06.09.2014 Views

Download the August 2012 Issue in PDF format - Gear Technology ...

Download the August 2012 Issue in PDF format - Gear Technology ...

Download the August 2012 Issue in PDF format - Gear Technology ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A S K T H E E X P E R T<br />

profile shifts for balanced specific slid<strong>in</strong>g, balanced flash<br />

temperature and balanced bend<strong>in</strong>g fatigue life are all nearly<br />

<strong>the</strong> same.<br />

See AGMA 901–A92—A Rational Procedure for <strong>the</strong><br />

Prelim<strong>in</strong>ary Design of M<strong>in</strong>imum-Volume <strong>Gear</strong>s—for a<br />

method to design gears with maximum-load capacity by balanc<strong>in</strong>g<br />

<strong>the</strong> macropitt<strong>in</strong>g resistance and <strong>the</strong> bend<strong>in</strong>g fatigue<br />

resistance.<br />

Figures 1 and 2 demonstrate how profile shift dramatically<br />

improves specific slid<strong>in</strong>g. Figure 1 shows <strong>the</strong> specific slid<strong>in</strong>g<br />

for a gear set with no profile shift. Figure 2 shows <strong>the</strong> same<br />

gear set after <strong>the</strong> p<strong>in</strong>ion and gear have profile shifts designed<br />

to balance and m<strong>in</strong>imize <strong>the</strong> specific slid<strong>in</strong>g. Profile shift<strong>in</strong>g<br />

has greatly reduced <strong>the</strong> specific slid<strong>in</strong>g from -4.03 to -1.28.<br />

This improves <strong>the</strong> mesh<strong>in</strong>g characteristics of <strong>the</strong> gear set by<br />

reduc<strong>in</strong>g <strong>the</strong> frictional loss, lower<strong>in</strong>g <strong>the</strong> contact temperature<br />

and <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> resistance to wear, macropitt<strong>in</strong>g, micropitt<strong>in</strong>g<br />

and scuff<strong>in</strong>g.<br />

Robert L. Errichello, a longtime<br />

<strong>Gear</strong> <strong>Technology</strong> technical editor,<br />

is owner-operator of <strong>Gear</strong>tech—a<br />

gear <strong>in</strong>dustry consultancy. Bob also<br />

is a current member of <strong>the</strong> AGMA<br />

Nomenclature, Helical <strong>Gear</strong> Rat<strong>in</strong>g,<br />

Epicyclic Enclosed Drives and W<strong>in</strong>d<br />

Turb<strong>in</strong>e committees.<br />

Dear David,<br />

Profile shift—sometimes known as ‘addendum modification’<br />

or ‘correction’—is <strong>the</strong> displacement of <strong>the</strong> basic rack<br />

(or cutt<strong>in</strong>g tool) datum l<strong>in</strong>e from <strong>the</strong> reference diameter of<br />

<strong>the</strong> gear. The size of <strong>the</strong> profile shift (mm or <strong>in</strong>ches) is usually<br />

made to be non-dimensional by divid<strong>in</strong>g it by <strong>the</strong> normal<br />

module (or multiply<strong>in</strong>g by <strong>the</strong> DP), and it is <strong>the</strong>n def<strong>in</strong>ed<br />

by <strong>the</strong> profile shift coefficient ‘x’. A positive profile shift<br />

<strong>in</strong>creases <strong>the</strong> tooth thickness while a negative profile shift<br />

reduces tooth thickness (this applies to <strong>in</strong>ternal and external<br />

gears alike). This is illustrated <strong>in</strong> Figure 1, which is copied<br />

from ISO 21771:2007, i.e., <strong>Gear</strong>s: Cyl<strong>in</strong>drical Involute<br />

<strong>Gear</strong>s and <strong>Gear</strong> Pairs—Concepts and Geometry.<br />

The only difference <strong>in</strong> mach<strong>in</strong>e setup required for cutt<strong>in</strong>g<br />

profile shifted gears is to change <strong>the</strong> radial position of<br />

<strong>the</strong> cutt<strong>in</strong>g tool by an amount def<strong>in</strong>ed by <strong>the</strong> profile shift.<br />

The cutt<strong>in</strong>g tool module or DP, cutt<strong>in</strong>g tool pressure angle<br />

and number of teeth on change gears on manual mach<strong>in</strong>es,<br />

rema<strong>in</strong> unchanged. This <strong>in</strong> turn means <strong>the</strong> base diameter<br />

(and base helix angle on helical gears) rema<strong>in</strong> <strong>the</strong> same. A<br />

key benefit from us<strong>in</strong>g <strong>in</strong>volute gears is that we don’t need<br />

to change <strong>the</strong> cutt<strong>in</strong>g tool to make gears with a different<br />

diameter and tooth thickness.<br />

Profile shift is used by designers for many reasons <strong>in</strong>clud<strong>in</strong>g<br />

<strong>the</strong> elim<strong>in</strong>ation of undercut when hobb<strong>in</strong>g or shap<strong>in</strong>g<br />

gears with few teeth, m<strong>in</strong>imiz<strong>in</strong>g slid<strong>in</strong>g at <strong>the</strong> gear pair start<br />

of active profile, <strong>in</strong>creas<strong>in</strong>g bend<strong>in</strong>g strength, <strong>in</strong>creas<strong>in</strong>g or<br />

decreas<strong>in</strong>g <strong>the</strong> center distance and chang<strong>in</strong>g tooth thickness<br />

Figure 1—Profile shift for external and <strong>in</strong>ternal gears, as def<strong>in</strong>ed by<br />

ISO 21771:2007. <strong>Gear</strong>s: Cyl<strong>in</strong>drical Involute <strong>Gear</strong>s and <strong>Gear</strong> Pairs—<br />

Concepts and Geometry.<br />

Figure 2—Example geometry software package with graphical<br />

display illustrat<strong>in</strong>g <strong>the</strong> effect of profile shift (addendum modification)<br />

on tooth shape and operat<strong>in</strong>g pressure angle.<br />

or backlash. In fact all gears have some profile shift when<br />

you consider that we normally move <strong>the</strong> cutt<strong>in</strong>g tool radially<br />

to change <strong>the</strong> tooth thickness.<br />

A common perception is that profile shift changes <strong>the</strong><br />

‘pressure angle’ of a gear.<br />

This is wrong.<br />

The pressure angle we specify on <strong>the</strong> draw<strong>in</strong>g is <strong>the</strong> pressure<br />

angle of <strong>the</strong> cutt<strong>in</strong>g tool. The actual gear flank pressure<br />

angle changes from root to tip and <strong>the</strong> work<strong>in</strong>g pressure<br />

angle (<strong>the</strong> angle of <strong>the</strong> l<strong>in</strong>e of contact) of a gear pair depends<br />

on gear center distance and gear base diameters only. If<br />

48<br />

GEARTECHNOLOGY <strong>August</strong> <strong>2012</strong> www.geartechnology.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!