent and effluent water.<br />

3.3.1 Intermittent aeration<br />

The reactor was operated at a DO concentration of ~3 mg/l dur<strong>in</strong>g the aeration phase.<br />

One reactor cycle lasted for one hour with 40 m<strong>in</strong>utes of aeration and 20 m<strong>in</strong>utes of<br />

mechanical mix<strong>in</strong>g. The study started at the same moment as aeration went on after the<br />

anoxic period and lasted for 66 m<strong>in</strong>utes <strong>in</strong> order to overlap the <strong>in</strong>itial conditions.<br />

Grab samples <strong>in</strong> the effluent were taken with 6 m<strong>in</strong>ute <strong>in</strong>tervals to get two measure<br />

po<strong>in</strong>ts <strong>in</strong> the anoxic phase. Only three measurements of the <strong>in</strong>fluent medium was taken<br />

27


<strong>in</strong> one cycle ( 0, 36 and 66 m<strong>in</strong>utes) considered that the variation of the <strong>in</strong>fluent medium<br />

dur<strong>in</strong>g one hour should not be significant.<br />

3.3.2 Prolonged study, <strong>in</strong>termittent aeration<br />

A study of the effect of prolonged, <strong>in</strong>termittent aeration was made <strong>in</strong> order to observe<br />

how the <strong>N2O</strong> <strong>production</strong> was <strong>in</strong>fluenced by a longer anoxic period. Dur<strong>in</strong>g the first hour<br />

the reactor was operated <strong>in</strong> the same manner as above and the same sampl<strong>in</strong>g<br />

procedure was applied. The anoxic period of 20 m<strong>in</strong>utes dur<strong>in</strong>g a normal cycle was<br />

prolonged with 2 hours.<br />

Grab samples were taken <strong>in</strong> the effluent with 6 m<strong>in</strong>ute <strong>in</strong>tervals and every 36 m<strong>in</strong>utes <strong>in</strong><br />

the feed<strong>in</strong>g medium.<br />

3.3.3 Cont<strong>in</strong>uous aeration<br />

Measurements dur<strong>in</strong>g cont<strong>in</strong>uous aeration were performed at DO concentrations of<br />

~1.5 mg/l and ~1 mg/l. To determ<strong>in</strong>e the <strong>production</strong> of <strong>N2O</strong> gas dur<strong>in</strong>g these operation<br />

conditions the aeration was turned off and the unaerated period was determ<strong>in</strong>ed to 20<br />

m<strong>in</strong>utes to be comparable to the measurements done dur<strong>in</strong>g <strong>in</strong>termittent aeration.<br />

Measurements proceeded 20 m<strong>in</strong>utes after the aeration was switched on aga<strong>in</strong>.<br />

To exam<strong>in</strong>e if the accumulation of <strong>N2O</strong> gas <strong>in</strong> the water phase dur<strong>in</strong>g the anoxic period<br />

depended on <strong>in</strong>creased <strong>production</strong> or was an effect of stripp<strong>in</strong>g dur<strong>in</strong>g aeration, mix<strong>in</strong>g<br />

with pure N2 gas was used dur<strong>in</strong>g the anoxic period. The N2 gas flow was equal to the<br />

airflow dur<strong>in</strong>g the aerated period.<br />

Grab samples were taken <strong>in</strong> the effluent every 6 th m<strong>in</strong>ute and every 36 th m<strong>in</strong>ute <strong>in</strong> the<br />

<strong>in</strong>fluent medium.<br />

3.4 Calibration of microsensors<br />

The <strong>N2O</strong> <strong>production</strong> and NO2 − concentration profile were measured onl<strong>in</strong>e with Clarktype<br />

microelectrodes described <strong>in</strong> chapter 2.6. Before usage the microsensors were<br />

calibrated separately <strong>in</strong> a jacketed, temperature controlled beaker with 300 ml of pH<br />

regulated synthetic medium to assure the same sal<strong>in</strong>ity, temperature and pH of<br />

calibration solution and reactor, see Figure 11.<br />

The sensor to be calibrated was mounted <strong>in</strong> the calibration beaker, a stable sensor signal<br />

was awaited and the zero value was read and registered with Unisense’s software<br />

SensorTrace BASIC. A top mounted stirrer was used for fast mix<strong>in</strong>g and uniform<br />

concentration of the calibration solution.<br />

28


Figure 11. Calibration setup for microsensors.<br />

Both sensors were calibrated by stepwise addition and signal read<strong>in</strong>g at known<br />

concentrations of <strong>N2O</strong> and NO2-N respectively. The result<strong>in</strong>g calibration curves are<br />

illustrated <strong>in</strong> Figure 112. The l<strong>in</strong>ear regression shown <strong>in</strong> the figure is only based on one<br />

s<strong>in</strong>gle po<strong>in</strong>t registered by the computer software at each concentration. Both<br />

concentration profile and l<strong>in</strong>ear regression obta<strong>in</strong>ed dur<strong>in</strong>g calibration are drawn to<br />

illustrate the procedure.<br />

Figure 12. Examples of calibration po<strong>in</strong>ts and concentration profiles for N 2O and NO 2-N<br />

microsensors dur<strong>in</strong>g calibration procedure. The first calibration po<strong>in</strong>t represents the signal<br />

obta<strong>in</strong>ed <strong>in</strong> mV without any addition of N 2O or NO 2-N. As stepwise concentrations of N 2O and NO 2-N<br />

were added dur<strong>in</strong>g the calibration the sensor signal <strong>in</strong>creased. A stable signal was awaited before<br />

a voltage correspond<strong>in</strong>g to the added concentration was registered.<br />

Addition to known <strong>N2O</strong> concentrations was achieved by add<strong>in</strong>g a def<strong>in</strong>ed volume of a<br />

saturated <strong>N2O</strong> solution. The saturated <strong>N2O</strong> solution was prepared by bubbl<strong>in</strong>g <strong>N2O</strong> gas<br />

through distilled water with a flow rate of 1 l/m<strong>in</strong> for at least 30 m<strong>in</strong>utes. For calibration<br />

of the biosensor additions were made from a bulk solution with NaNO2 with a NO2-N<br />

concentration of 5 mg/l. See Appendix A for calculated volume additions of the saturated<br />

<strong>N2O</strong> and NO2-N solutions. After calibration both sensors were mounted directly <strong>in</strong>to the<br />

MMBR reactor, the <strong>N2O</strong> sensor was placed <strong>in</strong> a small metal-mesh basket for protection<br />

from the mov<strong>in</strong>g carriers.<br />

29


3.5 Diffusivity tests of <strong>N2O</strong><br />

The diffusivity of <strong>N2O</strong> was exam<strong>in</strong>ed experimentally s<strong>in</strong>ce no off-gas equipment was<br />

available dur<strong>in</strong>g <strong>N2O</strong> measurements and the calculations of produced <strong>N2O</strong> are based on<br />

the assumption that the diffusivity of <strong>N2O</strong> can be neglected.<br />

To get as close as possible to the real conditions <strong>in</strong> the <strong>MBBR</strong> <strong>process</strong> but without any<br />

<strong>N2O</strong> produc<strong>in</strong>g bacteria a 7.5 l reactor of the same type as used for the <strong>MBBR</strong> <strong>process</strong><br />

was utilised dur<strong>in</strong>g the diffusivity experiments. The <strong>in</strong>fluent synthetic wastewater was<br />

selected to get a medium similar <strong>in</strong> sal<strong>in</strong>ity to that <strong>in</strong> the real <strong>process</strong>. The reactor was<br />

heated to 30 ̊C with a thermostat bath and K1 heavy carriers (same type of carrier as K1<br />

used <strong>in</strong> the <strong>MBBR</strong>, but with slightly higher density) without biomass was used. K1 heavy<br />

was used to keep the carrier material without biofilm <strong>in</strong> the water phase and not float<strong>in</strong>g<br />

on top of the water surface.<br />

To exam<strong>in</strong>e how fast <strong>N2O</strong> diffuses from the water phase dur<strong>in</strong>g mechanical mix<strong>in</strong>g <strong>N2O</strong><br />

saturated water was added to a concentration of ~11 µM. The decrease of <strong>N2O</strong> <strong>in</strong> the<br />

water phase was registered with the <strong>N2O</strong> microsensor dur<strong>in</strong>g a period of eight hours.<br />

The stripp<strong>in</strong>g effect from aeration was also observed by register<strong>in</strong>g the decrease of <strong>N2O</strong><br />

<strong>in</strong> the water phase dur<strong>in</strong>g aeration at three different air flow rates. <strong>N2O</strong> was added to a<br />

concentration of 12 µM.<br />

30


Chapter 4<br />

4. Results<br />

4.1 Process performance<br />

Variations <strong>in</strong> nitrogen concentration of the <strong>in</strong>fluent medium, flow rate, temperature and<br />

pH are shown <strong>in</strong> Table 7 and Figure 13. Variations <strong>in</strong> nitrogen concentration shown <strong>in</strong><br />

Figure 13 are the sum of <strong>in</strong>fluent nitrogen compounds accounted for <strong>in</strong> Table 7. The<br />

figure also shows variations <strong>in</strong> oxygen concentrations dur<strong>in</strong>g aeration.<br />

Table 7. Characteristics of <strong>in</strong>fluent feed, flow rates, temperature and pH dur<strong>in</strong>g the operation<br />

period 09/07/09-15/12/09.<br />

Nitrogen mg/l<br />

NH 4-N NO 2-N NO 3-N Q l/h T °C pH<br />

264.5 ± 24.5 19.7 ±12.4 3.6 ±2.1 0.48 ±0.06 30.0 ±0.8 7.3-7.8<br />

Changes of nitrogen concentrations <strong>in</strong> the effluent water are shown together with %<br />

nitrogen reduction and the total nitrogen removal <strong>in</strong> Table 8 and Figure 13. The Effluent<br />

nitrogen illustrated <strong>in</strong> Figure 13 is the sum of effluent nitrogen compounds seen <strong>in</strong> Table<br />

8.<br />

Table 8. Average concentrations of <strong>in</strong>organic nitrogen <strong>in</strong> effluent water, reduction rates and<br />

removal rates dur<strong>in</strong>g the operation period 09/07/09-15/12/09.<br />

Nitrogen mg/l<br />

NH 4-N NO 2-N NO 3-N<br />

Reduction % Removal gN/m 2 d<br />

82.4 ±44.0 6.3 ±1.7 32.3 ±9.5 58 ±13 1.1 ±0.2<br />

On the 28 th of September the operation mode was changed to cont<strong>in</strong>uous aeration,<br />

aim<strong>in</strong>g at a DO level of ~1.5 mg/l. It took around one week to get a stable performance<br />

at the desired oxygen level. For measurements at even lower oxygenation the oxygen<br />

concentration was further decreased to ~1.0 mg/l.<br />

31


10<br />

8<br />

DO concentration, pH & temperature<br />

35<br />

28<br />

DO (mg/l), pH<br />

6<br />

4<br />

2<br />

21<br />

14<br />

7<br />

Temp °C<br />

DO (mg/l)<br />

pH<br />

Temperature (°C)<br />

0<br />

0<br />

06/07/09<br />

26/07/09<br />

15/08/09<br />

04/09/09<br />

24/09/09<br />

Date<br />

14/10/09<br />

03/11/09<br />

23/11/09<br />

13/12/09<br />

350<br />

Concentrations of <strong>in</strong>fluent and effluent total <strong>in</strong>organic nitrogen<br />

Total <strong>in</strong>organic nitrogen (mg/l)<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Σ TIN <strong>in</strong> (mg/l)<br />

Σ TIN out (mg/l)<br />

06/07/09<br />

26/07/09<br />

15/08/09<br />

04/09/09<br />

24/09/09<br />

Date<br />

14/10/09<br />

03/11/09<br />

23/11/09<br />

13/12/09<br />

Removal rate (gN/m²d)<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

Removal rate (gN/m²d) & % reduction of <strong>in</strong>comm<strong>in</strong>g nitrogen<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

% reduction<br />

Removal rate<br />

(gN/m2d)<br />

% reduction<br />

06/07/09<br />

26/07/09<br />

15/08/09<br />

04/09/09<br />

24/09/09<br />

Date<br />

14/10/09<br />

03/11/09<br />

23/11/09<br />

13/12/09<br />

Figure 13. Reactor operation and <strong>process</strong> performance dur<strong>in</strong>g the period 09/07/09-15/12/09.<br />

Top graph illustrates concentration of DO dur<strong>in</strong>g aeration, pH and temperature. The second graph<br />

shows total concentration of <strong>in</strong>organic nitrogen <strong>in</strong> <strong>in</strong>fluent feed and effluent water. The third<br />

shows the removal rate gN/m 2 d and the reduced nitrogen <strong>in</strong> %.<br />

Figure 14 shows the <strong>process</strong> performance dur<strong>in</strong>g different operation modes. Green<br />

series are represent<strong>in</strong>g measurements done at <strong>in</strong>termittent aeration dur<strong>in</strong>g the period<br />

090918-090927. Blue series are represent<strong>in</strong>g measurements at cont<strong>in</strong>uous operation,<br />

DO ~1.5 mg/l dur<strong>in</strong>g the period 091006-091010. Orange series are represent<strong>in</strong>g<br />

measurement at cont<strong>in</strong>uous operation, DO ~1mg/l dur<strong>in</strong>g the period 091013-091016.<br />

32


10<br />

8<br />

DO concentration, pH & temperature<br />

35<br />

28<br />

DO (mg/l), pH<br />

6<br />

4<br />

21<br />

14<br />

Temp °C<br />

DO (mg/l)<br />

pH<br />

Temperature (°C)<br />

2<br />

7<br />

0<br />

0<br />

14/09/09<br />

19/09/09<br />

24/09/09<br />

29/09/09<br />

Date<br />

04/10/09<br />

09/10/09<br />

14/10/09<br />

19/10/09<br />

350<br />

Concentrations of <strong>in</strong>fluent and effluent total <strong>in</strong>organic nitrogen<br />

Total <strong>in</strong>organic nitrogen (mg/l)<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Σ TIN <strong>in</strong> (mg/l)<br />

Σ TIN out (mg/l)<br />

14/09/09<br />

19/09/09<br />

24/09/09<br />

29/09/09<br />

Date<br />

04/10/09<br />

09/10/09<br />

14/10/09<br />

19/10/09<br />

Removal rate (gN/m²d)<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

Removal rate (gN/m²d) & % reduction of <strong>in</strong>comm<strong>in</strong>g nitrogen<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

% reduction<br />

Removal rate<br />

(gN/m2d)<br />

% reduction<br />

14/09/09<br />

19/09/09<br />

24/09/09<br />

29/09/09<br />

Date<br />

04/10/09<br />

09/10/09<br />

14/10/09<br />

19/10/09<br />

Figure 14. Illustration of how the <strong>process</strong> performance changes with changed operation mode, The<br />

top graph illustrates DO dur<strong>in</strong>g the aerobe phase, pH and temperature. The second graph shows<br />

total concentration of <strong>in</strong>organic nitrogen <strong>in</strong> <strong>in</strong>fluent feed and effluent water. The third graph<br />

shows the removal rate gN/m 2 d and the reduced nitrogen <strong>in</strong> %.<br />

4.3 <strong>N2O</strong> emissions from partial <strong>nitritation</strong>/<strong>anammox</strong> <strong>MBBR</strong><br />

The microsensor measured the <strong>N2O</strong> <strong>in</strong> the water phase dur<strong>in</strong>g different operation modes<br />

and aeration rates of the <strong>MBBR</strong>. The actual <strong>N2O</strong> <strong>production</strong> was not measured s<strong>in</strong>ce <strong>N2O</strong><br />

left the water phase cont<strong>in</strong>uously through stripp<strong>in</strong>g and or by diffusion. However an<br />

estimation of the <strong>N2O</strong> <strong>production</strong> was obta<strong>in</strong>ed by measur<strong>in</strong>g the accumulation of the<br />

<strong>N2O</strong> directly after the airflow is turned off assum<strong>in</strong>g the <strong>N2O</strong> diffusion from water to air<br />

is negligible. If corrections for the <strong>N2O</strong> leav<strong>in</strong>g the reactor with the effluent water is<br />

33


made the <strong>in</strong>crease <strong>in</strong> <strong>N2O</strong> accumulation will then be equal to the <strong>N2O</strong> <strong>production</strong> rate,<br />

(see appendix B for calculation example). The <strong>N2O</strong> <strong>production</strong> is calculated as % of<br />

removed <strong>in</strong>organic nitrogen. Two <strong>N2O</strong> <strong>production</strong> rates are estimated and referred to as<br />

<strong>in</strong>itial and maximum <strong>production</strong> rates. The <strong>in</strong>itial <strong>production</strong> rate is calculated from the<br />

<strong>in</strong>crease of <strong>N2O</strong> that can be seen <strong>in</strong> the water phase immediately after switch<strong>in</strong>g of<br />

aeration. Maximum <strong>N2O</strong> <strong>production</strong> is estimated between the two measur<strong>in</strong>g po<strong>in</strong>ts<br />

where the <strong>in</strong>crease <strong>in</strong> <strong>N2O</strong> has its maximum dur<strong>in</strong>g the unaerated period. Mean <strong>N2O</strong><br />

concentration <strong>in</strong> the water phase when the <strong>MBBR</strong> is aerated, calculated <strong>in</strong>itial and<br />

maximum <strong>N2O</strong> <strong>production</strong> rates, mean O2 concentrations dur<strong>in</strong>g the aerated period,<br />

mean nitrogen concentrations, reduction and removal rates for all measurements are<br />

summarised <strong>in</strong> Table 9 -Table 14. One figure of typical <strong>N2O</strong> and O2 profiles for each<br />

operation mode is shown <strong>in</strong> Figure 15 -Figure 20, <strong>N2O</strong> and O2 profiles for all<br />

measurements made are found <strong>in</strong> appendix C.<br />

4.3.2 Intermittent aeration.<br />

Measurements of produced <strong>N2O</strong> at <strong>in</strong>termittent aeration, (DO ~3.0 mg/l) were<br />

performed at four different occasions. Typical profiles of how <strong>N2O</strong> and DO changed<br />

dur<strong>in</strong>g the cycle are shown <strong>in</strong> Figure 15. The <strong>N2O</strong> concentration measured <strong>in</strong> the water<br />

phase varied with the aeration of the <strong>MBBR</strong>. When aeration started <strong>in</strong> the beg<strong>in</strong>n<strong>in</strong>g of<br />

the cycle the airflow striped <strong>N2O</strong> out of the water phase and the concentration decreased<br />

to a constant m<strong>in</strong>imum level. As soon as the aeration was shut off the <strong>N2O</strong> started to<br />

accumulate <strong>in</strong> the water phase until aeration was switched on aga<strong>in</strong> and the procedure<br />

started over as shown <strong>in</strong> Figure 15.<br />

N₂O (µmol/l)<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

4.5<br />

3.75<br />

2.25<br />

1.5<br />

0.75<br />

0<br />

0 20 40 60 80<br />

Time (m<strong>in</strong>)<br />

3<br />

DO (mg/l)<br />

N₂O<br />

(µmol/l)<br />

DO<br />

(mg/l)<br />

Figure 15. Concentration profiles of N 2O and O 2 dur<strong>in</strong>g a cycle of <strong>in</strong>termittent aeration, DO ~3 mg/l<br />

<strong>in</strong> the aerated phase. The cycle study started <strong>in</strong> the beg<strong>in</strong>n<strong>in</strong>g of the aerated period. N 2O gas was<br />

stripped from the water phase at the same time as the oxygen concentration rose.<br />

Initial <strong>N2O</strong> <strong>production</strong> varied between 5.6-11% of <strong>in</strong>fluent nitrogen concentration that<br />

was converted <strong>in</strong>to d<strong>in</strong>itrogen gas (here after referred to as removed <strong>in</strong>organic N-<br />

