07.08.2014 Views

Roma TRE STM group presentation - STM DIMI Uniroma3

Roma TRE STM group presentation - STM DIMI Uniroma3

Roma TRE STM group presentation - STM DIMI Uniroma3

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Presentation of the<br />

Material Science and Technology Research Group<br />

University <strong>Roma</strong> <strong>TRE</strong><br />

<strong>Roma</strong>, Italy<br />

WEB SITE: www.stm.uniroma3.it and www.lime.uniroma3.it<br />

Address: Via Vasca Navale, 79 00146 – <strong>Roma</strong><br />

28/07/2009<br />

Edoardo Bemporad


WHERE IS THE UNIVERSITY “ROMA <strong>TRE</strong>”?<br />

2


ROMA <strong>TRE</strong>, SOME NUMBERS…<br />

www.uniroma3.it<br />

Founded in 1992.<br />

One of the 4 State University in<br />

Rome (9 in total).<br />

175.000 m 2 .<br />

More than 40.000 000 students<br />

(4.100 enrolled in Engineering)<br />

More than 700 Researchers e s and<br />

Professors.<br />

Faculty of Engineering:<br />

• Civilil<br />

• Computer Science<br />

• Electronic<br />

• Mechanical<br />

Materials Science and Technology<br />

research <strong>group</strong> (<strong>STM</strong> Group)<br />

3


MORE INFO..<br />

www.stm.uniroma3.it<br />

4<br />

4


MORE INFO..<br />

www.lime.uniroma3.it<br />

5<br />

5


OUTLINE<br />

Research Group <strong>presentation</strong><br />

• People and research Partners<br />

• Vision<br />

• Facilities<br />

Ongoing g research<br />

Research topics on surface mechanical<br />

measurements and microstructure concerns,<br />

future activities<br />

6


<strong>STM</strong> GROUP:<br />

2 Full professors<br />

1 researcher<br />

1 graduated technician<br />

mechanical engineer, Graduate Technician<br />

3 Ph.D Students<br />

materials science and engineering<br />

2 fellowships<br />

(1 Sr + 1Jr mechanical Engineers)<br />

1 staff<br />

3 undergraduate (average) doing their<br />

“Laurea” thesis<br />

7


PRINCIPAL RESEARCH PARTNERS (CUSTOMERS)<br />

<br />

<br />

<br />

<br />

Private Firms<br />

INFN – Laboratori Nazionali di<br />

Legnaro (Pd)<br />

ENEA Casaccia dipartimento<br />

Materiali (RM)<br />

Centro Sviluppo Materiali (RM)<br />

<br />

<br />

National Research Council<br />

(CNR)<br />

• Department of Molecular<br />

Design<br />

• Others involved in surface<br />

engineering<br />

University of Oxford<br />

Department of Engineering<br />

Science<br />

<br />

National Universities<br />

• Ancona<br />

• Brescia<br />

• Cagliari<br />

• Firenze<br />

• Milano<br />

• Modena<br />

• Napoli<br />

• <strong>Roma</strong> 1<br />

• <strong>Roma</strong> 2<br />

• Torino<br />

<br />

<br />

<br />

<br />

<br />

SIO and Technische Universität<br />

Chemnitz (Germany)<br />

Central University of<br />

Venezuela, School of Metallurgy<br />

and Materials Science<br />

Lille University Laboratoire de<br />

Mécanique<br />

University of Rosario<br />

(Argentina)<br />

Karlsruhe Forschungszentrum<br />

(Germany)<br />

8


<strong>STM</strong> GROUP: VISION<br />

Product/process<br />

optimization<br />

Characterization<br />

methods: tuning<br />

and/or specific<br />

development<br />

Improving of<br />

understanding<br />

capabilities<br />

Needs of<br />

phenomena<br />

explanation<br />

Development<br />

Advanced d use<br />

Routine use<br />

9


<strong>STM</strong> GROUP: RESEARCH STRATEGY<br />

