02.09.2014 Views

Jan van der Akker - Subsea UK

Jan van der Akker - Subsea UK

Jan van der Akker - Subsea UK

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Long step-outs, but avoiding increases in<br />

electrical core size<br />

AOG 2012, 23 February 2012<br />

<strong>Jan</strong> <strong>van</strong> den <strong>Akker</strong>, Product Manager, Controls


Introduction<br />

Power and Communication<br />

Distribution<br />

Step-out and Voltage Level<br />

Summary<br />

2<br />

SUBSEA SYSTEMS


What do we want?<br />

Modular power and communications<br />

grid using field-proven technologies<br />

• Multiple voltages and power<br />

consumers (low and high)<br />

• High-speed data communication<br />

• Network topology (if one route<br />

fails, we have an alternative)<br />

• Flexibility<br />

3<br />

SUBSEA SYSTEMS


What do we offer today?<br />

• Traditionally, power and communications have been distributed in<br />

a daisy chain manner (multidrop)<br />

• Our industry is improving, through joint workgroups like IWIS,<br />

SIIS, and MDIS<br />

• Communication distribution has evolved through the introduction<br />

of fiber optics (FO).<br />

• “Smart” power distribution is still in its early stages and several<br />

subsea vendors are working on improvements<br />

• An improvement is the introduction of remote-controlled subsea<br />

power Switches<br />

4<br />

SUBSEA SYSTEMS


What can we offer tomorrow?<br />

• Systems that can cope with increased power demands due to<br />

smarter instruments (up to 500 W/SCM)<br />

• Enough power to also control external equipment such as AUVs,<br />

geo observatory stations, etc.<br />

• Use field-proven high-voltage technology for distribution<br />

5<br />

SUBSEA SYSTEMS


Introduction<br />

Power and Communication<br />

Distribution<br />

Step-out and Voltage Level<br />

Summary<br />

6<br />

SUBSEA SYSTEMS


Recent project examples<br />

Jack & St. Malo – GOM<br />

• 2200 m water depth<br />

• 25 km step-out<br />

• CAMTROL control architecture<br />

• CAMLAN communications FO/DSL<br />

• 690 VAC power distribution<br />

Taurt Ph 1&2 – Mediterranean<br />

• 110 m water depth<br />

• 72 k m and 83 km step-outs<br />

• CAMTROL control architecture<br />

• CAMLAN communications FO/DSL<br />

• 1200 VDC power distribution<br />

PSVM – Angola<br />

• 2200 m water depth<br />

• 25 km step-out<br />

• CAMTROL control<br />

architecture<br />

• PSK SOP communications<br />

• 690 VAC power distribution<br />

Tamar –<br />

Mediterranean<br />

• 183 m water depth<br />

• 150 km step-out<br />

• CAMTROL control architecture<br />

• CAMLAN communications FO/DSL<br />

• 1200 VDC power distribution<br />

I<strong>van</strong> Pashchenko • <strong>Subsea</strong> Systems


Recent project examples<br />

Macedon –<br />

Western Australia<br />

• 300 m water depth<br />

• 95 km step-out<br />

• CAMTROL control<br />

architecture<br />

• CAMLAN<br />

communications FO/DSL<br />

• 1200 VDC power<br />

distribution<br />

Liwan – China<br />

• 1500 m water depth<br />

• 76 km step-out<br />

• CAMTROL control<br />

architecture<br />

• CAMLAN<br />

commsunication<br />

FO/DSL<br />

• 1200 VDC power<br />

distribution<br />

Tahiti – GOM Plangas – Brazil<br />

• 1300 m water depth<br />

• 8 km step-out<br />

• CAMTROL control<br />

architecture<br />

• PSK separate<br />

communications<br />

• 690 VAC power<br />

distribution<br />

• 2000 m water depth<br />

• 22 km step-out<br />

• CAMTROL control<br />

architecture<br />

• PSK SOP<br />

communications<br />

• 690 VAC power<br />

distribution<br />

I<strong>van</strong> Pashchenko • <strong>Subsea</strong> Systems


MCS<br />

EPU<br />

HPU<br />

UTA<br />

SCM<br />

SDU / SAM<br />

SCM<br />

SUBSEA SYSTEMS


Power and Communication Development<br />

10<br />

SUBSEA SYSTEMS


Communications Distribution: Comparison<br />

Conventional<br />

Fibre Optic<br />

10,000 x faster<br />

Max Speed: 9,6 kBit/sec<br />

Half-duplex<br />

Bandwidth: shared by SCMs<br />

Proprietary interface<br />

Optional, 3 rd<br />

party interfaces<br />

Max speed: 100 MBit/s<br />

Full-duplex<br />

Bandwidth: 192 kBit/s per SCM<br />

Ethernet (TCP/IP)<br />

EDU<br />

11<br />

SUBSEA SYSTEMS


Open Communication Architecture<br />

Based on Industrial Ethernet t (TCP/IP)<br />

• Managed, scalable and expandable<br />

• Heavy industry-proven technology<br />

<strong>Subsea</strong> Router Module (SRM) or CDU (Cameron)<br />

• Conversion of FO signal to copper<br />

• Distribution ib ti of power<br />

• Several sensor interfaces (e.g. SIIS Level I / II /<br />

III and IWIS)<br />

• Network access for third-party devices<br />

Media Type Fiber-optic Ethernet Copper Ethernet DSL<br />

Speed 100 MBit/s 10/100 MBit/s 192 kBit/s<br />