34


concentration), while the maximum <strong>production</strong> ranged from 11-16% of removed<br />

<strong>in</strong>organic nitrogen, see Table 9.<br />

Table 9. Average N 2O concentration <strong>in</strong> the water phase dur<strong>in</strong>g aeration. Calculated <strong>in</strong>itial and<br />

maximum N 2O <strong>production</strong> rates, mean O * 2 concentrations dur<strong>in</strong>g the aerated period, mean<br />

nitrogen concentration, reduction and removal rates for studies of <strong>in</strong>termittent aeration at a DO<br />

concentration of ~3.0 mg/l.<br />

Date<br />

Average<br />

N 2O<br />

µmol/l<br />

Produced N 2O <strong>in</strong> % of<br />

removed <strong>in</strong>organic N-<br />

concentration O 2<br />

mean N-concentration<br />

mg/l<br />

<strong>in</strong>itial max mg/l NH 4-N NO 3-N NO 2-N<br />

N-red.<br />

%<br />

Removal<br />

gN/m 2 d<br />

090918 3.2 11.0 16.3 3.22 300 - - 54 1.1<br />

090921 2.0 5.6 11.0 3.49 293 - - 56 1.1<br />

090922 2.6 9.9 13.9 3.10 287 - - 56 1.1<br />

*Mean O2 concentration from the moment when the DO level reaches its maximum<br />

concentration until aeration is shut off and oxygen starts to decrease aga<strong>in</strong>.<br />

4.3.2 Prolonged unaerated period.<br />

Three studies of a prolonged unaerated period were made to exam<strong>in</strong>e for how long the<br />

accumulation of <strong>N2O</strong> proceeded. The measurement started <strong>in</strong> the beg<strong>in</strong>n<strong>in</strong>g of a normal<br />

cycle when the airflow was switched on. Aeration lasted for forty m<strong>in</strong>utes followed by<br />

an unaerated period of two hours and twenty m<strong>in</strong>utes, typical profiles of how <strong>N2O</strong> and<br />

O2 changes dur<strong>in</strong>g the cycle are illustrated <strong>in</strong> Figure 16.<br />

12<br />

10<br />

4.5<br />

3.75<br />

N₂O (µmol/l)<br />

8<br />

6<br />

4<br />

2<br />

3<br />

2.25<br />

1.5<br />

0.75<br />

DO (mg/l)<br />

N₂O<br />

(µmol/l)<br />

DO<br />

(mg/l)<br />

0<br />

0<br />

0 50 100 150 200<br />

Time (m<strong>in</strong>)<br />

Figure 16. Concentration profiles of N 2O and O 2 dur<strong>in</strong>g prolonged unaerated period, DO ~3 mg/l<br />

dur<strong>in</strong>g aerated phase. (Only manually registered O 2 concentrations every sixth m<strong>in</strong>ute are<br />

available dur<strong>in</strong>g the first fifty m<strong>in</strong>utes, due to problems with overwrit<strong>in</strong>g of data <strong>in</strong> the DO meter).<br />

<strong>N2O</strong> decreased <strong>in</strong> the water phase as aeration was switched on and the oxygen<br />

concentration started to <strong>in</strong>crease, the concentration profiles resembles the cycle profile<br />

shown <strong>in</strong> Figure 15 until the prolonged unaerated period started. At first <strong>N2O</strong><br />

accumulation was rather l<strong>in</strong>ear, when DO decreases under 1 mg/l the accumulation rate<br />

of <strong>N2O</strong> was reduced until a maximum concentration was reached at DO concentrations<br />

35


close to 0 mg/l. The <strong>N2O</strong> concentration is constant under a period of 20-50 m<strong>in</strong>utes and<br />

then slowly started to decrease as seen <strong>in</strong> Figure 16. Initial and maximum <strong>production</strong><br />

rates of <strong>N2O</strong> calculated dur<strong>in</strong>g the prolonged cycles as are shown <strong>in</strong> Table 10. Initial <strong>N2O</strong><br />

<strong>production</strong> rates varied between 6.2-11% while maximum <strong>production</strong> varied between<br />

10-30% of removed <strong>in</strong>organic nitrogen.<br />

Table 10. Prolonged measurement: Average N 2O concentration <strong>in</strong> the water phase dur<strong>in</strong>g aeration.<br />

Calculated <strong>in</strong>itial and maximum N 2O <strong>production</strong> rates, mean O 2* concentrations dur<strong>in</strong>g aerated<br />

period, mean nitrogen concentration, reduction and removal rates.<br />

Date<br />

Average<br />

N 2O<br />

µmol/l<br />

Produced N 2O <strong>in</strong> % of<br />

removed <strong>in</strong>organic N-<br />

concentration O 2<br />

mean N-concentration<br />

mg/l<br />

<strong>in</strong>itial max mg/l NH 4-N NO 3-N NO 2-N<br />

N-red.<br />

%<br />

Removal<br />

gN/m 2 d<br />

090925 0.9 6.2 30.3 3.0 234 - - 59 1.0<br />

090926 2.5 10.7 10.7 2.8 237 - - 47 0.9<br />

090927 2.2 9.5 9.5 3.1 228 - - 57 1.0<br />

*Mean O2 concentration from the moment when DO concentration reached its maximum<br />

level until aeration is shut off.<br />

4.3.3 Cont<strong>in</strong>uous operation at DO ~1.5 mg/l<br />

The <strong>MBBR</strong> was operated at cont<strong>in</strong>uous aeration which was switched off for twenty<br />

m<strong>in</strong>utes <strong>in</strong> order to estimate the <strong>N2O</strong> accumulation. Figure 17shows the concentration<br />

profiles of <strong>N2O</strong> and O2. As seen <strong>in</strong> the figure they resemble the profiles obta<strong>in</strong>ed dur<strong>in</strong>g<br />

cycle studies of <strong>in</strong>termittent aeration. The <strong>N2O</strong> accumulation <strong>in</strong>creased as O2 decreased<br />

but not as fast as before.<br />

12<br />

10<br />

4.5<br />

3.75<br />

N₂O (µmol/l)<br />

8<br />

6<br />

4<br />

2<br />

3<br />

2.25<br />

1.5<br />

0.75<br />

DO (mg/l)<br />

N₂O<br />

(µmol/l)<br />

DO<br />

(mg/l)<br />

0<br />

0<br />

0 20 40 60 80<br />

Time (m<strong>in</strong>)<br />

Figure 17. Concentration profiles of N 2O and O 2 obta<strong>in</strong>ed from measurement dur<strong>in</strong>g the period of<br />

cont<strong>in</strong>uous reactor operation at a DO concentration of ~1.5 mg/l.<br />

Twenty m<strong>in</strong>utes of the anoxic period was enough to reach the maximum <strong>N2O</strong><br />

concentration and the period where <strong>N2O</strong> <strong>production</strong> seems to be <strong>in</strong> equilibrium with the<br />

amount of <strong>N2O</strong> leav<strong>in</strong>g the system. Figure 17 also illustrates that the mean concentration<br />

36


of <strong>N2O</strong> dur<strong>in</strong>g aeration was slightly higher and that the maximum concentration reached<br />

was lower than dur<strong>in</strong>g <strong>in</strong>termittent aeration.<br />

Initial and maximum % <strong>N2O</strong> <strong>production</strong> was calculated to be <strong>in</strong> the range of 2-3.2% and<br />

5.6.-6.2% of removed <strong>in</strong>organic nitrogen respectively, the result is presented <strong>in</strong> Table<br />

11.<br />

Table 11. Average N 2O concentration <strong>in</strong> the water phase dur<strong>in</strong>g aeration. Calculated <strong>in</strong>itial and<br />

maximum N 2O <strong>production</strong> rates, mean O 2 concentrations dur<strong>in</strong>g aeration, mean nitrogen<br />

concentration, reduction and removal rates for studies at cont<strong>in</strong>uous operation mode DO ~1.5<br />

mg/l.<br />

Produced N 2O <strong>in</strong> % of<br />

Average<br />

N 2O<br />

removed <strong>in</strong>organic N-<br />

concentration O 2<br />

mean N-concentration<br />

mg/l<br />

N-red. Removal<br />

Date µmol/l <strong>in</strong>itial max mg/l NH 4-N NO 3-N NO 2-N % gN/m 2 d<br />

091006 4.3 2.8 5.6 1.3 249 25.2 0.3 66 1.3<br />

091007 2.9 2.1 5.6 1.8 246 28.9 0.0 64 1.3<br />

091010 3.3 3.2 6.2 1.8 220 36.3 0.0 72 1.3<br />

4.3.4 Cont<strong>in</strong>uous operation at DO ~1.0 mg/l<br />

Two measurements were performed at a constant aeration with a DO concentration of 1<br />

mg/l. Registered <strong>N2O</strong> accumulation was the lowest so far and the <strong>in</strong>itial <strong>N2O</strong> <strong>production</strong><br />

was below 2% of reduced <strong>in</strong>organic nitrogen. Maximum <strong>production</strong> varied between 2-<br />

4.3%. Table 12 presents the results from cont<strong>in</strong>uous operation at DO concentration of~1<br />

mg/l.<br />

12<br />

10<br />

4.5<br />

3.75<br />

N₂O (µmol/l)<br />

8<br />

6<br />

4<br />

2<br />

3<br />

2.25<br />

1.5<br />

0.75<br />

DO (mg/l)<br />

N₂O<br />

(µmol/l)<br />

DO<br />

(mg/l)<br />

0<br />

0<br />

0 20 40 60 80<br />

Time (m<strong>in</strong>)<br />

Figure 18. Concentration profiles of N 2O and O 2 obta<strong>in</strong>ed from measurement dur<strong>in</strong>g the period of<br />

cont<strong>in</strong>uous reactor operation at a DO concentration of ~1.0 mg/l.<br />

As seen <strong>in</strong> Figure 18 <strong>N2O</strong> was only accumulat<strong>in</strong>g for the first 5-6 m<strong>in</strong>utes of the<br />

unaerated period then there was a short time span when produced <strong>N2O</strong> and <strong>N2O</strong> flows<br />

that left the reactor were <strong>in</strong> equilibrium. The <strong>N2O</strong> concentration measured <strong>in</strong> the water<br />

phase decreased before aeration started aga<strong>in</strong>.<br />

37


Table 12. Average N 2O concentration <strong>in</strong> the water phase dur<strong>in</strong>g aeration. Calculated <strong>in</strong>itial and<br />

maximum N 2O <strong>production</strong> rates, mean O 2 concentrations dur<strong>in</strong>g the aerated period, mean<br />

nitrogen concentration, reduction and removal rates for studies at cont<strong>in</strong>uous operation mode DO<br />

~1.0 mg/l.<br />

Date<br />

Average<br />

N 2O<br />

µmol/l<br />

Produced N 2O <strong>in</strong> % of<br />

removed <strong>in</strong>organic N-<br />

concentration O 2<br />

mean N-concentration<br />

mg/l<br />

<strong>in</strong>itial max mg/l NH 4-N NO 3-N NO 2-N<br />

N-red.<br />

%<br />

Removal<br />

gN/m 2 d<br />

091013 2.5 1.7 4.3 1.0 285 0.0 0.0 85 1.6<br />

091014 2.3 2.0 2.0 1.0 284 0.0 0.3 73 1.3<br />

4.3.5 Effect of mix<strong>in</strong>g with N2 gas dur<strong>in</strong>g unaerated phase, cont<strong>in</strong>uous<br />

operation at DO ~1.0 mg/l and ~1.5 mg/l<br />

Pure N2 gas was used dur<strong>in</strong>g the anoxic period <strong>in</strong>stead of mechanical mix<strong>in</strong>g, <strong>in</strong> order to<br />

evaluate the stripp<strong>in</strong>g effect from the gas (the same gas flow rate was used as dur<strong>in</strong>g<br />

aeration with air). A small accumulation of <strong>N2O</strong> was observed right after the switch from<br />

aeration with air to N2 gas, see Figure 19 The <strong>in</strong>crease was followed by a sharp decrease<br />

<strong>in</strong> the <strong>N2O</strong> concentration profile. When aeration was switched on aga<strong>in</strong>, the <strong>N2O</strong><br />

concentration <strong>in</strong>creased faster than dur<strong>in</strong>g previous measurements.<br />

12<br />

10<br />

4.5<br />

3.75<br />

N₂O (µmol/l)<br />

8<br />

6<br />

4<br />

2<br />

3<br />

2.25<br />

1.5<br />

0.75<br />

DO (mg/l)<br />

N₂O<br />

(µmol/l)<br />

DO<br />

(mg/l)<br />

0<br />

0<br />

0 20 40 60 80<br />

Time (m<strong>in</strong>)<br />

Figure 19. Concentration profiles of N 2O and O 2 when N 2 gas was used for mix<strong>in</strong>g dur<strong>in</strong>g anoxic<br />

period, reactor was operated with cont<strong>in</strong>uous aeration at a DO level of ~1.0 mg/l.<br />

The accumulation of <strong>N2O</strong> that can be seen was converted to a correspond<strong>in</strong>g % <strong>N2O</strong><br />

<strong>production</strong> calculated to be


Table 13. Average N 2O concentration <strong>in</strong> the water phase dur<strong>in</strong>g aeration. Calculated <strong>in</strong>itial and<br />

maximum N 2O <strong>production</strong> rates, mean O 2 concentrations dur<strong>in</strong>g the aerated period, mean nitrogen<br />

concentration, reduction and removal rates dur<strong>in</strong>g measurements with N 2 gas <strong>in</strong> anoxic phase,<br />

operation at DO ~1.0 mg/l.<br />

Date<br />

Average<br />

N 2O<br />

µmol/l<br />

Produced N 2O <strong>in</strong> % of<br />

removed <strong>in</strong>organic N-<br />

concentration O 2<br />

mean N-concentration<br />

mg/l<br />

<strong>in</strong>itial max mg/l NH 4-N NO 3-N NO 2-N<br />

N-red.<br />

%<br />

Removal<br />

gN/m 2 d<br />

091015 1.9 0.4 - 1.0 279 0.4 0.0 79 1.2<br />

091016 1.1 0.8 - 1.3 278 0.3 0.0 77 1.2<br />

When the <strong>MBBR</strong> was operated at a DO concentration of 1.5 mg/l <strong>in</strong>stead of 1 mg/l, a<br />

slightly higher <strong>N2O</strong> accumulation was observed right after the shift from aeration with<br />

air to mix<strong>in</strong>g with N2 gas. Accumulation proceeded for about 5 m<strong>in</strong>utes and there after<br />

the <strong>N2O</strong> concentration started to decrease. The rate with which <strong>N2O</strong> left the water phase<br />

<strong>in</strong>creased as aeration with air was switched on, see Figure 20<br />

12<br />

10<br />

4.5<br />

3.75<br />

N₂O (µmol/l)<br />

8<br />

6<br />

4<br />

2<br />

3<br />

2.25<br />

1.5<br />

0.75<br />

DO (mg/l)<br />

N₂O<br />

(µmol/l)<br />

DO<br />

(mg/l)<br />

0<br />

0<br />

0 20 40 60 80<br />

Time (m<strong>in</strong>)<br />

Figure 20. Concentration profiles of N 2O and O2 when N 2 gas is used for mix<strong>in</strong>g dur<strong>in</strong>g anoxic<br />

period, reactor operated with cont<strong>in</strong>uous aeration at a DO level of ~1.5 mg/l.<br />

Table 14 presents the results from the twomeasurements done when N2 gas was used<br />

for mix<strong>in</strong>g dur<strong>in</strong>g the anoxic period.<br />

Table 14. Average N 2O concentration <strong>in</strong> the water phase dur<strong>in</strong>g aeration. Mean calculated <strong>in</strong>itial<br />

and maximum N 2O <strong>production</strong> rates, mean O 2 concentrations dur<strong>in</strong>g aerated period, mean<br />

nitrogen concentration, reduction and removal rates dur<strong>in</strong>g measurements with N 2 gas <strong>in</strong> anoxic<br />

phase, operation at DO ~1.5 mg/l.<br />

Produced N 2O <strong>in</strong> % of<br />

Average<br />

N 2O<br />

removed <strong>in</strong>organic N-<br />

concentration O 2<br />

mean N-concentration<br />

mg/l<br />

N-red. Removal<br />

Date µmol/l <strong>in</strong>itial max mg/l NH 4-N NO 3-N NO 2-N % gN/m 2 d<br />

091017 1.4 1.4 - 1.5 289 0.3 0.0 71 1.2<br />

091018 1.1 2.1 - 1.8 289 0.3 0.0 73 1.3<br />

39


4.4 NO2-N biosensor<br />

The biosensor was used to register changes <strong>in</strong> NO2-N onl<strong>in</strong>e dur<strong>in</strong>g measurements of<br />

<strong>N2O</strong> <strong>production</strong>. The purpose was both to exam<strong>in</strong>e NO2-N concentration changes <strong>in</strong> the<br />

<strong>anammox</strong> <strong>process</strong> and to see if it was possible to replace the traditional NO2-N analysis<br />

with Dr Lange kit (LCK 342/341). Two typical measurement occasions where the<br />

biosensor has been used are shown here <strong>in</strong> . All concentrations profiles achieved<br />

through measurements made with the biosensor can be found <strong>in</strong> appendix C, the sensor<br />

was not <strong>in</strong> use dur<strong>in</strong>g measurements of <strong>N2O</strong> <strong>production</strong> 14-15 of September. The reason<br />

for not us<strong>in</strong>g the sensor was that there were problems <strong>in</strong> achiev<strong>in</strong>g a stable sensor signal<br />

dur<strong>in</strong>g calibration and the biochamber had to be exchanged.<br />

Figure 21 shows the obta<strong>in</strong>ed NO2-N concentrations from onl<strong>in</strong>e measurements with the<br />

biosensor and from grab samples analysed with Dr Lange’s method, LCK 342, dur<strong>in</strong>g a<br />

prolonged unaerated measurement period.<br />

DO, NO₂-N (mg/l)<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0.00 50.00 100.00 150.00 200.00<br />

Time (m<strong>in</strong>)<br />

NO₂-N<br />

biosensor<br />

(mg/l)<br />

NO₂-N LCK<br />

342<br />

(mg/l)<br />

Figure 21. NO 2-N concentration profiles obta<strong>in</strong>ed with biosensor and with Dr Lange’s method, LCK<br />

342, dur<strong>in</strong>g prolonged unaerated measurement.<br />

As can be seen <strong>in</strong> Figure 21 there was a difference <strong>in</strong> concentrations obta<strong>in</strong>ed from the<br />

two different measurement methods. The concentration of NO2-N registered by the<br />

biosensor is 2-3 mg/l higher than NO2-N concentrations obta<strong>in</strong>ed from grab samples<br />

analysed with LCK 342. Even if NO2-N concentrations registered with the biosensor<br />

were higher than concentrations obta<strong>in</strong>ed from analysis with LCK 342 both methods<br />

showed the same trends <strong>in</strong> NO2-N concentration profiles dur<strong>in</strong>g the measurement.<br />

Figure 22 shows the result from onl<strong>in</strong>e measurements with the biosensor compared to<br />

grab samples analysed with LCK 342 from a measurement occasion when the <strong>MBBR</strong> was<br />

operated at cont<strong>in</strong>uous aeration at a DO level of ~1.5 mg/l. The NO2-N concentrations<br />

obta<strong>in</strong>ed from both methods correlated much better dur<strong>in</strong>g this measurement. The<br />

deviation <strong>in</strong> NO2-N concentrations was below 1 mg/l dur<strong>in</strong>g this measurement and the<br />

concentration profile given from the two methods correlates well.<br />

40


12<br />

NO₂-N (mg/l)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

NO₂-N<br />

biosensor<br />

(mg/l)<br />

NO₂-N LCK 342<br />

(mg/l)<br />

0<br />

0 20 40 60 80<br />

Time (m<strong>in</strong>)<br />

Figure 22. NO 2-N concentration profiles obta<strong>in</strong>ed with biosensor and with Dr Lange’s method, LCK<br />