Development of methodologies for materials<br />

processing optimisation by the use of the paradigm:<br />

Coated system Design<br />

nanostructure-microstructure–properties-performancesperformances<br />

Optimization and failure analysis<br />

Multiscale and multidisciplinary<br />

approach.<br />

Modelling and simulating in<br />

service behaviour, reliability<br />

and degradation modalities (materials oriented)<br />

10


WE KEEP ATTENTION TO:<br />

<br />

Workflow concerns<br />

• Privacy<br />

• Timing<br />

• Cost control<br />

• Reporting<br />

Data and samples handling concerns<br />

• Redoundancy<br />

• Affordability<br />

• Accessibility<br />

• Privacy<br />

• Report standardization (Corporate Identity)<br />

11


<strong>STM</strong> FACILITIES: 3 LABORATORIES + 1 (IN DEV.)<br />

1. LIME, Electron Microscopy lab<br />

• Optical / Electronic / Stylus / (Ion Probing)<br />

2. MatEDP, Materials Modeling lab<br />

• 10 PC stations, Thermocalc, ANSYS, ABAQUS,<br />

Elastica, EFS,…<br />

3. MaTec, Materials Technology lab<br />

• Mechanical characterization (Hardness, Microhardness,<br />

Abrasive Wear, Scratch), Salt Spray,<br />

Fretting<br />

4. CoaTec, Coating technologies Lab<br />

• Work in progress, coating facility to be acquired<br />

within year 2010 (enhanced PVD process)<br />

12


<strong>STM</strong> FACILITIES: CONNECTION LAYOUT<br />

Building one<br />

Internet<br />

Offices 2° floor<br />

WAN <strong>Roma</strong> <strong>TRE</strong><br />

EXTRANET<br />

HTTPS - Certificates<br />

MatEDP 1° floor<br />

Building two<br />

PHILIPS XL 30 LaB 6<br />

ANALYTICAL<br />

CoaTec base floor<br />

Optic Fibers<br />

LIME<br />

and<br />

MaTec<br />

PHILIPS CM 120 TEM<br />

EDX (EDAX 134 Ev)<br />

13


LIME AND MATEC, FROM THE VERY BEGINNING…!<br />

14


LIME AND MATEC: LAB LAYOUT<br />

Digital Optical<br />

Microscopy,<br />

Macro-Micro-Nano<br />

Indenters<br />

Macro-nano-scratch<br />

Classroom<br />

Prep line<br />

SEM<br />

TEM<br />

Prep room<br />

AFM<br />

Dualbeam<br />

15


LIME LAB: SEM (FEI)<br />

• 30 Kv LaB 6 filament<br />

• Secondary electrons<br />

• Backscattered electrons<br />

• EDS to B, line & maps<br />

• Cathode luminescence<br />

• Specimen Current<br />

16


LIME LAB: TEM (FEI)<br />

• 120kV LaB 6 filament<br />

• Double tilt<br />

• EDS to B, point & line<br />

• nanoprobe<br />

17


LIME LAB: AFMS (1 NT-MDT + 1 DI)<br />

•50x50x5 microns range<br />

•All modes (contact, non<br />

contact, lateral force,…)<br />

18


LIME LAB: DUALBEAM (FEI) HELIOS 600 NANOLAB<br />

early 2008<br />

-Omnprobe<br />

-GIS(4 gases)<br />

-STEM<br />

- EDS (Oxford)<br />

19<br />

19


DUALBEAM (FEI)<br />

SEM Column: spatial resolution<br />

0,76 nm @ 15 kV<br />

FIB Column: spatial resolution<br />

5 nm @ 30 kV<br />

20


PRINCIPAL FIB MODES:<br />

Deposition<br />

Imaging<br />

Milling<br />

21


LIME LAB: DUALBEAM (FEI)<br />

0,76 nm res<br />

22


LIME LAB: DUALBEAM (FEI)<br />

23


LIME LAB: NON-CONTACT PROFILOMETRY (TALYSURF<br />

CCI L LITE) )<br />

24


LIME-LAB SELF-PRODUCING OF STANDARD<br />

SAMPLES FOR INSTRUMENTS CALIBRATION<br />

Calibration of the profilometer<br />

25


LIME-LAB SELF-PRODUCING OF STANDARD<br />

SAMPLES FOR INSTRUMENTS CALIBRATION<br />

Calibration of the profilometer<br />

26


MATEC LAB: HARDNESS TESTERS<br />

Vickers<br />

Knoop<br />

27


MATEC LAB: SCRATCH TESTER<br />