Distance 160+ km Up to 100 m Up to 36 km<br />

12<br />

SUBSEA SYSTEMS


Power Distribution<br />

13<br />

SUBSEA SYSTEMS


How do these nodes interconnect?<br />

• Level 3 nodes are defined in standards like SIIS and IWIS<br />

• Communication between level 1 and level 2 uses open<br />

architecture<br />

• But for intelligent and flexible power distribution, constraints on<br />

level 2 nodes have to be consi<strong>der</strong>ed<br />

– Voltage conversion<br />

– Power limitations<br />

• By adding power switching functionality to the level 2 outputs, we<br />

can improve<br />

– Gateway connections can be made switchable by implementing<br />

remote power switching in the CDU<br />

– Current fields utilizing i the newest communication technology use<br />

switchable outputs for instruments<br />

14<br />

SUBSEA SYSTEMS


Examples of remote switching<br />

15<br />

SUBSEA SYSTEMS


Examples of remote switching<br />

• No need to activate/connect<br />

equipment prior to engagement<br />

of power switch<br />

• Minimize number of Power<br />

cycles on control umbilical<br />

16<br />

SUBSEA SYSTEMS


Examples of remote switching<br />

• Monitoring of power to check<br />

health status<br />

• Protection of equipment, in case<br />

of failures (only equipment<br />

connected to switch will be<br />

subject to trip)<br />

17<br />

SUBSEA SYSTEMS


Introduction<br />

Power and Communication<br />

Distribution<br />

Step-out and Voltage Level<br />

Summary<br />

18<br />

SUBSEA SYSTEMS


Cross Section Calculations<br />

Field scenarios<br />

1. Manifold with 4-off XTs (5 SCMs in total)<br />

– 5 x 250 = 1250 W<br />

1350 W<br />

– 100 W for distribution<br />

2. Manifold with 8-off XTs (9 SCMs in total)<br />

– 9 x 250 = 2250 W<br />

2350 W<br />

– 100 W for distribution<br />

19<br />

SUBSEA SYSTEMS


The Effects of Distance on Cross Section<br />

• For medium distances, both scenarios are within popular<br />

cross-section areas (4 and 10 sq mm)<br />

• For long distances, cross-section constraints are visible<br />

(more than 25 sq mm)<br />

20<br />

SUBSEA SYSTEMS


The Near Future: Higher Power Requirements<br />

• Up to to 10 km, cross-section section requirements are still acceptable<br />

• Between 10 and 50 km, the big field scenario requires more than 25<br />

sq mm, dictating early decisions on topology and future extensions<br />

• Above 50 km, tremendous cross-section requirements<br />

21<br />

SUBSEA SYSTEMS


The Medium Future (or nearer)<br />

• Increased transmission voltage will lower losses<br />

• Use DC/DC converters at distribution layer<br />

Basic technology already in use for all electric trees<br />

22<br />

SUBSEA SYSTEMS


More Calculation Examples<br />

Generic calculations l (150 W/SCM)<br />

• Standard Cameron electrohydraulic<br />

(EH) control system<br />

architecture<br />

• Standard Cameron EH control<br />

system equipment<br />

• Standard industry power<br />

transmission and distribution<br />

components<br />

• Qualified and field-proven<br />

Characteristics<br />

Generic Drill Centre<br />

Power distribution<br />

Dedicated quad<br />

No of SCMs 5<br />

Max input power per SCM<br />

150 W<br />

Min SCM input voltage<br />

900 VDC<br />

EPU output voltage<br />

1200 VDC<br />

Typical cable cross<br />

Maximum stepout<br />

section, sq.mm<br />

distance, km<br />

6 54.8<br />

10 92.2<br />

16 146.7<br />

25 232.1<br />

35 322.0<br />

*<br />

Note, the calculations are based on a mid-range SCM<br />

input voltage of 900 VDC, which integrates a consi<strong>der</strong>able<br />

safety margin. Further increase in step-out distances can<br />

be achieved through assuming a lower SCM input<br />

voltage, i.e., reducing this margin.<br />

23<br />

SUBSEA SYSTEMS


Introduction<br />

Power and Communication<br />

Distribution<br />

Step-out and Voltage Level<br />

Summary<br />

24<br />

SUBSEA SYSTEMS


Summary<br />

• High-speed communications distribution ib ti using open architecture<br />

t<br />

is field-proven<br />

• Lack of flexible power distribution is limiting factor<br />

• Concept of gateway connections helps to visualize the different<br />

types of connections<br />

• Remote power switching subsea adds flexibility and diagnostics<br />

Using a common platform for power<br />

distribution provides the flexibility to adapt<br />

to short and long tiebacks.<br />

25<br />

SUBSEA SYSTEMS


Thank You<br />

Contact<br />

<strong>Jan</strong> <strong>van</strong> den <strong>Akker</strong><br />

Product Manager Controls<br />

Cameron GmbH<br />

Celle, Germany<br />

jan.<strong>van</strong>denakker@c-a-m.com<br />

t. +49 5141 806 955<br />

m. +49 172 545 6932<br />

SUBSEA SYSTEMS

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!