342, from measur<strong>in</strong>g session when the reactor was operated at cont<strong>in</strong>uous aeration.<br />

Changes <strong>in</strong> measured NO2-N concentration with LCK 342 varied between 4-6 mg/l,<br />

while the NO2-N concentrations registered with the biosensor stayed <strong>in</strong> a slightly<br />

narrower range of 4-5 mg/l. Figure 22 also shows that the biosensor seems to have a lag<br />

phase, a phenomenon which can be seen <strong>in</strong> Figure 21 as well.<br />

4.5 Diffusivity and stripp<strong>in</strong>g test of <strong>N2O</strong><br />

The diffusivity test of <strong>N2O</strong> performed <strong>in</strong> a reactor with carriers without biofilm dur<strong>in</strong>g<br />

mechanical mix<strong>in</strong>g showed that <strong>N2O</strong> dissolved <strong>in</strong> the water phase left the system slowly.<br />

Figure 23 shows how the <strong>in</strong>itial <strong>N2O</strong> concentration decreased from ~11- 4 µmol <strong>N2O</strong>/l<br />

dur<strong>in</strong>g a period of about 8 hours, (500 m<strong>in</strong>utes). L<strong>in</strong>ear regression of the diffusion rate<br />

showed that ~0.0132 µmol <strong>N2O</strong> left the reactor per m<strong>in</strong>ute. This molar concentration<br />

corresponds to < 1% of <strong>N2O</strong> present <strong>in</strong> the water phase at all times dur<strong>in</strong>g the<br />

measurement. In order to validate the assumption that <strong>N2O</strong> diffusion can be neglected<br />

dur<strong>in</strong>g calculations of produced <strong>N2O</strong> the diffusivity rate/m<strong>in</strong> has to be compared to the<br />

<strong>production</strong> rate/m<strong>in</strong>. The result of this comparison gives that diffusion corresponds to<br />

about 10% of produced <strong>N2O</strong> dur<strong>in</strong>g one m<strong>in</strong>ute.<br />

41


N₂O µmol/l<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 100 200 300 400 500<br />

N₂O (µmol/l)<br />

y = -0.0132x + 10.59<br />

Time (m<strong>in</strong>)<br />

Figure 23. N 2O decrease <strong>in</strong> the water phase due to diffusion dur<strong>in</strong>g mechanical mix<strong>in</strong>g.<br />

When the system was aerated dissolved <strong>N2O</strong> was stripped out of the water phase at a<br />

much higher speed compared to the diffusion rate, see Figure 24-Figure 26. However the<br />

stripp<strong>in</strong>g rate did not change much with the different aeration rates. When the reactor<br />

was aerated with an airflow correspond<strong>in</strong>g to 1.2 l/m<strong>in</strong>, dissolved <strong>N2O</strong> left the water<br />

phase at a rate of ~0.55 µM/m<strong>in</strong>, if l<strong>in</strong>early approximated, see Figure 24. The l<strong>in</strong>ear that<br />

is drawn <strong>in</strong> Figure 24 shows that a l<strong>in</strong>earization is not a good approximations of how<br />

<strong>N2O</strong> was stripped out of the water phase. As the stripp<strong>in</strong>g rate decreased with<br />

decreas<strong>in</strong>g <strong>N2O</strong> concentration a potential curve fitt<strong>in</strong>g might be a better option which is<br />

also shown <strong>in</strong> Figure 24.<br />

14<br />

Aeration 1.6 (l/m<strong>in</strong>) with carriers<br />

N₂O (µmo/l)<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 5 10 15 20 25<br />

Time (m<strong>in</strong>)<br />

<strong>N2O</strong> (µmol/l)<br />

y = -0.6482x + 10.193<br />

y = 12.95e -0.143x<br />

Figure 24. Stripp<strong>in</strong>g of N 2O from the water phase dur<strong>in</strong>g aeration with an airflow of 1.2 l/m<strong>in</strong>.<br />

As the aeration rate was <strong>in</strong>creased to 1.6 l/m<strong>in</strong> the l<strong>in</strong>ear stripp<strong>in</strong>g rate <strong>in</strong>creased to<br />

~0.65 µM/m<strong>in</strong>, see Figure 25.<br />

42


Aeration 1.6 (l/m<strong>in</strong>) with carriers<br />

N₂O (µmo/l)<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 5 10 15 20 25<br />

Time (m<strong>in</strong>)<br />

<strong>N2O</strong> (µmol/l)<br />

y = -0.6482x + 10.193<br />

y = 12.95e -0.143x<br />

Figure 25. Stripp<strong>in</strong>g of N 2O from the water phase dur<strong>in</strong>g aeration with an aeration rate of 1.6<br />

l/m<strong>in</strong>.<br />

When the aeration rate was further <strong>in</strong>creased to 2.0 l/m<strong>in</strong> the l<strong>in</strong>ear stripp<strong>in</strong>g rate<br />

<strong>in</strong>creased to ~0.67 µM/m<strong>in</strong>, see Figure 26.<br />

14<br />

Aeration 2.0 (l/m<strong>in</strong>) with carriers<br />

N₂O (µmo/l)<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 5 10 15 20 25<br />

Time (m<strong>in</strong>)<br />

<strong>N2O</strong> (µmol/l)<br />

y = -0.6722x + 10.714<br />

y = 13.571e -0.141x<br />

Figure 26.Stripp<strong>in</strong>g of N 2O from the water phase dur<strong>in</strong>g aeration with an aeration rate of 2.0 l/m<strong>in</strong>.<br />

With a start<strong>in</strong>g concentration of ~12 µmol/l, it took between 15 and 20 m<strong>in</strong>utes to strip<br />

<strong>N2O</strong> out of the water phase to a concentration ~1µmol/l.<br />

43


Chapter 5<br />

5. Discussion<br />

5.1 Process performance<br />

Theoretical maximum nitrogen removal by the <strong>anammox</strong> <strong>process</strong> is 88%, (Strous et al.,<br />

1998), highest achieved performance <strong>in</strong> the <strong>MBBR</strong> dur<strong>in</strong>g the period of this master<br />

thesis work was about 80% with fluctuations down to a reduction correspond<strong>in</strong>g to only<br />

20%, the mean nitrogen conversion was 58%. Non stable <strong>process</strong> performance is<br />

probably due to operation disturbances like; stop <strong>in</strong> the <strong>in</strong>fluent flow, power failure,<br />

fluctuations <strong>in</strong> <strong>in</strong>fluent nitrogen compounds, (caused by microbial conversion of<br />

nitrogen compounds <strong>in</strong> the synthetic wastewater).<br />

As the reactor operation mode was shifted <strong>in</strong>to cont<strong>in</strong>uous aeration at a lower DO<br />

concentration both % reduction and removal rate <strong>in</strong> gN/m 2 d was more stable and<br />

higher than the average dur<strong>in</strong>g <strong>in</strong>termittent aeration shown <strong>in</strong> Figure 13 and Figure 14.<br />

This is consistent with results obta<strong>in</strong>ed by Szatkowska et al., (2003) who showed that<br />

higher DO concentrations impact a <strong>MBBR</strong> <strong>anammox</strong> <strong>process</strong> negatively with decreased<br />

nitrogen conversion rates as a result. S<strong>in</strong>ce the oxygen penetration depth with<strong>in</strong> the<br />

biofilm <strong>in</strong>creases with <strong>in</strong>creas<strong>in</strong>g DO (Henze et al., 1997) the anaerobic layer where<br />

<strong>anammox</strong> activity is tak<strong>in</strong>g part will be th<strong>in</strong>ner which is caus<strong>in</strong>g a lower <strong>in</strong>organic<br />

nitrogen conversion rate.<br />

One drawback with the <strong>anammox</strong> <strong>process</strong> is that NO3-N is produced dur<strong>in</strong>g cell<br />

synthesis of <strong>anammox</strong> bacteria. However this problem is not significant s<strong>in</strong>ce the<br />

effluent from the <strong>anammox</strong> <strong>process</strong> can be re-circulated with the <strong>in</strong>fluent water to the<br />

wastewater treatment plant.<br />

5.2 <strong>N2O</strong> <strong>production</strong><br />

Compared to <strong>N2O</strong> emissions from nitrogen removal <strong>process</strong>es found <strong>in</strong> literature (Table<br />

3) the emissions from the s<strong>in</strong>gle <strong>stage</strong> <strong>nitritation</strong>/<strong>anammox</strong> system exam<strong>in</strong>ed <strong>in</strong> this<br />

work can be regarded as relatively high.<br />

Dur<strong>in</strong>g this study <strong>N2O</strong> <strong>production</strong> have been higher at <strong>in</strong>termittent aeration where the<br />

dissolved oxygen concentration averaged around 3 mg/l <strong>in</strong> the aerated period. Lowest<br />

<strong>N2O</strong> <strong>production</strong> recorded was dur<strong>in</strong>g cont<strong>in</strong>uous aeration at DO concentrations<br />

correspond<strong>in</strong>g to 1.0-1.5 mg/l. The emissions dur<strong>in</strong>g cont<strong>in</strong>uous aeration are <strong>in</strong> the<br />

same range as emissions from a nitrify<strong>in</strong>g SBR reactor (2.8%) and a Sharon reactor<br />

(1.7%) reported by Kampschreur et al., (2008 b and a). R 2 value obta<strong>in</strong>ed when<br />

compar<strong>in</strong>g % <strong>N2O</strong> <strong>production</strong> of removed <strong>in</strong>organic nitrogen with DO concentrations<br />

shows that there is a correlation between the higher <strong>N2O</strong> emissions and DO <strong>in</strong> the, see<br />

Figure 27.<br />

44


% produced N₂O<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Produced N₂O <strong>in</strong><br />

relation to DO<br />

concetration<br />

R² = 0.6859<br />

0<br />

0 1 2 3 4<br />

DO (mg/l)<br />

Figure 27. Correlation between the % N 2O <strong>production</strong> and DO concentration.<br />

It has been observed that chang<strong>in</strong>g environmental conditions can give rise to higher <strong>N2O</strong><br />

emissions (Kampschreur et al., 2008, b) and the shift<strong>in</strong>g oxygen conditions dur<strong>in</strong>g<br />

<strong>in</strong>termittent aeration can be an explanation to higher <strong>N2O</strong> emissions dur<strong>in</strong>g this<br />

operation mode.<br />

If the concentration profiles registered with the biosensor dur<strong>in</strong>g <strong>in</strong>termittent aeration<br />

are considered it is shown that nitrite concentrations are actually <strong>in</strong>creas<strong>in</strong>g dur<strong>in</strong>g the<br />

anoxic phase which is the opposite situation to what could be expected. S<strong>in</strong>ce <strong>nitritation</strong><br />

is <strong>in</strong>hibited by low oxygen concentrations the conversion of ammonium <strong>in</strong>to nitrite<br />

should decrease and <strong>anammox</strong> activity should consume nitrite lead<strong>in</strong>g to a total<br />

decrease <strong>in</strong> nitrite concentrations. High <strong>in</strong>fluent nitrite concentrations and the possible<br />

presence of nitrite oxidisers are two likely explanations to <strong>in</strong>creas<strong>in</strong>g nitrite<br />

concentrations dur<strong>in</strong>g the anoxic period. S<strong>in</strong>ce <strong>in</strong>creas<strong>in</strong>g NO2-N concentrations have<br />

been observed to give higher <strong>N2O</strong> emissions (Tallec et al., 2006,a) ris<strong>in</strong>g nitrite<br />

concentrations dur<strong>in</strong>g the anoxic period observed <strong>in</strong> this study can also be a reason for<br />

higher emissions dur<strong>in</strong>g <strong>in</strong>termittent operation of the <strong>MBBR</strong>.<br />

Process performance seems to <strong>in</strong>fluence the extent of <strong>N2O</strong> emitted from the <strong>MBBR</strong> s<strong>in</strong>ce<br />

less <strong>N2O</strong> was produced when higher nutrient removal was achieved dur<strong>in</strong>g periods of<br />

cont<strong>in</strong>uous aeration. Figure 28 which shows the correlation between % <strong>N2O</strong> <strong>production</strong><br />

and % N-reduction <strong>in</strong>dicates that <strong>process</strong> performance might <strong>in</strong>fluence the <strong>N2O</strong><br />

emissions from the system (R 2 =0.70).<br />

45


% produced N₂O<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

Produced N₂O <strong>in</strong><br />

relation to % N-<br />

reduction<br />

R² = 0.7029<br />

0<br />

0 20 40 60 80 100<br />

% N-reduction<br />

Figure 28. Correlation between % N 2O <strong>production</strong> and % N-removal.<br />

NO2-N concentrations dur<strong>in</strong>g cont<strong>in</strong>uous aeration decreased as the aeration was<br />

switched off, at the same time <strong>N2O</strong> <strong>production</strong> was not as high as dur<strong>in</strong>g <strong>in</strong>termittent<br />

aeration. This result can be partly expla<strong>in</strong>ed with better control of <strong>in</strong>fluent nitrogen<br />

fractions dur<strong>in</strong>g these measurements. A different microbial composition <strong>in</strong> the <strong>MBBR</strong><br />

dur<strong>in</strong>g cont<strong>in</strong>uous aeration or that conditions are not favour<strong>in</strong>g <strong>N2O</strong> <strong>production</strong> to the<br />

same extent as dur<strong>in</strong>g <strong>in</strong>termittent aeration are other possible explanations to lower N2<br />

O emissions dur<strong>in</strong>g cont<strong>in</strong>uous operation of the reactor. In this study it is not possible to<br />

determ<strong>in</strong>e whether better <strong>process</strong> performance was the reason or if lower <strong>N2O</strong><br />

<strong>production</strong> might be a result of other reasons such as different composition of the<br />

microbial community dur<strong>in</strong>g cont<strong>in</strong>uous aeration.<br />

Increased NH4-N concentrations and decreas<strong>in</strong>g NO2-N concentrations recorded dur<strong>in</strong>g<br />

prolonged unaerated studies showed that the nitrify<strong>in</strong>g activity decreased as the <strong>MBBR</strong><br />

was left without oxygen supply for a longer period. <strong>N2O</strong> <strong>production</strong> with<strong>in</strong> the system<br />

ceased at the same time <strong>in</strong>dicat<strong>in</strong>g that nitrifier denitrification of ammonium with nitrite<br />

performed by AOB was the reason to <strong>N2O</strong> emissions. Why <strong>N2O</strong> <strong>production</strong> was not<br />

tak<strong>in</strong>g part as long as there was NO2-N available for nitrifier denitrification <strong>in</strong> the water<br />

phase is unknown. One explanation might be that the NO2-N concentration <strong>in</strong> the biofilm<br />

was below concentrations that the bacteria can utilise.<br />

Stripp<strong>in</strong>g tests of <strong>N2O</strong> and mix<strong>in</strong>g with pure N2 gas dur<strong>in</strong>g the anoxic phase <strong>in</strong>dicates<br />

that the <strong>N2O</strong> accumulation registered by the microsensor is due to the microbial activity<br />

produc<strong>in</strong>g <strong>N2O</strong> and to term<strong>in</strong>ation <strong>in</strong> stripp<strong>in</strong>g <strong>N2O</strong> out of the water. It is not possible to<br />

say if the <strong>production</strong> rate is the same dur<strong>in</strong>g aeration and the anoxic phase.<br />

Uncerta<strong>in</strong>ties and sources of errors can be many dur<strong>in</strong>g laboratory work some are<br />

shortly discussed here. Dur<strong>in</strong>g these experiments a synthetic wastewater was used, this<br />

might <strong>in</strong>fluence the <strong>N2O</strong> <strong>production</strong> from the system, a real waste water is more complex<br />

and might give other emission results, both higher and lower. The fact that diffusion<br />

corresponded to 10% of produced <strong>N2O</strong> <strong>in</strong> the <strong>MBBR</strong> <strong>in</strong>dicates that emissions from the<br />

46


laboratory system might be underestimated. If calibrations have been performed with<br />

an unsaturated <strong>N2O</strong> solution this will give rise to overestimated <strong>N2O</strong> <strong>production</strong>s from<br />

the partial <strong>nitritation</strong>/<strong>anammox</strong> <strong>MBBR</strong>. As po<strong>in</strong>ted out by Kampschreur et al., (2009)<br />

chang<strong>in</strong>g environmental conditions might lead to higher <strong>N2O</strong> emissions and short term<br />

laboratory scale measurements might therefore give over estimated <strong>N2O</strong> emissions.<br />

S<strong>in</strong>ce the <strong>anammox</strong> <strong>process</strong> needs less resources and produces less CO2 than common<br />

nitrogen removal, <strong>anammox</strong> has been po<strong>in</strong>ted out as a more environmental friendly<br />

alternative (Fux and Siegrist, 2004). Kuenen and Robertson, (1994) are call<strong>in</strong>g attention<br />

to that wastewaters <strong>in</strong> the Netherlands generally have a nitrogen content between 40-60<br />

mg/l, each person produces about 150 l/d which gives a nitrogen <strong>production</strong> of 2.2 kg<br />

nitrogen per person and year and that even a small <strong>N2O</strong> <strong>production</strong> correspond<strong>in</strong>g to<br />

0.1% of the nitrogen concentration will result <strong>in</strong> significant <strong>N2O</strong> emissions. Consider<strong>in</strong>g<br />

that the <strong>MBBR</strong> <strong>process</strong> has been found to produce <strong>N2O</strong> correspond<strong>in</strong>g to a m<strong>in</strong>imum of<br />

2% of removed <strong>in</strong>organic nitrogen it has to be further exam<strong>in</strong>ed whether this s<strong>in</strong>gle<br />

<strong>stage</strong> <strong>anammox</strong> <strong>process</strong> is more environmental friendly than common nitrogen removal<br />

<strong>process</strong>es. Even if rather high <strong>N2O</strong> <strong>production</strong> was obta<strong>in</strong>ed <strong>in</strong> this study, experiences <strong>in</strong><br />

pilot scale trials with similar operation modes has given <strong>N2O</strong> <strong>production</strong> as low as 0.2 %<br />

of removed <strong>in</strong>organic nitrogen (Christensson, 2010). Additional research is needed to<br />

determ<strong>in</strong>e if the <strong>N2O</strong> <strong>production</strong> from a full scale <strong>process</strong> would be as high as the<br />

<strong>production</strong> found from the laboratory <strong>MBBR</strong> system. It also has to be determ<strong>in</strong>ed which<br />

bacteria that are responsible for produc<strong>in</strong>g <strong>N2O</strong>, whether the relatively high <strong>N2O</strong><br />

emissions found from the laboratory <strong>MBBR</strong> are due to biofilm structure with oxygen<br />

pore conditions. Amounts of <strong>N2O</strong> emissions have to be further evaluated <strong>in</strong> correlation<br />

to <strong>process</strong> operation and performance. A s<strong>in</strong>gle <strong>stage</strong> biofilm system might not be the<br />

best solution for the partial <strong>nitritation</strong> <strong>anammox</strong> <strong>process</strong> if this <strong>process</strong> design always<br />

gives rise to high <strong>N2O</strong> emissions.<br />

5.3 Measurements with NO2-N biosensor<br />

The biosensor gave results that correlated very well with concentrations obta<strong>in</strong>ed with<br />

LCK 342 at some occasions and the fluctuations <strong>in</strong> NO2-N concentration measured with<br />

the biosensor always showed the same trends as achieved with LCK 342. However the<br />

NO2-N biosensor did not give reliable results at all times <strong>in</strong> use and could never replace<br />

LCK 342 for determ<strong>in</strong>ation of NO2-N concentrations dur<strong>in</strong>g this master thesis work.<br />