Depth profiling<br />

Applied force feedback controlled<br />

Acoustic emission sensor<br />

Friction force measurement<br />

28


MATEC LAB: NANOINDENTATION –NANOSCRATCH<br />

Agilent Nano Indenter<br />

G200<br />

End of 2007<br />

29<br />

29


MATEC LAB: SALT SPRAY 1M 3 CHAMBER<br />

30<br />

30


MATEC LAB: CONTACT ANGLE AND WETTABILITY<br />

Uni en 828 and A<strong>STM</strong> D5725 - 99<br />

31


SEMI-AUTOMATED INSTRUMENT FOR CONTACT ANGLE MEASUREMENT AND<br />

SURFACE FREE ENERGY MODELS<br />

SFE models:<br />

1. Zisman<br />

2. Neumann<br />

3. Girifalco<br />

4. Fowkes<br />

5. Owens-Wendt<br />

6. Van Oss-Chaudhury-Good<br />

Light source,<br />

polarized filter,<br />

screen diffuser<br />

Sample holder(three<br />

axes movement)<br />

12X objectives<br />

Digital Camera to<br />

acquire images on a<br />

PC<br />

32


IMPROVEMENT AND OPTIMIZATION OF THE SURFACE FREE<br />

ENERGY OF POLYMERIC SUBSTRATES BY FLAME <strong>TRE</strong>ATMENT<br />

Process parameters observed:<br />

1. Total flow rate;<br />

2. Oxygen/propane ratio;<br />

3. Distance sample-tip nozzle;<br />

4. Frequency of sample pass on<br />

flame;<br />

5. Total time treatment.<br />

Some results obtained through<br />

DOE Technique<br />

33


MACRO-SCALE INSTRUMENTED SPHERICAL<br />

INDENTATION<br />

Prototipal ti instrument t for macroscale<br />

spherical indentation<br />

The stress-strain curve is obtained by<br />

least-square fitting of exp data with a<br />

FEM-modelled database of L-h curves<br />

34


MATEC LAB: WEAR TEST<br />

Wear test device (prototype)<br />

Dynamic measurement of wear and friction coefficient at<br />

the sub-micron scale<br />

001<br />

002 003 004 005<br />

Campione 004<br />

-502<br />

60<br />

-502,5<br />

50<br />

[um]<br />

Affondamento [<br />

-503<br />

-503,5<br />

-504<br />

-504,5<br />

Affondamento<br />

Carico<br />

R 2 =0,98<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Carico [g]<br />

-505<br />

-10<br />

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150<br />

Tempo [s]<br />

35


OUTLINE<br />

Research Group <strong>presentation</strong><br />

• People and research Partners<br />

• Vision<br />

• Facilities<br />

Ongoing g research<br />

Research topics on surface mechanical<br />

measurements and microstructure concerns,<br />

future activities<br />

36


ONGOING RESEARCH<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Residual stress: FIB & Digital Imaging Correlation, FIB & nanoindentation<br />

Analysis of wear mechanisms by FIB-SEM techniques<br />

The use of statistical nanoindentation techniques for the mechanical<br />

characterization of cement pastes<br />

FIB-based failure analysis and nano-mechanical characterization of MEMS<br />

structures<br />

Scratch testing of thin coatings: failure modes mapping by FIB-SEM<br />

morphological analysis<br />

Improvement and optimization of the surface energy of polymeric substrates<br />

by Flame treatment<br />

Development of a semi-automated instrument for surface energy<br />

measurement<br />

Microstructural and mechanical characterization of cellular ceramics obtained<br />

by gel casting<br />

Instrumented spherical indentation at the<br />

macro-scale for the assessment the stress-strain curves of metals<br />

Use of nano-silica for preventing expansive alkali-silica reaction in concrete<br />