Some measurements performed with the biosensor recorded much higher NO2-N<br />

concentrations than obta<strong>in</strong>ed with the Dr. Lange kit. This was probably due to electric<br />

disturbances that caused electric migration which is the transport of a charged body <strong>in</strong><br />

an electric field. Kjær et al., (1999), have shown that this phenomenon can be used to<br />

force negatively charged NO3 − ions over the semi permeable membrane of the<br />

biochamber <strong>in</strong>creas<strong>in</strong>g the ion sensitivity by a factor of more than 10.000. The electric<br />

disturbances can have been caused by other laboratory equipment or s<strong>in</strong>ce the ground<br />

channel on the backside of the piccoameter was used. This ground port has another<br />

47


electrical potential than the sensor port which can create an electric potential and<br />

<strong>in</strong>creased nitrate flux over the biochamber membrane. (There are two different<br />

possibilities to ground the environment <strong>in</strong> the close range of the microsensors. The first<br />

option is to use the ground channel connected to sensor port on the piccoameter, the<br />

electric potential of the sensor and ground channel is the same. The other option is use<br />

the ground port on the backside of the piccoameter, this port has another electric<br />

potential than the sensor port).<br />

S<strong>in</strong>ce the biosensor relies on denitrify<strong>in</strong>g bacteria convert<strong>in</strong>g NO2-N to <strong>N2O</strong>, the sensor<br />

was hard to work with. The bacteria <strong>in</strong> the biochamber are chang<strong>in</strong>g and adapt<strong>in</strong>g their<br />

metabolism as their physical environment with available substrates changes (Larsen et<br />

al., 1997). This means that their metabolism might be <strong>in</strong>fluenced by mov<strong>in</strong>g from the<br />

environment <strong>in</strong> which they are kept <strong>in</strong> between measurements, via the calibration setup<br />

<strong>in</strong>to the <strong>MBBR</strong> where measurements are performed. At some occasions the biosensor<br />

had to be recalibrated one to three times before giv<strong>in</strong>g a stable signal, which is very time<br />

consum<strong>in</strong>g. The sensor also has to be well nursed <strong>in</strong> between measurements <strong>in</strong> order to<br />

keep the microorganisms viable.<br />

To obta<strong>in</strong> the same sal<strong>in</strong>ity dur<strong>in</strong>g calibration and measurement the biosensor was<br />

calibrated <strong>in</strong> the synthetic wastewater feed<strong>in</strong>g the <strong>MBBR</strong>. The microbial nitrogen<br />

conversion <strong>in</strong> the <strong>MBBR</strong> is chang<strong>in</strong>g the ionic composition of the <strong>in</strong>fluent wastewater<br />

with a difference <strong>in</strong> ionic strength of <strong>in</strong>fluent medium and effluent as result. S<strong>in</strong>ce the<br />

biosensor is sensitive to ionic strength as well as sal<strong>in</strong>ity (Nielsen et al., 2004) better<br />

results might have been obta<strong>in</strong>ed by calibration of the biosensor <strong>in</strong> the effluent water.<br />

(S<strong>in</strong>ce the effluent water conta<strong>in</strong>s NO2-N this calibration method gives a background<br />

signal of NO2-N which has to be corrected for).<br />

The biosensor might be a good option if changes of NO2-N are go<strong>in</strong>g to be studied dur<strong>in</strong>g<br />

cyclic changes of a microbial <strong>process</strong>. However the sensitivity of the sensor and the fact<br />

that it has to be well looked after <strong>in</strong> between measurements has to be taken <strong>in</strong>to account<br />

when consider<strong>in</strong>g the biosensor as an option to conventional methods of determ<strong>in</strong><strong>in</strong>g<br />

the NO2-N concentrations. The biosensor and required equipment is also a significant<br />

<strong>in</strong>vestment cost.<br />

5.4 Diffusivity and stripp<strong>in</strong>g test of <strong>N2O</strong><br />

Test<strong>in</strong>g the diffusivity of <strong>N2O</strong> through mechanical mix<strong>in</strong>g with K1–heavy carriers<br />

without biofilm showed that


6. Conclusions<br />

The follow<strong>in</strong>g conclusions concern<strong>in</strong>g, <strong>process</strong> performance of the laboratory <strong>MBBR</strong>,<br />

produced <strong>N2O</strong> and evaluation of the NO2-N biosensor can be made:<br />

• The s<strong>in</strong>gle <strong>stage</strong> <strong>nitritation</strong>/<strong>anammox</strong> system produced significant amounts of<br />

<strong>N2O</strong> with a m<strong>in</strong>imum <strong>production</strong> of 2% of removed <strong>in</strong>organic nitrogen.<br />

• Operat<strong>in</strong>g the <strong>MBBR</strong> at <strong>in</strong>termittent aeration with a DO of ~3 mg/l gave the<br />

highest <strong>N2O</strong> <strong>production</strong> with <strong>in</strong>itial and maximum <strong>production</strong>s of 6-11% and 10-<br />

30% respectively.<br />

• Smaller amounts of <strong>N2O</strong> were produced by the partial/<strong>nitritation</strong> <strong>anammox</strong><br />

system dur<strong>in</strong>g cont<strong>in</strong>uous operation at DO <strong>in</strong> the <strong>in</strong>terval 1-1.5 mg/l. The <strong>in</strong>itial<br />

<strong>N2O</strong> <strong>production</strong> was found to be 2-3% and the maximum <strong>N2O</strong> <strong>production</strong><br />

corresponded to 2-6%.<br />

• When the <strong>MBBR</strong> was exposed to a longer period of anoxic conditions both<br />

ammonium oxidation and <strong>N2O</strong> <strong>production</strong> ceased.<br />

• From results of mix<strong>in</strong>g with N2 gas dur<strong>in</strong>g the anoxic period it cannot be said<br />

with certa<strong>in</strong>ty that the <strong>N2O</strong> <strong>production</strong> is the same dur<strong>in</strong>g aeration and anoxic<br />

phase. The absolute number on overall <strong>N2O</strong> <strong>production</strong> for an operation mode<br />

(based on the measurements of <strong>N2O</strong> accumulat<strong>in</strong>g dur<strong>in</strong>g the anoxic phase) could<br />

be both overestimated or underestimated and should therefore be used as a<br />

comparative tool.<br />

• It was not possible to replace conventional methods for determ<strong>in</strong>ation of NO2-N<br />

concentrations with the NO2-N biosensor s<strong>in</strong>ce stable operation of the sensor<br />

could not be obta<strong>in</strong>ed at all times.<br />

51


7. Future research<br />

Better understand<strong>in</strong>g off which mechanisms and organisms that are responsible for <strong>N2O</strong><br />

<strong>production</strong> <strong>in</strong> the nitrify<strong>in</strong>g/<strong>anammox</strong> <strong>MBBR</strong> system is needed. There is also a need for<br />

better accuracy <strong>in</strong> the measurements of emitted <strong>N2O</strong> from the <strong>process</strong>.<br />

• Measurement should be done where <strong>N2O</strong> is measured both <strong>in</strong> the water phase<br />

and <strong>in</strong> the off-gas simultaneously, this would both help to better understand<br />

when the <strong>N2O</strong> is produced <strong>in</strong> the system and it would give a much better accuracy<br />

of how much <strong>N2O</strong> that is produced and emitted by the <strong>MBBR</strong> system.<br />

• S<strong>in</strong>ce the biofilm creates a microenvironment with anoxic conditions which are<br />

believed to enhance the <strong>N2O</strong> <strong>production</strong> by AOB the importance of biofilm<br />

structure and thickness should be <strong>in</strong>vestigated.<br />

• Disturbances are believed to cause higher <strong>N2O</strong> <strong>production</strong> from the<br />

microorganisms. It should be exam<strong>in</strong>ed whether <strong>in</strong>termittent aeration could be<br />

considered a disturbance to the bacteria perform<strong>in</strong>g the nitrogen removal<br />

caus<strong>in</strong>g higher <strong>N2O</strong> emissions from the <strong>process</strong>.<br />

• To be able to operate the <strong>MBBR</strong> <strong>in</strong> a manner that gives as small amounts of<br />

emitted <strong>N2O</strong> as possible it is of great importance to understand which<br />

microorganisms with<strong>in</strong> the system that are responsible for the <strong>N2O</strong> emissions.<br />

Measurements of the <strong>N2O</strong> <strong>production</strong> dur<strong>in</strong>g batch tests with <strong>in</strong>hibitors should be<br />

performed to ga<strong>in</strong> this k<strong>in</strong>d of knowledge.<br />

• S<strong>in</strong>ce substrate concentrations (NH4 + , NO2 − and NO3 − ) are known to <strong>in</strong>fluence the<br />

amount of produced <strong>N2O</strong>, it would be <strong>in</strong>terest<strong>in</strong>g to evaluate their impact on<br />

emitted <strong>N2O</strong> <strong>in</strong> both batch tests and with operation at different <strong>in</strong>fluent <strong>in</strong>organic<br />

nitrogen concentrations. Perform<strong>in</strong>g the tests <strong>in</strong> this manner could give answers<br />

to whether it is the <strong>in</strong>creased nitrogen concentrations /disturbance that causes<br />

the <strong>in</strong>crease <strong>in</strong> <strong>N2O</strong> <strong>production</strong> or the actual higher substrate concentration.<br />

• As volume to surface ratios are of importance to emitted <strong>N2O</strong> from a wastewater<br />

treatment <strong>process</strong> and s<strong>in</strong>ce there are further differences between full scale and<br />

laboratory systems the emitted <strong>N2O</strong> from full scale systems should be<br />

determ<strong>in</strong>ed.<br />

• Measurement from a <strong>process</strong> operated with real wastewater is needed for<br />

determ<strong>in</strong>ation of <strong>N2O</strong> emissions dur<strong>in</strong>g real conditions.<br />

• Exam<strong>in</strong>e the <strong>in</strong>fluence of aeration rate on <strong>N2O</strong> emission by cont<strong>in</strong>uous aeration<br />

with pure oxygen, (a much lower aeration rate can ma<strong>in</strong>ta<strong>in</strong> a sufficient oxygen<br />

concentration <strong>in</strong> the reactor if pure oxygen is used.)<br />

53


8. References<br />

Abma W.R., Schultz C.E., Woutres J.W., Mulder J.W., van Loosdrecht M.C.M., van der Star<br />

W., Strous M., Tokutomi T. (2006) Full Scale Granular Sludge ANAMMOX® <strong>process</strong>. 4th<br />

CIWEM Annual Conference, New Castle, 12-14 September 2006.<br />

Abma W.R., Schultz C.E., Mulder J.W., van Loosdrecht M.C.M., van der Star W., Strous M.,<br />

Tokutomi T., (2007). The advance of Anammox. Water 21, February 2007.<br />

Andersen K., Thomas K., Revsbech N.P., (2001). An oxygen <strong>in</strong>sensitive microsensor for<br />

nitrous oxide. Sensors and Actuators B-Chemical, 81 (2001), 42-48.<br />

Bani Shahabadi M., Yerushalmi Y., Haghighat F., (2009). Impact of <strong>process</strong> design on<br />

greenhouse gas (GHG) generation by waste water treatment plants. Water research, 43,<br />

2679-2687.<br />

Bock E., Scmidt I., Stüven R., Zart D., (1994). Nitrogen loss caused by denitrify<strong>in</strong>g<br />

Nitrosomonas cells us<strong>in</strong>g ammonium or hydrogen gas as electron donors and nitrite as<br />

electron acceptor. Archives of Microbiology (1995), 163, 16-20.<br />

Bogner, J., Abdelrafie Ahmed M., Diaz C., Faaij A., Gao Q.,. Hashimoto S., Mareckova K.,<br />

Pipatti R., Zhang T., (2007). Waste Management, In Climate Change 2007: Mitigation.<br />

Contribution of Work<strong>in</strong>g Group III to the Fourth Assessment Report of the<br />

Intergovernmental Panel on Climate Change [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave,<br />

L.A. Meyer (eds)], Cambridge University Press, Cambridge, UnitedK<strong>in</strong>gdom and New<br />

York, NY, USA.<br />

Broda E., (1977). Two k<strong>in</strong>ds of lithotrophs miss<strong>in</strong>g <strong>in</strong> nature. Zeitschrift für allgeme<strong>in</strong>e<br />

mikrobiologi, 17, (6), 491-493.<br />

de Bruijn P., vad der Graaf A., Jetten M., Robertson L., Kuenen G., (1995). Growth of<br />

Nitrosomonas europaea on hydroxylam<strong>in</strong>e. FEMS Microbiology Letters 125, 179-184.<br />

Carvallo L., Carrera J., Chamy R., (2002). Nitrify<strong>in</strong>g activity monitor<strong>in</strong>g and k<strong>in</strong>etic<br />

parameters determ<strong>in</strong>ation <strong>in</strong> a biofilm airlift reactor by respirometry. Biotechnology<br />

Letters, 24, 2063-2066.<br />

Chirstensson, Magnus, personal communications, 2010.<br />

Debruyn W., Lissens G., van Rensbergen J., Wevers M., (1994). Nitrous oxide emissions<br />

from waste water. Environmental Monitor<strong>in</strong>g and Assessment, 31, 159-165.<br />

55


Egli K., Fanger U., Alvarez P. J., Siegrist H., van der Meer J. R., Zehnder A. J., (2001).<br />

Enrichment and characterization of an <strong>anammox</strong> bacterium from a rotat<strong>in</strong>g biological<br />

contactor treat<strong>in</strong>g ammonium-rich leachate. Archives of microbiology 175, (3), 198-207.<br />

Egli K., Bosshard F., Werlen C., Lais P., Siegrist H., Zhender A.J.B., vad der Meer J.R.,<br />

(2003). Microbial composition and structure of a rotat<strong>in</strong>g biological contactor biofilm<br />

treat<strong>in</strong>g ammonium-rich wastewater without organic carbon. Microbial Ecology, 45, 419-<br />

432.<br />

Firestone M., Smith M., Firestone R., Tiedje J., (1979). The <strong>in</strong>fluence of nitrate, nitrite and<br />

oxygen on the composition of the gaseous products of denitrification <strong>in</strong> soil. Soil Science<br />

Society of America Journal, 43, 1140-1144.<br />

Fux C., Boehler M., Huber P., Brunner I., Siegrist H., (2002). Biological treatment of<br />

ammonium-rich wastewater by partial <strong>nitritation</strong> and subsequent anaerobic ammonium<br />

oxidation (<strong>anammox</strong>) <strong>in</strong> a pilot plant. Journal of Biotechnology, 99, 295-306.<br />

Fux C., Egli K., van der Meer J.R., Siegrist H., (2003). The <strong>anammox</strong> <strong>process</strong> for nitrogen<br />

removal from waste water. EAWAG news 56 (November 2003), 20-21.<br />

Fux C., Siegrist H., (2004). Nitrogen removal from sludge digester liquids by<br />

nitrification/denitrification or partial <strong>nitritation</strong>/<strong>anammox</strong>: environmental and<br />

economical considerations. Water Science and Technology, 50, (10), 19-26.<br />

Gejlsbjerg B., Frette L., Westermann P., (1997). Dynamics of <strong>N2O</strong> <strong>production</strong> from<br />

activated sludge. Water research, 32, (7), 2113-2121.<br />

Gillberg L., Hansen B., Karlsson I., Nordstöm Enkel A., Pålsson A., (2003). About water<br />

treatment. ISBN 91-631-4344-5, Hels<strong>in</strong>gborg, Kemira Kemwater.<br />

Gray N., (2004). Biology of wastewater treatment (2nd Edition). Imperial College Press,<br />

London. Series editor. Bell J. Centre of environmental technology, imperial college.<br />

Gut L. (2006) Assessment of a partial nitriation/ Anammox system for nitrogen removal.<br />

Licentiate thesis, Department of Land and Water Resources Eng<strong>in</strong>eer<strong>in</strong>g, Royale<br />

Institute Of Technology, Stockholm, Sweden<br />

Helmer C., Tromm C., Hippen A., Rosenw<strong>in</strong>kel K-H., Seyfried C.F., Kunst S., (2001). S<strong>in</strong>gle<br />

<strong>stage</strong> biological nitrogen removal by <strong>nitritation</strong> and anaerobic ammonium oxidation <strong>in</strong><br />

biofilm systems. Water Science and Technology, 43, (1), 311-320.<br />

Henze, M., HarremoësP., la Cour Jansen J., Arv<strong>in</strong> E., (1997), Wastewater Treatment 2nd<br />

edition. ISBN 3-540-62702-2. Berl<strong>in</strong> Heidelberg, Spr<strong>in</strong>ger-Verlag.<br />

56


Hippen A., Rosenw<strong>in</strong>kel K-H., Baumgarten G., Seyfried C.F., (1997). Aerobic<br />

deammonification: A new experience <strong>in</strong> the treatment of wastewaters. Water Science and<br />

Technology, 35, (10), 111-120.<br />

Hooper A., (1968). A nitrite reduc<strong>in</strong>g enzyme from Nitrsomonas europaea prelim<strong>in</strong>ary<br />

charachterization with hydroxylam<strong>in</strong>e as electron donor. Biochimica et Biophysica Acta,<br />

162, 49-65.<br />

Itokawa H., Hanaki K., Matsuo T., (2001). Nitrous oxide <strong>production</strong> <strong>in</strong> high load<strong>in</strong>g<br />

biological nitrogen removal <strong>process</strong> under low COD/N ratio condition. Water Research, 35,<br />

(3), 657-664.<br />

Jacob D., (1999). Introduction to atmospheric chemistry. ISBN 0-691-00185-5, Pr<strong>in</strong>ceton:<br />

Pr<strong>in</strong>ceton University Press.<br />

Jetten M.S.M, Strous M, van de Pas-Schoonen K.T., Schalk J., van Dongen U.G.J.M., van de<br />

Graaf A.A., Logemann S., Muyzer G., van Loosdrecht M.C.M., Kuenen J.G., (1999). The<br />

anaerobic oxidation of ammonium. FEMS Microbiology Reviews, 22, (5), 421-437<br />

Jetten M., Wagner M., Fuerst J., van Loosdrecht M., Kuenen J., Strous M., (2001).<br />

Microbiology and application of the anaerobic ammonium oxidation ('<strong>anammox</strong>') <strong>process</strong>.<br />

Current Op<strong>in</strong>ion <strong>in</strong> Biotechnology 12, (3), 283-288.<br />

Jetten M.S.M., Cirpus I., Kartal B., van Niftrik L., van de Pas-Schoonen K.T., Sliekers O.,<br />

Haajier S., van der Star W., Schmid M., van de Vossenberg J., Schmidt I., Harhangi H., van<br />

Loosdrecht M., Kuenen J., Op den Camp H., Strous M., (2004). 1994-2004: 10 years of<br />

research on the anaerobic oxidation of ammonium. Biochemical Society Transactions 33,<br />

(1), 119-123.<br />

Jetten M.S.M., van Niftrik L., Strous M., Kartal B., Keltjens J.T., Op den Kamp H.J.M.,<br />

(2009). Biochemistry and molecular biology of <strong>anammox</strong> bacteria. Critical Reviews <strong>in</strong><br />

Biochemistry and Molecular Biology, 44, (2), 65-84.<br />

Joss A., Salzberger D., Eugster J., König R., Rottermann K., Burger S., Mohn J., Siegrist H.,<br />

(2009). Full-Scale Nitrogen Removal from Digester Liquid with Partial Nitritation and<br />

Anammox <strong>in</strong> one SBR. Environmental Science & Technology, 43,(14), 5301-5306.<br />

Jung J.Y., Kang S.H., Chung Y.C., Ahn D.H., (2007). Factors affect<strong>in</strong>g the activity of<br />

<strong>anammox</strong> bacteria dur<strong>in</strong>g start up <strong>in</strong> the cont<strong>in</strong>uous culture reactor. Water Science and<br />

Technology, 55, (1), 459-468.<br />

57


Kalyuzhnyi S., Gladchenko M., Mulder A., Versprille B., (2006). New anaerobic <strong>process</strong> for<br />

nitrogen removal. Water Science and Technology, 54, (8), 163-170.<br />

Kalyuzhnyi S., Gladchenko M., Kang H., Mulder A., Versprille B., (2008). Development and<br />

optimisation of VFA driven DEMAOX <strong>process</strong> for treatment of strong nitrogenous<br />

anaerobic effluents. Water Science and Technology, 57, (3), 323-328<br />

Kampschreur M.J., Tan N.C.G, Picioreanu C., Jetten M.S.M., Schmidt I., van Loosdrecht<br />

M.C.M ., (2006). Role of nitrogen oxides <strong>in</strong> the metabolism of ammonia-oxidis<strong>in</strong>g bacteria.<br />

Biochemical Society Transactions 34, (1), 179-181.<br />

Kampschreur M.J., van der Star W.R.L., Wielders H.A., Mulder J.W., Jetten M.S.M., van<br />

Loosdrecht M.C.M., (2008, (a)). Dynamics of nitric oxide and nitrous oxide emission dur<strong>in</strong>g<br />

full-scale reject water treatment. Water Research 42, (3), 812-826.<br />

Kampschreur M.J., Tan N.C.G, Kleerebezem R., Picioreanu C., Jetten M.S.M., and van<br />

Loosdrecht M.C.M ., (2008, (b)). Effect of dynamic <strong>process</strong>es on nitrogen oxides emission<br />

from an nitrify<strong>in</strong>g culture. Environmental Science Technology, 42, 429-435.<br />

Kampschreur M.J., Temm<strong>in</strong>k H., Kleerebezem R., Jetten M.S.M., van Loosdrecht M.C.M.,<br />

(2009). Nitrous oxide emission dur<strong>in</strong>g waste water treatment. Water Research 43, (17),<br />

4093-4103.<br />

Kartal B., Kuypers M.M.M., Lavik G., Schalk J., Op den Camp H.J.M., Jetten M.S.M., Strous<br />

M., (2007). Anammox bacteria disguised as denitrifiers: nitrate reduction to d<strong>in</strong>itrogen gas<br />

via nitrite and ammonium. Environmental Microbiology, 9, (3), 635-642.<br />

Kuenen G., Robertson L., (1994). Comb<strong>in</strong>ed nitrification-denitrification <strong>process</strong>es. FEMS<br />

Microbiology Reviews, 15, 109-117.<br />

Kjær T., Huer Larsen L., Revsbech N-P., (1999). Sensitivity of ion-selective biosensors by<br />

electrophoretically mediated analyte transport. Analytica Chimica Acta, 391, 57-63.<br />

Larsen L.H., Kjaer T & Revsbech N.P., (1997). A microscale NO3− biosensor for<br />

environmental applications. Analytical Chemistry, 69, (17), 3527-3531.<br />

Liljenström S., Kvarnbäck M., (red), (2007). Miljömålen i ett <strong>in</strong>ternationellt perspektiv, de<br />

facto 2007. Naturvårdsverket, Bromma.<br />

Magnaye F.A., Gaspillo Pag-asa D., Auresenia J.L., Kampschreur M.J., Kleerebezem R., van<br />

Loosdrecht M., (2008). Nitrous and nitric oxides and the effect of oxygen level and nitrite<br />

concentration on its emission from nitriation and nitrification-denitrification reactors.<br />

Water Research 42, (3), 812-826.<br />

58


Metcalf & Eddy I. (2003). Wastewater eng<strong>in</strong>eer<strong>in</strong>g: treatment and reuse. New York, NY,<br />

McGraw-Hill.<br />

Mulder A.V.A, Robertson L.A., Kuenen J.G.,(1995). Anaerobic ammonium oxidation<br />

discovered <strong>in</strong> a denitrify<strong>in</strong>g fluidized-bed reactor. FEMS Microbiology Ecology 16(3), p.<br />

177-184.<br />

Nielsen M., Larsen L.H., Jetten M.S.M., Revsbech N.P., (2004). Bacterium-Based NO2−<br />

Biosensor for environmental Applications. Applied and Environmental Micorbiology, 70<br />

(11), p. 6551-6558.<br />

Pierzynski A.M., Sims J.T., Vance G.F., (2005). Soils and environmental quality. 3. ed. Boca<br />

Raton: Taylor & Francis Group, LCC.<br />

Poth M., Focht D., (1985). 15N K<strong>in</strong>teci analysis of <strong>N2O</strong> <strong>production</strong> by Nitrosomonas<br />

europaea: an exam<strong>in</strong>ation of nitrifier denitrification. Applied and Environmental<br />

Microbiology, 49, (5), 1134-1141.<br />

Prescott L.M, Harley J. P., Kle<strong>in</strong> D.A., (2005). Microbiology. 6. ed. New York: McGraw Hill.<br />

Rosenw<strong>in</strong>kel K., Cornelius A., (2005). Deammonification <strong>in</strong> the mov<strong>in</strong>g-bed <strong>process</strong> for the<br />

treatment of wastewater with high ammonia content. Chemical Eng<strong>in</strong>eer<strong>in</strong>g Technology,<br />

28, (1), 49-52.<br />

Siegrist H., Reithaar S., Koch G., Lais P., (1998). Nitrogen loss <strong>in</strong> a nitrify<strong>in</strong>g rotat<strong>in</strong>g<br />

contactor treat<strong>in</strong>g ammonium rich wastewater without organic carbon. Water Science<br />

and Technology, 38, (8-9), 241-248.<br />

Schmidt I., Bock E., (1997). Anaerobic ammonia oxidation with nitrogen dioxide by<br />

nitrosomonas eutropha. Archives of Microbiology 167, 106-111.<br />

Strous M., van Gerven E., Zheng P., Kuenen J.G., Jetten M.S.M., (1997). Ammonium removal<br />

from concentrated waste streams with the anaerobic ammonium oxidation (<strong>anammox</strong>)<br />

<strong>process</strong> <strong>in</strong> different reactor configurations. Water Research, 31,(8), 1955-1962.<br />

Strous M., Heijnen J., Kuenen J., Jetten M., (1998). The sequenc<strong>in</strong>g batch reactor as a<br />

powerful tool for the study of slowly grow<strong>in</strong>g anaerobic ammonium-oxidiz<strong>in</strong>g<br />

microorganisms. Applied Microbiology Biotechnology, 50, 589-596.<br />

Strous M, F. J., Kramer E.H.M., Logemann S., Muyzer G., van de Pas-Schoonen K.T., Webb<br />

R., Kuenen J.G., Jetten M.S.M., (1999). "Miss<strong>in</strong>g lithotroph identified as new planctomycete"<br />

Nature, 400, (6743), 446-449.<br />

59


Szatkowska B., Plaza E., Trela J., Bakowska A., (2003). Influence of dissolved oxygen<br />

concentration on deammonification <strong>process</strong> performance. Integration and optimisation of<br />

urban sanitation systems, Jo<strong>in</strong>t Polish-Swedish Reports, NO 11. Royal Institute of<br />

Technology, Stockholm.<br />

Tallec G., Garnier J., Billen G., Gousailles M., (2006 (a)). Nitrous oxide emission from<br />

secondary activated sludge <strong>in</strong> nitrify<strong>in</strong>g conditions of urban waste water treatment plants:<br />

Effect of oxygenation level. Water Research, 40, 2972-2980.<br />

Tallec G., Garnier J., Gousailles M.,(2006 (b)). Nitrogen removal <strong>in</strong> a waste water<br />

treatment plant through biofilters: nitrous oxide emission dur<strong>in</strong>g nitrification and<br />

denitrification. Bio<strong>process</strong> Biosystem Eng<strong>in</strong>eer<strong>in</strong>g, 29, 323-333.<br />

Tallec G., Garnier J., Billen G., Gousailles M., (2008). Nitrous oxide emissions from<br />

denitrify<strong>in</strong>g activated sludge of urban waste water treatment plants under anoxia and low<br />

oxygenation. Bioresource Technology, 99, 2200-2209.<br />

Third K.A., Sliekers A.O, Kuenen J.G., Jetten M.S.M., (2001). The CANON System<br />

(Completely Autotrophic Nitrogen-removal Over Nitrite) under Ammonium Limitation:<br />

Interaction and Competition between Three Groups of Bacteria. Systematic and Applied<br />

Microbiology, 24, 588-596.<br />

Third K.A., Paxman J., Schmid M., Strous M., Jetten M.S.M., Cord-Ruwisch R., (2005).<br />

Treatment of nitrogen-rich wastewater us<strong>in</strong>g partial nitrification and Anammox <strong>in</strong> the<br />

CANON <strong>process</strong>. Water Science and Technology, 52, (4), 47-54.<br />

Trela J., Plaza E., Gut L., Szatkowska B., Hultman B., Bosander J., (2005).<br />

Deammonifikation, en ny <strong>process</strong> för behandl<strong>in</strong>g av avloppsströmmar med hög kvävehalt<br />

– fortsatta pilot-plant experiment. Rapport NR 2005-14, Svensk Vatten Utveckl<strong>in</strong>g.<br />

Tsushima I., Ogasawara Y., K<strong>in</strong>daichi T., Satoh H., Okabe S., (2007). Development of highrate<br />

anaerobic ammonium-oxidiz<strong>in</strong>g (<strong>anammox</strong>) biofilm reactors. Water Research 41,<br />

1623-1634.<br />

Unisense, b (2007). Nitrous oxide sensor manual, version 20070912. Unisense A/S.<br />

Unisense, c (2007). NOx- biosensor manual, version 20071001. Unisense A/S.<br />

van Dongen U., Jetten M.S.M., van Loosdrecht M.C.M., (2001). The SHARON® -Anammox®<br />

<strong>process</strong> for treatment of ammonium rich wastewater. Water Science and Technology,<br />

44,(1), 153-160.<br />

60


van Niftrik L.A., Fuerst J.A., S<strong>in</strong>n<strong>in</strong>ghe Damsté J.S., Kuenen J.G., Jetten M.S.M., Strous M.,<br />

(2004). The <strong>anammox</strong>osome an <strong>in</strong>tracytoplasmic compartement <strong>in</strong> <strong>anammox</strong> bacteria.<br />

FEMS Microbiology Letters, 233 (1), p. 7-13.<br />

Warfv<strong>in</strong>ge P., (2008). Mass balances and reactor design- Study book for environmental<br />

eng<strong>in</strong>eer<strong>in</strong>g. Department of Chemical Eng<strong>in</strong>eer<strong>in</strong>g, Box 124, Lund.<br />

Ødegaard H., (ed.), (1993). Nitrify<strong>in</strong>g and denitrify<strong>in</strong>g biofilms for wastewater treatment.<br />

Nordic Collaborative Project on Environmental Biotechnology. Nordic Council of<br />

M<strong>in</strong>isters.<br />

Ødegaard H., Rusten B., Westrum T., (1994). A new mov<strong>in</strong>g biofilm reactor – applications<br />

and results. Water Science and Technology, 29( 10-11), 157-165.<br />

Internet källor:<br />

AnoxKaldnes /Produkter och tjänster/Bio<strong>process</strong>er/<strong>MBBR</strong> TM (onl<strong>in</strong>e). Available<br />

at:


Appendix A<br />

Calculation of concentrations <strong>in</strong> calibration solutions for <strong>N2O</strong> and NO2-<br />

N microsensors<br />

Dur<strong>in</strong>g calibration of the microsensors solutions with known concentration of <strong>N2O</strong> and<br />

NO2-N are used from the start. The volume <strong>in</strong> the calibration chamber is known and the<br />

f<strong>in</strong>al concentration for each calibration step is also known. The <strong>in</strong>itial volume that has to<br />

be added to get the correct concentration <strong>in</strong> the calibration solution is obta<strong>in</strong>ed with:<br />

<br />

<br />

(A.1)<br />

where:<br />

Mi = the <strong>in</strong>itial molar concentration mol/l, Vi = the <strong>in</strong>itial volume (l), Mf = the f<strong>in</strong>al molar<br />

concentration mol/l and Vf = the f<strong>in</strong>al volume (l).<br />

The <strong>in</strong>itial volume is then added <strong>in</strong> each calibration step until the f<strong>in</strong>al concentration is<br />

reached.<br />

Equilibrium nitrous oxide concentrations at different temperatures and sal<strong>in</strong>ities are<br />

obta<strong>in</strong>ed from the nitrous oxide sensor users manual. The saturated water solution is<br />

prepared from distilled water at 20 °C correspond<strong>in</strong>g to an equilibrium <strong>N2O</strong><br />

concentration of 27.05mmol/l or ~1.2 g/l. 2 µM (88 µg/l )<strong>N2O</strong> was added <strong>in</strong> each step to<br />

perform a five po<strong>in</strong>t calibration up to 10 µM, (440 µg/l ). See Table A1 for calculated<br />

<strong>in</strong>itial volume, (Vi), of saturated <strong>N2O</strong> solution added to the calibration chamber, Mi, Mf,<br />

and Vf are also given <strong>in</strong> the table.<br />

A stock solution with a NO2-N concentration of 5 g/l NO2-N was used for calibration of<br />

the biosensor. 2 mg/l NO2-N was added <strong>in</strong> each step to perform a five po<strong>in</strong>t calibration<br />

up to 10 mg/l NO2-N. See Table A1 for calculated <strong>in</strong>itial volume of NO2-N stock solution<br />

added to the calibration chamber, Mi, Mf, and Vf are also given <strong>in</strong> the table.<br />

Table A1. Parameters used to calculate the volume of concentrated N 2O and NO 2-N solutions that<br />

has to be added dur<strong>in</strong>g the calibration procedure of the sensors, calculated values for V i is also<br />

shown.<br />

<strong>N2O</strong> calibration solution NO2-N calibration solution<br />

Mi 27.05∙10 -3 mol/l Mi 5∙10 -3 g/l<br />

Mf 2∙10 -6 mol/l Mf 2∙10 -3 g/l<br />

Vf 0.300 L Vf 0.300 l<br />

Vi 22∙10 -6 L Vi 120∙10 -6 l<br />

22 µl 120 µl<br />

63


Appendix B<br />

Calculations of <strong>N2O</strong> emissions<br />

The purpose is to calculate the produced amount of nitrous oxide as percentage of<br />

removed <strong>in</strong>organic nitrogen.<br />

It is assumed that the <strong>MBBR</strong> is behav<strong>in</strong>g like an ideal completely stirred tank reactor,<br />

(CSTR), and that the general mass balance equation for a given component can be<br />

implied:<br />

<br />

eq.(3.1)<br />

The <strong>in</strong> and output terms are molar fluxes over the reactor boundary, acquired as the<br />

product of the volumetric flow rates, Q (m/s) and the concentrations, c (mole/l).<br />

Production with<strong>in</strong> the system is described by the k<strong>in</strong>etic rate equation, r (mole/m 3 s)<br />

times the reactor volume, V (m 3 ), (negative sign <strong>in</strong>dicat<strong>in</strong>g consumption <strong>in</strong>stead of<br />

<strong>production</strong>). Accumulation is quantified by the molar change of a substance per unit<br />

time, described by a time dependent differential <strong>in</strong>clud<strong>in</strong>g the concentration, c (mol/l)<br />

and the reactor volume, V (m 3 ). The mass balance equation for a component j can be<br />

rewritten as:<br />

( )<br />

mol/s<br />

eq.(3.2)<br />

<br />

For a react<strong>in</strong>g system like the <strong>MBBR</strong> where some substances are consumed and others<br />

are produced various k<strong>in</strong>ds of substances will be pass<strong>in</strong>g the system borders <strong>in</strong> the<br />

<strong>in</strong>fluent, effluent and through the gas phase, see Figure B1.<br />

Figure B1. Mass transfer over the <strong>MBBR</strong> system boundaries.<br />

67


With the considerations; (i) that there is no <strong>N2O</strong> gas <strong>in</strong> the <strong>in</strong>fluent medium, (ii) the<br />

reactor volume is constant and (iii) Q<strong>in</strong> and Qout are equal the mass balance for the<br />

system can be described by:<br />

eq.(3.3)<br />

: ( )<br />

<br />

eq.(3.4)<br />

: 0 ( )<br />

<br />

To get the consumption and <strong>production</strong> rates equation 3 and 4 are rewritten:<br />

<br />

eq.(3.5)<br />

: <br />

( )<br />

<br />

eq.(3.6)<br />

: <br />

( )<br />

<br />

rN <strong>in</strong> the first equation is describ<strong>in</strong>g the consumption rate of the <strong>in</strong>fluent nitrogen, if<br />

there were no <strong>N2O</strong> or any other gaseous <strong>production</strong> <strong>in</strong> the system this term would<br />

entirely correspond to the <strong>production</strong> of N2 gas leav<strong>in</strong>g the system. Here it is assumed<br />

that all removed <strong>in</strong>organic nitrogen is leav<strong>in</strong>g the system <strong>in</strong> gaseous form as N2 or <strong>N2O</strong>.<br />

The accumulation term that would correspond to assimilation <strong>in</strong> equation 3 is neglected.<br />

Calculation example (091007)<br />

Used parameters to calculate the consumption (rN) and <strong>production</strong> (r<strong>N2O</strong> ) rates are<br />

shown <strong>in</strong> Table B1.<br />

Table B1. Calculation parameters used to caluclate r N and r <strong>N2O</strong>.<br />

Parameter value unit<br />

Q 0.540 l /h<br />

V 7.5 l<br />

c<strong>in</strong>N 273.904∙10 -3 g/ l<br />

coutN 97.593∙10 -3 g/l<br />

c <strong>N2O</strong> t1 2.82414∙10 -6 mol/l<br />

c <strong>N2O</strong> t2 2.97601∙10 -6 mol/l<br />

<br />

<br />

0.1519∙10 -6 mol/lm<strong>in</strong><br />

0.540 · (273.904 · 10 97.593 · 10 )<br />

0.2116 · 10 <br />

7.5 · 60<br />

0.540 · (2.97601 · 10 )<br />

0.1519 · 10 0.1555 · 10 <br />

7.5 · 60<br />

g/lm<strong>in</strong><br />

mol/lm<strong>in</strong><br />

68


The rN value is calculated with the mean <strong>in</strong> and effluent concentrations dur<strong>in</strong>g one cycle/<br />

measurement session. For the approximation of the total <strong>N2O</strong> <strong>production</strong> <strong>in</strong> the <strong>MBBR</strong> it<br />

is assumed that the <strong>production</strong> corresponds to the <strong>in</strong>itial value of r<strong>N2O</strong> seen when<br />

aeration is turned off (Figure B2) and that this assumption is valid at all times.<br />

12<br />

N₂O (µmol/l),DO (mg/l)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

N₂O<br />

(µmol/l)<br />

DO<br />

(mg/l)<br />

N₂O (µmol/l), DO (mg/l)<br />

0<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 20 40 60 80<br />

Time (m<strong>in</strong>)<br />

Initial N₂O <strong>production</strong><br />

2.82414<br />

2.97601<br />

20 22 24 26 28 30<br />

N₂O<br />

(µmol/l)<br />

DO<br />

(mg/l)<br />

y = 0.1519x - 0.8207<br />

Time (m<strong>in</strong>)<br />

Figure B2. The accumulation term <strong>in</strong> the <strong>production</strong> rate equation is obta<strong>in</strong>ed as the <strong>in</strong>itial k-value<br />

of the N 2O curve when N 2O starts to accumulate <strong>in</strong> the reactor. The lower part of the figure shows<br />

an enlargement of the area.<br />

The percentage of removed <strong>in</strong>organic nitrogen emitted as <strong>N2O</strong> is f<strong>in</strong>ally obta<strong>in</strong>ed by:<br />

· 2 <br />

<br />

· 100<br />

where r<strong>N2O</strong> given <strong>in</strong> mole <strong>N2O</strong>/l m<strong>in</strong> is converted to g N/l m<strong>in</strong> by multiply<strong>in</strong>g with 2MN,<br />

the molar weight of N <strong>in</strong> g/mole. MN is multiplied by 2 s<strong>in</strong>ce the molar ratio for produced<br />

<strong>N2O</strong>-N to removed <strong>in</strong>organic N is 2:1.<br />

69


Table B2. Calculation parameters used to calculate the percentage N 2O-N produced by removed<br />

<strong>in</strong>organic N.<br />

Parameter value<br />

unit<br />

r<strong>N2O</strong> 0.1555∙10 -6 mole/l m<strong>in</strong><br />

MN 14.01 g/mol<br />

0.2116 · 10 mg/l<br />

rN<br />

0.1555 · 10 · 2 · 14.01<br />

0.2116 · 10 · 100 2.1%<br />

Assumptions made for this calculation are; (i) that the microorganisms <strong>in</strong> the system are<br />

unaffected of the changed operation conditions dur<strong>in</strong>g the time span of one m<strong>in</strong>ute<br />

when the <strong>production</strong> rate is approximated, (ii)that the mass transfer of <strong>N2O</strong> through the<br />

phase boundary between liquid and air is negligible dur<strong>in</strong>g the time <strong>in</strong>terval of one<br />

m<strong>in</strong>ute, (iii) that there is no net change <strong>in</strong> <strong>production</strong> due to operat<strong>in</strong>g conditions dur<strong>in</strong>g<br />

one cycle.<br />

70


Appendix C<br />

Microsensor measurements<br />

12<br />

090918 Intermittent aeration, DO 3.0 (mg/l)<br />

4.5<br />

12<br />

090921 Intermittent aeration, DO 3.0 (mg/l)<br />

4.5<br />

10<br />

3.75<br />

10<br />

3.75<br />

N₂O (µmol/l)<br />

8<br />

6<br />

4<br />

3<br />

2.25<br />

1.5<br />

DO (mg/l)<br />

N₂O sensor<br />

(µmol/l)<br />

DO (mg/l)<br />

NO₂-N (mg/l)<br />

8<br />

6<br />

4<br />

3<br />

2.25<br />

1.5<br />

DO (mg/l)<br />

NO₂-N<br />

biosensor<br />

(mg/l)<br />

DO (mg/l)<br />

2<br />

0.75<br />

2<br />

0.75<br />

0<br />

0<br />

0 20 40 60 80<br />

Time (m<strong>in</strong>)<br />

0<br />

0<br />

0 20 40 60 80<br />

Time (m<strong>in</strong>)<br />

Figure C1.<br />

Figure C4.<br />

30<br />

090918 Intermittent aeration, DO 3.0 (mg/l)<br />

4.5<br />

12<br />

090922 Intermittent aeration, DO 3.0 (mg/l)<br />

4.5<br />

25<br />

3.75<br />

10<br />

3.75<br />

NO₂-N (mg/l)<br />

20<br />

15<br />

10<br />

5<br />

3<br />

2.25<br />

1.5<br />

0.75<br />

DO (mg/l)<br />

NO₂-N<br />

biosensor<br />

(mg/l)<br />

DO (mg/l)<br />

N₂O (µmol/l)<br />

8<br />

6<br />

4<br />

2<br />

3<br />

2.25<br />

1.5<br />

0.75<br />

DO (mg/l)<br />

N₂O<br />

(µmol/l)<br />

DO<br />

(mg/l)<br />

0<br />

0<br />

0 20 40 60 80<br />

Time (m<strong>in</strong>)<br />

0<br />

0<br />

0 20 40 60 80<br />

Time (m<strong>in</strong>)<br />

Figure C2.<br />

Figure C5.<br />

12<br />

10<br />

090921 Intermittent aeration, DO 3.0 (mg/l)<br />

4.5<br />

3.75<br />

40<br />

090922 Intermittent aeration, DO 3.0 (mg/l)<br />

4<br />

N₂O (µmol/l)<br />

8<br />

6<br />

4<br />

2<br />

3<br />

2.25<br />

1.5<br />

0.75<br />

DO (mg/l)<br />

N₂O sensor<br />

(µmol/l)<br />

DO (mg/l)<br />

NO₂-N (mg/l)<br />

30<br />

20<br />

10<br />

3<br />

2<br />

1<br />

DO (mg/l)<br />

NO₂-N<br />

biosensor<br />

(mg/l)<br />

DO (mg/l)<br />

0<br />

0<br />

0 20 40 60 80<br />

Time (m<strong>in</strong>)<br />

0<br />

0<br />

0 20 40 60 80<br />

Time (m<strong>in</strong>)<br />

Figure C3.<br />

Figure C6.<br />

71


12<br />

090925 Intermittent aeration, DO 3.0 (mg/l)<br />

4.5<br />

12<br />

090925 Prolonged unaerated period, DO 3.0 (mg/l)<br />

4.5<br />

10<br />

3.75<br />

10<br />

3.75<br />

N₂O (µmol/l)<br />

8<br />

6<br />

4<br />

3<br />

2.25<br />

1.5<br />

DO (mg/l)<br />

N₂O sensor<br />

(µmol/l)<br />

DO (mg/l)<br />

NO₂-N (mg/l)<br />

8<br />

6<br />

4<br />

3<br />

2.25<br />

1.5<br />

DO (mg/l)<br />

NO₂-N<br />

biosensor<br />

(mg/l)<br />

DO (mg/l)<br />

2<br />

0.75<br />

2<br />

0.75<br />

0<br />

0<br />

0 20 40 60 80<br />

Time (m<strong>in</strong>)<br />

0<br />

0<br />

0 50 100 150 200<br />

Time (m<strong>in</strong>)<br />

Figure C7.<br />

Figure C10.<br />

12<br />

090925 Intermittent aeration, DO 3.0 (mg/l)<br />

4.5<br />

12<br />

090926 Prolonged unaerated period, DO 3.0 (mg/l)<br />

4.5<br />

10<br />

3.75<br />

10<br />

3.75<br />

NO₂-N (mg/l)<br />

8<br />

6<br />

4<br />

2<br />

3<br />

2.25<br />

1.5<br />

0.75<br />

DO (mg/l)<br />

NO₂-N<br />

biosensor<br />

(mg/l)<br />

DO (mg/l)<br />

N₂O (µmol/l)<br />

8<br />

6<br />

4<br />

2<br />

3<br />

2.25<br />

1.5<br />

0.75<br />

DO (mg/l)<br />

N₂O<br />

(µmol/l)<br />

DO<br />

(mg/l)<br />

0<br />

0<br />

0 20 40 60 80<br />

Time (m<strong>in</strong>)<br />

0<br />

0<br />

0 50 100 150 200<br />

Time (m<strong>in</strong>)<br />

Figure C8.<br />

Figure C11.<br />

12<br />

090925 Prolonged unaerated period, DO 3.0 (mg/l)<br />

4.5<br />

12<br />

090926 Prolonged unaerated period, DO 3.0 (mg/l)<br />

10<br />

3.75<br />

10<br />

3.75<br />

N₂O (µmol/l)<br />

8<br />

6<br />

4<br />

2<br />

3<br />

2.25<br />

1.5<br />

0.75<br />

DO (mg/l)<br />

N₂O sensor<br />

(µmol/l)<br />

DO (mg/l)<br />

NO₂-N (mg/l)<br />

8<br />

6<br />

4<br />

2<br />

3<br />

2.25<br />

1.5<br />

0.75<br />

DO (mg/l)<br />

NO₂-N (mg/l)<br />

DO (mg/l)<br />

0<br />

0<br />

0 50 100 150 200<br />

Time (m<strong>in</strong>)<br />

0<br />

0<br />

0 50 100 150 200<br />

Time (m<strong>in</strong>)<br />

Figure C9.<br />

Figure C12.<br />

72


12<br />

090927 Prolonged unaerated period, DO 3.0 (mg/l)<br />

4.5<br />

12<br />

091006 Cont<strong>in</strong>ously operation, DO 1.5 (mg/l)<br />

10<br />

3.75<br />

10<br />

3.75<br />

N₂O (µmol/l)<br />

8<br />

6<br />

4<br />

2<br />

3<br />

2.25<br />

1.5<br />

0.75<br />

DO (mg/l)<br />

N₂O<br />

(µmol/l)<br />

DO (mg/l)<br />

NO₂-N (mg/l)<br />

8<br />

6<br />

4<br />

2<br />

3<br />

2.25<br />

1.5<br />

0.75<br />

DO (mg/l)<br />

NO₂-N (mg/l)<br />

DO (mg/l)<br />

0<br />

0<br />

0 50 100 150 200<br />

Time (m<strong>in</strong>)<br />

0<br />

0<br />

0 20 40 60 80<br />

Time (m<strong>in</strong>)<br />

Figure C13.<br />

Figure C16.<br />

12<br />

090927 Prolonged unaerated period, DO 3.0 (mg/l)<br />

4.5<br />

12<br />

091007 Cont<strong>in</strong>ously operation, DO 1.5 (mg/l)<br />

4.5<br />

10<br />

3.75<br />

10<br />

3.75<br />

NO₂-N (mg/l)<br />

8<br />

6<br />

4<br />

3<br />

2.25<br />

1.5<br />

DO (mg/l)<br />

NO₂-N<br />

biosensor<br />

(mg/l)<br />

DO (mg/l)<br />

N₂O (µmol/l)<br />

8<br />

6<br />

4<br />

3<br />

2.25<br />

1.5<br />

DO (mg/l)<br />

N₂O<br />

(µmol/l)<br />

DO (mg/l)<br />

2<br />

0.75<br />

2<br />

0.75<br />

0<br />

0<br />

0 50 100 150 200<br />

Time (m<strong>in</strong>)<br />

0<br />

0<br />

0 20 40 60 80<br />

Time (m<strong>in</strong>)<br />

Figure C14.<br />

Figure C17.<br />

12<br />

091006 Cont<strong>in</strong>ously operation, DO 1.5 (mg/l)<br />

4.5<br />

12<br />

091007 Cont<strong>in</strong>ously operation, DO 1.5 (mg/l)<br />

10<br />

3.75<br />

10<br />

3.75<br />

N₂O (µmol/l)<br />

8<br />

6<br />

4<br />

3<br />

2.25<br />

1.5<br />

DO (mg/l)<br />

N₂O<br />

(µmol/l)<br />

DO (mg/l)<br />

NO₂-N (mg/l)<br />

8<br />

6<br />

4<br />

3<br />

2.25<br />

1.5<br />

DO (mg/l)<br />

NO₂-N<br />

biosensor<br />

(mg/l)<br />

DO (mg/l)<br />

2<br />

0.75<br />

2<br />

0.75<br />

0<br />

0<br />

0 20 40 60 80<br />

Time (m<strong>in</strong>)<br />

0<br />

0<br />

0 20 40 60 80<br />

Time (m<strong>in</strong>)<br />

Figure C15.<br />

Figure C18.<br />

73


12<br />

091010 Cont<strong>in</strong>ously operation, DO 1.5 (mg/l)<br />

4.5<br />

12<br />

091014 Cont<strong>in</strong>ously operation, DO 1.0 (mg/l)<br />

4.5<br />

10<br />

3.75<br />

10<br />

3.75<br />

N₂O (µmol/l)<br />

8<br />

6<br />

4<br />

2<br />

3<br />

2.25<br />

1.5<br />

0.75<br />

DO (mg/l)<br />

N₂O<br />

(µmol/l)<br />

DO (mg/l)<br />

N₂O (µmol/l)<br />

8<br />

6<br />

4<br />

2<br />

3<br />

2.25<br />

1.5<br />

0.75<br />

DO (mg/l)<br />

N₂O<br />

(µmol/l)<br />

DO<br />

(mg/l)<br />

0<br />

0<br />

0 20 40 60 80<br />

Time (m<strong>in</strong>)<br />

0<br />

0<br />

0 20 40 60 80<br />

Time (m<strong>in</strong>)<br />

Figure C19.<br />

Figure C22.<br />

12<br />

091010 Cont<strong>in</strong>ously operation, DO 1.5 (mg/l)<br />

12<br />

091015 Cont<strong>in</strong>uously operation, DO 1.0 (mg/l), aeration with<br />

N2 gas.<br />

4.5<br />

10<br />

3.75<br />

10<br />

3.75<br />

NO₂-N (mg/l)<br />

8<br />

6<br />

4<br />

2<br />

3<br />

2.25<br />

1.5<br />

0.75<br />

DO (mg/l)<br />

NO₂-N (mg/l)<br />

DO (mg/l)<br />

N₂O (µmol/l)<br />

8<br />

6<br />

4<br />

2<br />

3<br />

2.25<br />

1.5<br />

0.75<br />

DO (mg/l)<br />

N₂O<br />

(µmol/l)<br />

DO<br />

(mg/l)<br />

0<br />

0<br />

0 20 40 60 80<br />

Time (m<strong>in</strong>)<br />

0<br />

0 20 40 60 80<br />

Time (m<strong>in</strong>)<br />

0<br />

Figure C20.<br />

Figure C23.<br />

12<br />

091013 Cont<strong>in</strong>ously operation, DO 1.0 (mg/l)<br />

4.5<br />

12<br />

091016 Cont<strong>in</strong>uously operation, DO 1.0 (mg/l), aeration with<br />

N2 gas.<br />

4.5<br />

10<br />

3.75<br />

10<br />

3.75<br />

N₂O (µmol/l)<br />

8<br />

6<br />

4<br />

3<br />

2.25<br />

1.5<br />

DO (mg/l)<br />

N₂O<br />

(µmol/l)<br />

DO (mg/l)<br />

N₂O (µmol/l)<br />

8<br />

6<br />

4<br />

3<br />

2.25<br />

1.5<br />

DO (mg/l)<br />

N₂O<br />

(µmol/l)<br />

DO (mg/l)<br />

2<br />

0.75<br />

2<br />

0.75<br />

0<br />

0<br />

0 20 40 60 80<br />

Time (m<strong>in</strong>)<br />

0<br />

0 20 40 60 80<br />

Time (m<strong>in</strong>)<br />

0<br />

Figure C 21<br />

Figure C24.<br />

74


12<br />

091016 Cont<strong>in</strong>uously operation, DO 1.0 (mg/l), aeration with<br />

N2 gas.<br />

4.5<br />

12<br />

091018 Cont<strong>in</strong>uously operation, DO 1.5 (mg/l), aeration with<br />

N2 gas.<br />

10<br />

3.75<br />

10<br />

3.75<br />

NO₂-N (mg/l)<br />

8<br />

6<br />

4<br />

2<br />

3<br />

2.25<br />

1.5<br />

0.75<br />

DO (mg/l)<br />

NO₂-N<br />

biosensor<br />

(mg/l)<br />

DO (mg/l)<br />

N₂O (µmol/l)<br />

8<br />

6<br />

4<br />

2<br />

3<br />

2.25<br />

1.5<br />

0.75<br />

DO (mg/l)<br />

N₂O<br />

(µmol/l)<br />

DO<br />

(mg/l)<br />

0<br />

0 20 40 60 80<br />

Time (m<strong>in</strong>)<br />

0<br />

0<br />

0 20 40 60 80<br />

Time (m<strong>in</strong>)<br />

0<br />

Figure C25.<br />

Figure C 28<br />

12<br />

091017 Cont<strong>in</strong>uously operation, DO 1.5 (mg/l), aeration with<br />

N2 gas.<br />

4.5<br />

12<br />

091018 Cont<strong>in</strong>uously operation, DO 1.5 (mg/l), aeration with<br />

N2 gas.<br />

10<br />

3.75<br />

10<br />

3.75<br />

N₂O (µmol/l)<br />

8<br />

6<br />

4<br />

3<br />

2.25<br />

1.5<br />

DO (mg/l)<br />

N₂O<br />

(µmol/l)<br />

DO (mg/l)<br />

N₂O (µmol/l)<br />

8<br />

6<br />

4<br />

3<br />

2.25<br />

1.5<br />

DO (mg/l)<br />

NO₂-N<br />

biosensor<br />

(mg/l)<br />

DO (mg/l)<br />

2<br />

0.75<br />

2<br />

0.75<br />

0<br />

0 20 40 60 80<br />

Time (m<strong>in</strong>)<br />

0<br />

0<br />

0 20 40 60 80<br />

Time (m<strong>in</strong>)<br />

0<br />

Figure C26.<br />

Figure C29.<br />

12<br />

091017 Cont<strong>in</strong>uously operation, DO 1.5 (mg/l), aeration with<br />

N2 gas.<br />

N₂O (µmol/l)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

3.75<br />

3<br />

2.25<br />

1.5<br />

0.75<br />

DO (mg/l)<br />

NO₂-N<br />

biosensor<br />

(mg/l)<br />

DO (mg/l)<br />

0<br />

0 20 40 60 80<br />

Time (m<strong>in</strong>)<br />

0<br />

Figure C27.<br />

75


Appendix D<br />

Nitrogen grab samples<br />

090913 NH₄-N<br />

090913 DO, NO₂-N biosensor, NO₂-N LCK 342<br />

NH₄-N (mg/l)<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

NH₄-N <strong>in</strong><br />

(mg/l)<br />

NH₄-N out<br />

(mg/l)<br />

DO, NO₂-N (mg/l)<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

NO₂-N out<br />

(mg/l)<br />

NO₂-N<br />

biosensor<br />

(mg/l)<br />

DO (mg/l)<br />

0<br />

0<br />

0 20 40 60<br />

0 20 40 60<br />

Time (m<strong>in</strong>)<br />

Time (m<strong>in</strong>)<br />

Figure D1.<br />

Figure D4.<br />

090913 NO₃-N<br />

090918 NH₄-N<br />

40<br />

350<br />

NO₃-N (mg/l)<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

NO₃-N <strong>in</strong><br />

(mg/l)<br />

NO₃-N out<br />

(mg/l)<br />

NH₄-N (mg/l)<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

NH₄-N <strong>in</strong><br />

(mg/l)<br />

NH₄-N out<br />

(mg/l)<br />

0 20 40 60<br />

0 20 40 60<br />

Time (m<strong>in</strong>)<br />

Time (m<strong>in</strong>)<br />

Figure D2.<br />

Figure D5.<br />

090913 NO₂-N<br />

090918 NOx-N<br />

NO₂-N (mg/l)<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

NO₂-N <strong>in</strong><br />

(mg/l)<br />

NO₂-N out<br />

(mg/l)<br />

NOx-N (mg/l)<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

NOx-N <strong>in</strong><br />

NOx-N ut<br />

0 20 40 60<br />

0 20 40 60<br />

Time (m<strong>in</strong>)<br />

Time (m<strong>in</strong>)<br />

Figure D3.<br />

Figure D6.<br />

77


350<br />

090921 NH₄-N<br />

350<br />

090922 NH₄-N<br />

300<br />

300<br />

NH₄-N (mg/l)<br />

250<br />

200<br />

150<br />

100<br />

50<br />

NH₄-N <strong>in</strong><br />

(mg/l)<br />

NH₄-N out<br />

(mg/l)<br />

NH₄-N (mg/l)<br />

250<br />

200<br />

150<br />

100<br />

50<br />

NH₄-N <strong>in</strong><br />

(mg/l)<br />

NH₄-N out<br />

(mg/l)<br />

0<br />

0 20 40 60<br />

0<br />

0.000 20.000 40.000 60.000<br />

Time (m<strong>in</strong>)<br />

Time (m<strong>in</strong>)<br />

Figure D7.<br />

Figure D10.<br />

70<br />

090921 NOx-N<br />

70<br />

090922 NOx-N<br />

60<br />

60<br />

NOx-N (mg/l)<br />

50<br />

40<br />

30<br />

20<br />

10<br />

NOx-N <strong>in</strong><br />

(mg/l)<br />

NOx-N out<br />

(mg/l)<br />

NOx-N (mg/l)<br />

50<br />

40<br />

30<br />

20<br />

10<br />

NOx-N <strong>in</strong><br />

(mg/l)<br />

NOx-N <strong>in</strong><br />

(mg/l)<br />

0<br />

0 20 40 60<br />

0<br />

0 20 40 60<br />

Time (m<strong>in</strong>)<br />

Time (m<strong>in</strong>)<br />

Figure D8.<br />

Figure D11.<br />

DO, NO₂-N (mg/l)<br />

9.0<br />

8.0<br />

7.0<br />

6.0<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

0.0<br />

090921 DO, NO₂-N biosensor, NO₂-N LCK 342<br />

0 20 40 60<br />

Time (m<strong>in</strong>)<br />

Figure D9.<br />

NO₂-N<br />

biosensor<br />

(mg/l)<br />

DO (mg/l)<br />

DO, NO₂-N (mg/l)<br />

45.0<br />

40.0<br />

35.0<br />

30.0<br />

25.0<br />

20.0<br />

15.0<br />

10.0<br />

5.0<br />

0.0<br />

Figure 29<br />

090922 DO, NO₂-N biosensor, NO₂-N LCK 342<br />

0 20 40 60<br />

Time (m<strong>in</strong>)<br />

Figure D12.<br />

NO₂-N<br />

biosensor<br />

(mg/l)<br />

DO (mg/l)<br />

78


090925 NH₄-N<br />

090925 Prolonged unaerated period NH₄-N<br />

300<br />

250<br />

250<br />

200<br />

NH₄-N (mg/l)<br />

200<br />

150<br />

100<br />

50<br />

NH₄-N <strong>in</strong><br />

(mg/l)<br />

NH₄-N out<br />

(mg/l)<br />

NH₄-N (mg/l)<br />

150<br />

100<br />

50<br />

NH₄-N <strong>in</strong><br />

(mg/l)<br />

NH₄-N out<br />

(mg/l)<br />

0<br />

0<br />

0 20 40 60<br />

0 50 100 150 200<br />

Time (m<strong>in</strong>)<br />

Time (m<strong>in</strong>)<br />

Figure D13.<br />

Figure D16.<br />

090925 NOx-N<br />

090925 Prolonged unaerated period NOx-N<br />

70<br />

70<br />

60<br />

60<br />

NOx-N (mg/l)<br />

50<br />

40<br />

30<br />

20<br />

10<br />

NOx-N <strong>in</strong><br />

(mg/l)<br />

NOx-N out<br />

(mg/l)<br />

NOx-N (mg/l)<br />

50<br />

40<br />

30<br />

20<br />

10<br />

NOx-N <strong>in</strong><br />

(mg/l)<br />

NOx-N out<br />

(mg/l)<br />

0<br />

0<br />

0 20 40 60<br />

0 50 100 150 200<br />

Time (m<strong>in</strong>)<br />

Time (m<strong>in</strong>)<br />

Figure D14.<br />

Figure D17.<br />

DO, NO₂-N (mg/l)<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

090925 DO, NO₂-N biosensor (mg/l)<br />

NO₂-N<br />

biosensor<br />

(mg/l)<br />

DO (mg/l)<br />

DO, NO₂-N (mg/l)<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

090925 Prolonged unaerated period DO, NO₂-N<br />

biosensor (mg/l)<br />

NO₂-N<br />

biosensor<br />

(mg/l)<br />

DO (mg/l)<br />

0 20 40 60<br />

0 50 100 150 200<br />

Time (m<strong>in</strong>)<br />

Time (m<strong>in</strong>)<br />

Figure D15.<br />

Figure D18.<br />

79


300<br />

090926 Prolonged unaerated period NH₄-N<br />

60<br />

090927 Prolonged unaerated period NOx-N<br />

250<br />

50<br />

NH₄-N (mg/l)<br />

200<br />

150<br />

100<br />

50<br />

NH₄-N <strong>in</strong><br />

(mg/l)<br />

NH₄-N out<br />

(mg/l)<br />

NOx-N (mg/l)<br />

40<br />

30<br />

20<br />

10<br />

NOx-N <strong>in</strong><br />

(mg/l)<br />

NOx-N out<br />

(mg/l)<br />

0<br />

0 50 100 150 200<br />

0<br />

0.00 50.00 100.00 150.00 200.00<br />

Time (m<strong>in</strong>)<br />

Time (m<strong>in</strong>)<br />

Figure D19.<br />

Figure D22.<br />

NOx-N (mg/l)<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

090926 Prolonged unaerated period NOx-N<br />

0 50 100 150 200<br />

Time (m<strong>in</strong>)<br />

Figure D20.<br />

NOx-N <strong>in</strong><br />

(mg/l)<br />

NOx-N out<br />

(mg/l)<br />

NOx-N (mg/l)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

090927 Prolonged unaerated period NOx-N<br />

0.00 50.00 100.00 150.00 200.00<br />

Time (m<strong>in</strong>)<br />

Figure D23.<br />

NOx-N <strong>in</strong><br />

(mg/l)<br />

NOx-N out<br />

(mg/l)<br />

DO, NO₂-N (mg/l)<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

090926 Prolonged unaerated period DO, NO₂-N<br />

biosensor (mg/l)<br />

0 50 100 150 200<br />

Time (m<strong>in</strong>)<br />

Figure D21.<br />

NO₂-N<br />

biosensor<br />

(mg/l)<br />

DO (mg/l)<br />

DO, NO₂-N (mg/l)<br />

090927 Prolonged unaerated period DO, NO₂-N<br />

biosensor (mg/l), NO₂-N LCK 342<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0.00 50.00 100.00 150.00 200.00<br />

Time (m<strong>in</strong>)<br />

Figure D24.<br />

NO₂-N<br />

biosensor<br />

(mg/l)<br />

80


NH₄-N (mg/l)<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

091006 NH₄-N<br />

0 20 40 60<br />

NH₄-N <strong>in</strong><br />

(mg/l)<br />

NH₄-N out<br />

(mg/l)<br />

NOx-N (mg/l)<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

091007 NOx-N<br />

0 20 40 60<br />

NOx-N <strong>in</strong><br />

(mg/l)<br />

NOx-N out<br />

(mg/l)<br />

Time (m<strong>in</strong>)<br />

Time (m<strong>in</strong>)<br />

Figure D25.<br />

Figure D28.<br />

DO, NO₂-N (mg/l)<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

091006 DO, NO₂-N biosensor (mg/l)<br />

0 20 40 60<br />

NO₂-N<br />

biosensor<br />

(mg/l)<br />

DO (mg/l)<br />

DO, NO₂-N (mg/l)<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

091007 DO, NO₂-N biosensor (mg/l)<br />

0 20 40 60<br />

NO₂<br />

biosensor<br />

(mg/l)<br />

DO (mg/l)<br />

NO₂-N LCK<br />

342 out<br />

(mg/l)<br />

Time (m<strong>in</strong>)<br />

Time (m<strong>in</strong>)<br />

Figure D26.<br />

Figure D29.<br />

300<br />

091007 NH₄-N<br />

300<br />

091010 NH₄-N<br />

250<br />

250<br />

NH₄-N (mg/l)<br />

200<br />

150<br />

100<br />

50<br />

NH₄-N <strong>in</strong><br />

(mg/l)<br />

NH₄-N out<br />

(mg/l)<br />

NH₄-N (mg/l)<br />

200<br />

150<br />

100<br />

50<br />

NH₄-N <strong>in</strong><br />

(mg/l)<br />

NH₄-N out<br />

(mg/l)<br />

0<br />

0 20 40 60<br />

0<br />

0 20 40 60<br />

Time (m<strong>in</strong>)<br />

Time (m<strong>in</strong>)<br />

Figure D27.<br />

Figure D30.<br />

81


091010 NOx-N<br />

091013 NOx-N<br />

NOx-N (mg/l)<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

NOx-N <strong>in</strong><br />

(mg/l)<br />

NOx-N out<br />

(mg/l)<br />

NOx-N (mg/l)<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

NOx-N <strong>in</strong><br />

(mg/l)<br />

NOx-N out<br />

(mg/l)<br />

0 20 40 60<br />

0 20 40 60<br />

Time (m<strong>in</strong>)<br />

Time (m<strong>in</strong>)<br />

Figure D31.<br />

Figure D34.<br />

091010 DO, NO₂-N biosensor (mg/l)<br />

091013 NO₂-N<br />

DO, NO₂-N (mg/l)<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

NO₂-N<br />

biosensor<br />

(mg/l)<br />

DO (mg/l)<br />

NO₂-N LCK<br />

342 out<br />

(mg/l)<br />

NOx-N (mg/l)<br />

5<br />

4<br />

4<br />

3<br />

3<br />

2<br />

2<br />

1<br />

1<br />

0<br />

NO₂-N <strong>in</strong><br />

(mg/l)<br />

NO₂-N out<br />

(mg/l)<br />

0 20 40 60<br />

0 20 40 60<br />

Time (m<strong>in</strong>)<br />

Time (m<strong>in</strong>)<br />

Figure D32.<br />

Figure D35.<br />

091013 NH₄-N<br />

091013 NO₃-N<br />

300<br />

35<br />

250<br />

30<br />

NH₄-N (mg/l)<br />

200<br />

150<br />

100<br />

50<br />

NH₄-N <strong>in</strong><br />

(mg/l)<br />

NH₄-N out<br />

(mg/l)<br />

NOx-N (mg/l)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

NO₃-N <strong>in</strong><br />

(mg/l)<br />

NO₃-N out<br />

(mg/l)<br />

0<br />

0<br />

0 20 40 60<br />

0 20 40 60<br />

Time (m<strong>in</strong>)<br />

Time (m<strong>in</strong>)<br />

Figure D33.<br />

Figure D36.<br />

82


300<br />

091014 NH₄-N<br />

30<br />

091014 NO₃-N<br />

250<br />

25<br />

NH₄-N (mg/l)<br />

200<br />

150<br />

100<br />

50<br />

NH₄-N <strong>in</strong><br />

(mg/l)<br />

NH₄-N out<br />

(mg/l)<br />

NOx-N (mg/l)<br />

20<br />

15<br />

10<br />

5<br />

NO₃-N <strong>in</strong><br />

(mg/l)<br />

NO₃-N out<br />

(mg/l)<br />

0<br />

0 20 40 60<br />

0<br />

0 20 40 60<br />

Time (m<strong>in</strong>)<br />

Time (m<strong>in</strong>)<br />

Figure D37.<br />

Figure D40.<br />

NOx-N (mg/l)<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

091014 NOx-N<br />

0 20 40 60<br />

NOx-N <strong>in</strong><br />

(mg/l)<br />

NOx-N out<br />

(mg/l)<br />

NH₄-N (mg/l)<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

091015 NH₄-N<br />

0 20 40 60<br />

NH₄-N <strong>in</strong><br />

(mg/l)<br />

NH₄-N out<br />

(mg/l)<br />

Time (m<strong>in</strong>)<br />

Time (m<strong>in</strong>)<br />

Figure D38.<br />

Figure D41.<br />

NOx-N (mg/l)<br />

5<br />

4<br />

4<br />

3<br />

3<br />

2<br />

2<br />

1<br />

1<br />

0<br />

091014 NO₂-N<br />

0 20 40 60<br />

NO₂-N <strong>in</strong><br />

(mg/l)<br />

NO₂-N out<br />

(mg/l)<br />

NOx-N (mg/l)<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

091015 NOx-N<br />

0 20 40 60<br />

NOx-N <strong>in</strong><br />

(mg/l)<br />

NOx-N out<br />

(mg/l)<br />

Time (m<strong>in</strong>)<br />

Time (m<strong>in</strong>)<br />

Figure D39.<br />

Figure D42.<br />

83


35<br />

091015 NO₃-N<br />

70<br />

091016 NOx-N<br />

30<br />

60<br />

NOx-N (mg/l)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

NO₃-N <strong>in</strong><br />

(mg/l)<br />

NO₃-N out<br />

(mg/l)<br />

NOx-N (mg/l)<br />

50<br />

40<br />

30<br />

20<br />

10<br />

NOx-N <strong>in</strong><br />

(mg/l)<br />

NOx-N out<br />

(mg/l)<br />

0<br />

0 20 40 60<br />

0<br />

0 20 40 60<br />

Time (m<strong>in</strong>)<br />

Time (m<strong>in</strong>)<br />

Figure D43.<br />

Figure D46.<br />

NOx-N (mg/l)<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

091015 NO₂-N<br />

0 20 40 60<br />

NO₂-N <strong>in</strong><br />

(mg/l)<br />

NO₂-N out<br />

(mg/l)<br />

DO, NO₂-N (mg/l)<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

091016 DO, NO₂-N biosensor (mg/l),<br />

0 20 40 60<br />

NO₂-N<br />

biosensor<br />

(mg/l)<br />

DO (mg/l)<br />

NO₂-N out<br />

LCK 342<br />

(mg/l)<br />

Time (m<strong>in</strong>)<br />

Time (m<strong>in</strong>)<br />

Figure D44.<br />

Figure D47.<br />

350<br />

091016 NH₄-N<br />

35<br />

091016 NO₃-N<br />

300<br />

30<br />

NH₄-N (mg/l)<br />

250<br />

200<br />

150<br />

100<br />

50<br />

NH₄-N <strong>in</strong><br />

(mg/l)<br />

NH₄-N out<br />

(mg/l)<br />

NOx-N (mg/l)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

NO₃-N <strong>in</strong><br />

(mg/l)<br />

NO₃-N out<br />

(mg/l)<br />

0<br />

0 20 40 60<br />

0<br />

0 20 40 60<br />

Time (m<strong>in</strong>)<br />

Time (m<strong>in</strong>)<br />

Figure D45.<br />

Figure D48.<br />

84


NOx-N (mg/l)<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

091016 NO₂-N<br />

0 20 40 60<br />

NO₂-N <strong>in</strong><br />

(mg/l)<br />

NO₂-N out<br />

(mg/l)<br />

DO, NO₂-N (mg/l)<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

091017 DO, NO₂-N biosensor (mg/l),<br />

0 20 40 60<br />

NO₂-N<br />

biosensor<br />

(mg/l)<br />

DO (mg/l)<br />

NO₂-N out<br />

(mg/l)<br />

Time (m<strong>in</strong>)<br />

Time (m<strong>in</strong>)<br />

Figure D49.<br />

Figure D52.<br />

350<br />

091017 NH₄-N<br />

35<br />

091017 NO₃-N<br />

300<br />

30<br />

NH₄-N (mg/l)<br />

250<br />

200<br />

150<br />

100<br />

50<br />

NH₄-N <strong>in</strong><br />

(mg/l)<br />

NH₄-N out<br />

(mg/l)<br />

NOx-N (mg/l)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

NO₃-N <strong>in</strong><br />

(mg/l)<br />

NO₃-N out<br />

(mg/l)<br />

0<br />

0 20 40 60<br />

0<br />

0 20 40 60<br />

Time (m<strong>in</strong>)<br />

Time (m<strong>in</strong>)<br />

Figure D50.<br />

Figure D53.<br />

70<br />

091017 NOx-N<br />

12<br />

091017 NO₂-N<br />

NOx-N (mg/l)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

NOx-N <strong>in</strong><br />

(mg/l)<br />

NOx-N out<br />

(mg/l)<br />

NOx-N (mg/l)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

NO₂-N <strong>in</strong><br />

(mg/l)<br />

NO₂-N out<br />

(mg/l)<br />

0<br />

0 20 40 60<br />

0<br />

0 20 40 60<br />

Time (m<strong>in</strong>)<br />

Time (m<strong>in</strong>)<br />

Figure D51.<br />

Figure D 54<br />

85


350<br />

091018 NH₄-N<br />

35<br />

091018NO₃-N<br />

300<br />

30<br />

NH₄-N (mg/l)<br />

250<br />

200<br />

150<br />

100<br />

50<br />

NH₄-N <strong>in</strong><br />

(mg/l)<br />

NH₄-N out<br />

(mg/l)<br />

NOx-N (mg/l)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

NO₃-N <strong>in</strong><br />

(mg/l)<br />

NO₃-N out<br />

(mg/l)<br />

0<br />

0 20 40 60<br />

0<br />

0 20 40 60<br />

Time (m<strong>in</strong>)<br />

Time (m<strong>in</strong>)<br />

Figure D55.<br />

Figure D58.<br />

70<br />

091018 NOx-N<br />

12<br />

091018 NO₂-N<br />

NOx-N (mg/l)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

NOx-N <strong>in</strong><br />

(mg/l)<br />

NOx-N out<br />

(mg/l)<br />

NOx-N (mg/l)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

NO₂-N <strong>in</strong><br />

(mg/l)<br />

NO₂-N out<br />

(mg/l)<br />

0<br />

0 20 40 60<br />

0<br />

0 20 40 60<br />

Time (m<strong>in</strong>)<br />

Time (m<strong>in</strong>)<br />

Figure D56.<br />

Figure D59.<br />

091018 DO, NO₂-N biosensor (mg/l),<br />

DO, NO₂-N (mg/l)<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 20 40 60<br />

NO₂-N<br />

biosensor<br />

(mg/l)<br />

DO (mg/l)<br />

NO₂-N out<br />

(mg/l)<br />

Time (m<strong>in</strong>)<br />

Figure D57.<br />

86


Appendix E Scientific Article<br />

<strong>N2O</strong> <strong>production</strong> <strong>in</strong> a s<strong>in</strong>gle <strong>stage</strong> <strong>nitritation</strong>/<strong>anammox</strong> <strong>MBBR</strong> <strong>process</strong>.<br />

Sara Ekström<br />

Water and Environmental Eng<strong>in</strong>eer<strong>in</strong>g Department of Chemical Eng<strong>in</strong>eer<strong>in</strong>g, Lund<br />

University, Sweden.<br />

Abstract. The nitrous oxide (N 2O) <strong>production</strong> from a laboratory <strong>nitritation</strong>/<strong>anammox</strong> <strong>MBBR</strong> reactor was<br />

determ<strong>in</strong>ed from N 2O measurements <strong>in</strong> the water phase with a Clark-type microsensor. The reactor was<br />

operated at <strong>in</strong>termittent and cont<strong>in</strong>uous aeration to evaluate which operation mode that gives the highest<br />

N 2O <strong>production</strong>. Different aeration rates were used dur<strong>in</strong>g cont<strong>in</strong>uous operation to exam<strong>in</strong>e the <strong>in</strong>fluence<br />

of dissolve oxygen (DO) on N 2O emissions. Measurements of N 2O <strong>production</strong> dur<strong>in</strong>g prolonged unaerated<br />

periods were performed to exam<strong>in</strong>e possible mechanisms of the N 2O <strong>production</strong>. The <strong>MBBR</strong> produces 6-<br />

11% of removed <strong>in</strong>organic nitrogen as N 2O dur<strong>in</strong>g <strong>in</strong>termittent operation, whereas only 2-3% was<br />

produced dur<strong>in</strong>g cont<strong>in</strong>uous operation at low oxygen concentrations. Higher <strong>in</strong>organic nitrogen removal<br />

was achieved dur<strong>in</strong>g cont<strong>in</strong>uous operation and better <strong>process</strong> performance is thought to be one<br />

explanation of lower N 2O emissions dur<strong>in</strong>g cont<strong>in</strong>uous operations of the laboratory <strong>MBBR</strong>.<br />

Introduction<br />

Nitrous oxide, a greenhouse gas with a global warm<strong>in</strong>g potential 320 times stronger<br />

than that of CO2, is known to be produced dur<strong>in</strong>g nitrification and denitrification<br />

<strong>process</strong>es used to remove nitrogen from wastewaters (Jacob, 1999). Variable<br />

temperature and load<strong>in</strong>g rates of <strong>in</strong>organic nitrogen compounds, low pH, alternat<strong>in</strong>g<br />

aerobic and anaerobic conditions together with growth rate and microbial composition<br />

are parameters that have great <strong>in</strong>fluence on <strong>N2O</strong> emissions from a wastewater treatment<br />

plant (Kampschreur et al., 2008).<br />

Wastewater treatment plants us<strong>in</strong>g biologic treatment <strong>process</strong>es for nutrient removal<br />

are produc<strong>in</strong>g excessive sludge giv<strong>in</strong>g rise to ammonium rich effluent from the<br />

anaerobic sludge digestion. This <strong>in</strong>ternal wastewater stream is recomb<strong>in</strong>ed with the<br />

<strong>in</strong>fluent of the treatment plant and corresponds to 15-20% of the total nitrogen load of<br />

the wastewater treatment plant (Fux et al., 2003). In the early 1990s a new biological<br />

treatment <strong>process</strong> for nitrogen removal through anaerobic ammonium oxidation<br />

(<strong>anammox</strong>) with nitrite as electron acceptor was discovered by research teams <strong>in</strong><br />

Holland, Germany and Switzerland (Mulder et al., 1995, Hippen et al., 1997, Siegrist et<br />

al., 1998). Total stoichiometry of the <strong>anammox</strong> <strong>process</strong> has been estimated by Strous et<br />

al., (1998):<br />

1NH <br />

<br />

1.32NO 0.066HCO <br />

<br />

0.13H <br />

1.02 N 0.26NO <br />

<br />

0.066CH2O . N . 2.03 H O.<br />

Anammox has turned out to be suitable for treatment of reject waters and other<br />

problematic wastewaters with a low COD/N ratio and high ammonium concentrations.<br />

87


The bacteria perform<strong>in</strong>g the microbial conversion of nitrite <strong>in</strong>to d<strong>in</strong>itrogen gas are strict<br />

anaerobe autotrophs and the <strong>process</strong> has the potential to replace conventional<br />

nitrification/denitrification of recirculated high strength ammonium streams with<strong>in</strong> the<br />

wastewater treatment plant (Strous et al., 1997). No additional carbon source is needed,<br />

the oxygen demand is reduced by 50-60% <strong>in</strong> the nitrify<strong>in</strong>g step and the aeration can<br />

thereby be strongly reduced (Jetten et al., 2001, Fux et al., 2002). This means that the<br />

<strong>process</strong> offers an opportunity to decrease the carbon footpr<strong>in</strong>t of the wastewater<br />

treatment plant <strong>in</strong> terms of sav<strong>in</strong>g possibilities of both additional carbon source and<br />

power consumption (Jetten et al., 2004). Further advantages with the <strong>anammox</strong> <strong>process</strong><br />

is that the <strong>production</strong> of surplus sludge is m<strong>in</strong>imized and that high volumetric load<strong>in</strong>g<br />

rates can be obta<strong>in</strong>ed result<strong>in</strong>g <strong>in</strong> reduced operational and <strong>in</strong>vestment costs (Abma et<br />

al., 2007). Indications that the <strong>process</strong> may produce significant amounts of <strong>N2O</strong> gas with<br />

negative environmental impacts detract<strong>in</strong>g the <strong>process</strong> advantages. The aim of this<br />

study was to determ<strong>in</strong>e the amount of <strong>N2O</strong> produced <strong>in</strong> a <strong>nitritation</strong>/ <strong>anammox</strong> <strong>MBBR</strong><br />

<strong>process</strong> dur<strong>in</strong>g different operation modes.<br />

Materials and methods<br />

<strong>MBBR</strong> system<br />

A 7.5 litre laboratory <strong>MBBR</strong> (see Figure 1) fed with a synthetic medium was used to<br />

determ<strong>in</strong>e the <strong>N2O</strong> emissions from a s<strong>in</strong>gle <strong>stage</strong> <strong>nitritation</strong>/<strong>anammox</strong> system. The<br />

reactor was orig<strong>in</strong>ally started up <strong>in</strong> October 2008 with a carrier material with already<br />

established biofilm taken from Himmerfjärdsverkets full scale DeAmmon ® reactor. The<br />

used carrier was AnoxKaldnes carrier media type K1 with a protected surface area of<br />

500 m 2 /m 3 . The total volume of carriers <strong>in</strong> the reactor was 3.5 litres which corresponds<br />

to a total protected area of 1.7 m 2 and a fill<strong>in</strong>g degree of 46.7%.<br />

Figure 1. The left part of the figure shows a photograph of the <strong>MBBR</strong> system, the schematic<br />

draw<strong>in</strong>g to the right shows the ma<strong>in</strong> features of the <strong>MBBR</strong> system.<br />

88


Cycle studies<br />

To exam<strong>in</strong>e what operation conditions that seem to produce the largest amounts of <strong>N2O</strong><br />

gas, the reactor was operated at different DO concentrations dur<strong>in</strong>g <strong>in</strong>termittent and<br />

constant aeration. A study where the anoxic phase was prolonged to two hours was<br />

made to observe how the <strong>N2O</strong> <strong>production</strong> was <strong>in</strong>fluenced. Parameters monitored every<br />

m<strong>in</strong>ute on-l<strong>in</strong>e <strong>in</strong> the reactor were; DO, pH, <strong>N2O</strong> and NO2-N. To exam<strong>in</strong>e the<br />

concentration changes of NH4-N, NO2-N and NO3-N grab samples were taken <strong>in</strong> both<br />

<strong>in</strong>fluent and effluent water.<br />

Analytical methods<br />

<strong>N2O</strong> concentrations were measured <strong>in</strong> the water phase with a Clark-type microelectrode<br />

sensor developed by Unisense, Århus, Denmark.<br />

Concentrations of NH4-N, NO2-N and NO3-N were determ<strong>in</strong>ed with Dr Lange<br />

spectrophotometry kit after filtration through Munktel 1.6 µm glass fibre filters. Dur<strong>in</strong>g<br />

cycle studies NO2-N and N-tot were analyzed directly with Dr Lange’s method. Samples<br />

were frozen and flow-<strong>in</strong>jection analysis was used to determ<strong>in</strong>e NH4-N and NOx, the sum<br />

of NO2-N and NO3-N. The NO3-N content was calculated by subtraction of NO2-N from the<br />

sum of the two NOx species.<br />

Dissolved oxygen and pH was measured with a portable meter HQ40d with mounted<br />

oxygen and pH probe. Parameters analysed and method used are summarised <strong>in</strong> Table<br />

15.<br />

Table 15 Analysed parameters and methods.<br />

Analysed parameter Method<br />

<strong>N2O</strong><br />

Unisense <strong>N2O</strong> microsensor<br />

NH4-N<br />

LCK 303/FIA<br />

NO2-N<br />

LCK 342/341/biosensor<br />

NO3-N LCK 339<br />

NOx<br />

FIA<br />

N-tot LCK 238<br />

DO<br />

HQ40d<br />

pH<br />

HQ40d<br />

Results and discussion<br />

Intermittent aeration<br />

The reactor was operated at a DO concentration of ~3 mg/l dur<strong>in</strong>g the aeration phase.<br />

One reactor cycle lasted for one hour with 40 m<strong>in</strong>utes of aeration and 20 m<strong>in</strong>utes of<br />

mechanical mix<strong>in</strong>g. Grab samples <strong>in</strong> the effluent were taken every 6 th m<strong>in</strong>ute. Only three<br />

measurements of the <strong>in</strong>fluent medium was taken <strong>in</strong> one cycle ( 0, 36 and 66 m<strong>in</strong>utes)<br />

s<strong>in</strong>ce it was considered that the variation of the <strong>in</strong>fluent medium dur<strong>in</strong>g one hour should<br />

not be significant.<br />

89


Typical profiles of how <strong>N2O</strong> and DO changes dur<strong>in</strong>g the cycle are shown <strong>in</strong> Figure . The<br />

<strong>N2O</strong> concentration measured <strong>in</strong> the water phase varies with the aeration of the <strong>MBBR</strong>.<br />

When aeration starts at the beg<strong>in</strong>n<strong>in</strong>g of the cycle the airflow strips <strong>N2O</strong> out of the water<br />

phase and the concentration decreases to a constant m<strong>in</strong>imum level. As soon as the<br />

aeration is shut of the <strong>N2O</strong> starts to accumulate <strong>in</strong> the water phase until aeration is<br />

switched on aga<strong>in</strong> and the procedure starts over as shown <strong>in</strong> Figure 2.<br />

N₂O (µmol/l)<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

4.5<br />

3.75<br />

2.25<br />

1.5<br />

0.75<br />

0<br />

0 20 40 60 80<br />

Time (m<strong>in</strong>)<br />

3<br />

DO (mg/l)<br />

N₂O<br />

(µmol/l)<br />

DO<br />

(mg/l)<br />

Figure 2. Concentration profiles of N 2O and O 2, reactor is operated with <strong>in</strong>termittent aeration at a<br />

DO concentration of~3mg/l <strong>in</strong> the aerated phase. The cycle study starts at the beg<strong>in</strong>n<strong>in</strong>g of the<br />

aerated period. N 2O gas is stripped from the water phase at the same time as the oxygen<br />

concentration rises.<br />

Initial <strong>N2O</strong> <strong>production</strong> varies between 6-11% of <strong>in</strong>fluent nitrogen concentration that is<br />

converted <strong>in</strong>to d<strong>in</strong>itrogen gas (here after referred to as removed <strong>in</strong>organic N-<br />

concentration), while the maximum <strong>production</strong> ranges from 11-30% of removed<br />

<strong>in</strong>organic nitrogen.<br />

Prolonged study, <strong>in</strong>termittent aeration<br />

A study of the effect of prolonged, <strong>in</strong>termittent aeration was made <strong>in</strong> order to observe<br />

how the <strong>N2O</strong> <strong>production</strong> was <strong>in</strong>fluenced by a longer anoxic period, results are shown <strong>in</strong><br />

Figure 3. The reactor was operated <strong>in</strong> the same manners as above and the same<br />

sampl<strong>in</strong>g procedure was applied. After the anoxic period of 20 m<strong>in</strong>utes when the<br />

aeration usually went on dur<strong>in</strong>g a normal cycle the mechanical mix<strong>in</strong>g proceeded for<br />

another two hours.<br />

90


12<br />

10<br />

4.5<br />

3.75<br />

N₂O (µmol/l)<br />

8<br />

6<br />

4<br />

2<br />

3<br />

2.25<br />

1.5<br />

0.75<br />

DO (mg/l)<br />

N₂O<br />

(µmol/l)<br />

DO<br />

(mg/l)<br />

0<br />

0<br />

0 50 100 150 200<br />

Time (m<strong>in</strong>)<br />

Figure 3. Concentration profiles of N 2O and O 2 dur<strong>in</strong>g prolonged unaerated period.<br />

At first the <strong>N2O</strong> accumulation is rather l<strong>in</strong>ear, when DO decreases under 1 mg/l the<br />

accumulation rate of <strong>N2O</strong> is reduced until a maximum concentration is reached at DO<br />

concentrations close to 0 mg/l. The <strong>N2O</strong> concentration is constant under a period of 20-<br />

50 m<strong>in</strong>utes and then slowly starts to decrease as seen <strong>in</strong> Figure 3.<br />

Cont<strong>in</strong>uous aeration<br />

Measurements with cont<strong>in</strong>uous aeration were performed at DO concentrations of ~1.5<br />

mg/l and ~1 mg/l. To be able to determ<strong>in</strong>e the <strong>production</strong> of <strong>N2O</strong> gas dur<strong>in</strong>g these<br />

operation conditions the aeration was turned off. The unaerated period was chosen to<br />

20 m<strong>in</strong>utes to be comparable with the measurements done dur<strong>in</strong>g <strong>in</strong>termittent aeration.<br />

Measurement proceeded 20 m<strong>in</strong>utes after the aeration was switched on aga<strong>in</strong>. Two<br />

measurements were performed at a constant aeration with a DO concentration of ~1.5<br />

mg/l and ~1 mg/l respectively a typical profile of O2 and <strong>N2O</strong> concentrations are shown<br />

<strong>in</strong> Figure 4.<br />

91


12<br />

10<br />

091014 Cont<strong>in</strong>ously operation, DO 1.0 (mg/l)<br />

4.5<br />

3.75<br />

N₂O (µmol/l)<br />

8<br />

6<br />

4<br />

2<br />

3<br />

2.25<br />

1.5<br />

0.75<br />

DO (mg/l)<br />

N₂O<br />

(µmol/l)<br />

DO<br />

(mg/l)<br />

0<br />

0<br />

0 20 40 60 80<br />

Time (m<strong>in</strong>)<br />

Figure 4. Concentration profiles of N 2O and O 2 dur<strong>in</strong>g measurement at cont<strong>in</strong>uous aeration with<br />

DO ~1.0 mg/l.<br />

As seen <strong>in</strong> Figure 4 <strong>N2O</strong> is only accumulat<strong>in</strong>g for the first 5-6 m<strong>in</strong>utes of the unaerated<br />

period then there is a short time span when <strong>production</strong> and <strong>N2O</strong> flows leav<strong>in</strong>g the<br />

reactor are <strong>in</strong> equilibrium. The <strong>N2O</strong> concentration measured <strong>in</strong> the water phase is<br />

decreas<strong>in</strong>g before aerations starts aga<strong>in</strong> which have not been noticed <strong>in</strong> any of the<br />

former cases. Initial <strong>N2O</strong> <strong>production</strong> is below 2% of reduced <strong>in</strong>organic nitrogen and<br />

maximum <strong>production</strong> is also very low.<br />

Conclusions<br />

Conclusions that can be made from the experiments are summarised below:<br />

• The s<strong>in</strong>gle <strong>stage</strong> <strong>nitritation</strong>/<strong>anammox</strong> system produced significant amounts of<br />

<strong>N2O</strong> with a m<strong>in</strong>imum <strong>production</strong> of 2% of removed <strong>in</strong>organic nitrogen.<br />

• Operat<strong>in</strong>g the <strong>MBBR</strong> at <strong>in</strong>termittent aeration with a DO of ~3 mg/l gave the<br />

highest <strong>N2O</strong> <strong>production</strong> with <strong>in</strong>itial and maximum <strong>production</strong>s of 6-11% and 10-<br />

30% respectively.<br />

• Smaller amounts of <strong>N2O</strong> were produced by the partial/<strong>nitritation</strong> <strong>anammox</strong><br />

system dur<strong>in</strong>g cont<strong>in</strong>uous operation at DO <strong>in</strong> the <strong>in</strong>terval 1-1.5 mg/l. The <strong>in</strong>itial<br />

<strong>N2O</strong> <strong>production</strong> was found to be 2-3% and the maximum <strong>N2O</strong> <strong>production</strong><br />

corresponded to 2-6%.<br />

• When the <strong>MBBR</strong> was exposed to a longer period of anoxic conditions both<br />

ammonium oxidation and <strong>N2O</strong> <strong>production</strong> ceased.<br />

• The absolute number on overall <strong>N2O</strong> <strong>production</strong> for an operation mode (based on<br />

the measurements of <strong>N2O</strong> accumulat<strong>in</strong>g dur<strong>in</strong>g the anoxic phase) could be both<br />

overestimated or underestimated and should therefore be used as a comparative<br />

tool.<br />

92


Acknowledgements<br />

The experiments were carried out at AnoxKaldnes <strong>in</strong> Lund dur<strong>in</strong>g the work with my<br />

master thesis and I would like to thank my supervisor my supervisor Magnus<br />

Christenson for all guidance, support, shar<strong>in</strong>g off valuable knowledge and experiences,<br />

also for giv<strong>in</strong>g me the opportunity to get to know the fasc<strong>in</strong>at<strong>in</strong>g <strong>anammox</strong> <strong>process</strong>.<br />

I would also like to thank my supervisor Professor Jes la Cour Jansen at Water and<br />

Environmental Eng<strong>in</strong>eer<strong>in</strong>g Department of Chemical Eng<strong>in</strong>eer<strong>in</strong>g, Lund University for<br />

scientific guidance and encouragement, for all your valuable aspects on my work and<br />

always rem<strong>in</strong>d<strong>in</strong>g me of look<strong>in</strong>g <strong>in</strong>to th<strong>in</strong>gs from a wider perspective.<br />

References<br />

Abma W.R., Schultz C.E., Mulder J.W., van Loosdrecht M.C.M., van der Star W., Strous M.,<br />

Tokutomi T., (2007). The advance of Anammox. Water 21, February 2007.<br />

Fux C., Boehler M., Huber P., Brunner I., and Siegrist H., (2002). Biological treatment of<br />

ammonium-rich wastewater by partial <strong>nitritation</strong> and subsequent anaerobic ammonium<br />

oxidation (<strong>anammox</strong>) <strong>in</strong> a pilot plant. Journal of Biotechnology, 99, 295-306.<br />

Fux C., Egli K., van der Meer J.R., Siegrist H., (2003). The <strong>anammox</strong> <strong>process</strong> for nitrogen<br />

removal from waste water. EAWAG news 56 (November 2003), 20-21.<br />

Hippen A., Rosenw<strong>in</strong>kel K-H., Baumgarten G., and Seyfried C.F., (1997). Aerobic<br />

deammonification: A new experience <strong>in</strong> the treatment of wastewaters. Water Science and<br />

Technology, 35, (10), 111-120.<br />

Jacob D., (1999). Introduction to atmospheric chemistry. ISBN 0-691-00185-5,Pr<strong>in</strong>ceton:<br />

Pr<strong>in</strong>ceton University Press.<br />

Jetten M., Wagner M., Fuerst J., van Loosdrecht M., Kuenen J., Strous M., (2001).<br />

Microbiology and application of the anaerobic ammonium oxidation ('<strong>anammox</strong>') <strong>process</strong>.<br />

Current Op<strong>in</strong>ion <strong>in</strong> Biotechnology 12, (3), 283-288.<br />

Jetten M.S.M., Cirpus I., Kartal B., van Niftrik L., van de Pas-Schoonen K.T., Sliekers O.,<br />

Haajier S., van der Star W., Schmid M., van de Vossenberg J., Schmidt I., Harhangi H., van<br />

Loosdrecht M., Kuenen J., Op den Camp H. and Strous M., (2004). 1994-2004: 10 years of<br />

research on the anaerobic oxidation of ammonium. Biochemical Society Transactions 33,<br />

(1), 119-123.<br />

Kampschreur M.J., Tan N.C.G, Kleerebezem R., Picioreanu C., Jetten M.S.M., and van<br />

Loosdrecht M.C.M ., (2008, (b)). Effect of dynamic <strong>process</strong>es on nitrogen oxides emission<br />

from an nitrify<strong>in</strong>g culture. Environmental Science Technology, 42, 429-435.<br />

93


Mulder A.V.A, Robertson L.A., Kuenen J.G.,(1995). Anaerobic ammonium oxidation<br />

discovered <strong>in</strong> a denitrify<strong>in</strong>g fluidized-bed reactor. FEMS Microbiology Ecology 16, (3),<br />

177-184.<br />

Siegrist H., Reithaar S., Koch G., and Lais P., (1998). Nitrogen loss <strong>in</strong> a nitrify<strong>in</strong>g rotat<strong>in</strong>g<br />

contactor treat<strong>in</strong>g ammonium rich wastewater without organic carbon. Water Science<br />

and Technology, 38, (8-9), 241-248.<br />

Strous M., van Gerven E., Zheng P., Kuenen J.G., and Jetten M.S.M., (1997). Ammonium<br />

removal from concentrated waste streams with the anaerobic ammonium oxidation<br />

(<strong>anammox</strong>) <strong>process</strong> <strong>in</strong> different reactor configurations. Water Research, 31, (8), 1955-<br />

1962.<br />

Strous M., Heijnen J., Kuenen J., Jetten M., (1998). The sequenc<strong>in</strong>g batch reactor as a<br />

powerful tool for the study of slowly grow<strong>in</strong>g anaerobic ammonium-oxidiz<strong>in</strong>g<br />

microorganisms. Applied Microbiology Biotechnology, 50, 589-596.<br />

94

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!