Microstructural and mechanical characterization of sputtered niobium thin<br />

films for accelerating cavity applications<br />

37


COATINGS: FAILURE MODES STUDY<br />

38


SCRATCH TESTING OF THIN COATINGS: FAILURE MODES<br />

MAPPING BY FIB-SEM MORPHOLOGICAL ANALYSIS<br />

Wedge spallation<br />

39


SCRATCH TESTING OF THIN COATINGS: FAILURE MODES MAPPING<br />

BY FIB-SEM MORPHOLOGICAL ANALYSIS<br />

Duplex Ti/TiN multilayer on WC-CO Planar:<br />

L c3: 38,5 N<br />

• FIB section in correspondence of the first<br />

chipping with substrate appearence<br />

40


SCRATCH TEST<br />

Duplex Ti/TiN<br />

multilayer on WC-<br />

CO Planar;<br />

• Adhesion can be worsen by an<br />

high h compressive residual<br />

stress that is additive with the<br />

scratch stress in front of the<br />

contact area<br />

41


ANALYSIS OF WEAR MECHANISMS BY FIB-SEM<br />

TECHNIQUES<br />

FIB analysis of mechanisms and crosssectional<br />

microstructural evolution during inservice<br />

wear of a Stellite 6B cobalt-based<br />

alloy subjected to sliding contact conditions<br />

FIB section of the worn surface FIB section outside the worn surface 42


RESONANT CAVITIES FOR PARTICLE ACCELERATORS<br />

Bulk Niobium<br />

Niobium Coated (PVD)<br />

Copper cavity<br />

Very low Surface<br />

electrical<br />

resistance<br />

(∼nΩ a 1,8 K)<br />

Lower costs<br />

Higher thermal stability<br />

But…<br />

Significantly lower<br />

superconducting properties<br />

– WHY??<br />

43


COATINGS ON COPPER SUBSTRATE<br />

BIASED<br />

(e-f) and<br />

UNBIASED<br />

(CERN, g-h)<br />

type coatings<br />

on QUARTZ<br />

substrate<br />

44


NANOINDENTATION ON NB THINFILMS<br />

Sample (mN<br />

N)<br />

Load On<br />

1<br />

0,9<br />

08<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

0 50 100<br />

Displacement Into Surface (nm)<br />

Niobium film load-depth<br />

curve<br />

Load On Sample (mN)<br />

p<br />

0,03<br />

0,025<br />

0,02<br />

0,015<br />

0,01<br />

0,005<br />

0<br />

0 5 10 15 20 25<br />

Displacement Into Surface (nm)<br />

Niobium film: Detail of a<br />

load-depth curve<br />

Indenter pop-in systematically observed<br />

at depth ~ 10 nm<br />

45


TEM ANALYSIS OF THE OXIDE LAYER<br />

TEM sample preparation p by<br />

FIB lamella thinning<br />

The control of surface oxide layer can be<br />

very important in determining the<br />

functional performances of Nb coatings<br />

for superconducting applications<br />

46


NANOINDENTATION ON MS-PVD NB THIN FILMS<br />

500 nm<br />

Partial recrystallization<br />

during<br />

plastic deformation;<br />

Relative sliding of<br />

columnar grain<br />

Measurement of<br />

indenter contact<br />

radius<br />

Direct measurement of<br />

piling-up<br />

Evaluation of the effects<br />

of roughness on contact<br />

area<br />

Analysis of deformation<br />

mechanisms<br />

47


MICRO INDENTATION ON MS-PVD NB THINFILMS<br />

Biased MS E = 88,95 GPa<br />

unbiased MS E = 54,33 GPa<br />

48


NANOINDENTATION ON S<strong>TRE</strong>SS RELIEVED PILLARS<br />

Compressive<br />

stress in the<br />

coating<br />

49


RESULTS –S<strong>TRE</strong>SS CALCULATIONS<br />

a) Pillar – stress free b) Halfspace stressed coating – as measured<br />

c) Modelled: Halfspace coating + RS<br />

50


CONTACT AREAS AND NANO STRUCTURAL EFFECTS<br />

Pillar – no RS<br />

Halfspace coating<br />

51


RESIDUAL S<strong>TRE</strong>ESS BY<br />

FIB-DIC TECHNIQUES<br />

Z=0 vs each step<br />

<br />

<br />

<br />

<br />

Incremental Milling;<br />

Steps of 200 nm<br />

The pillar size d is<br />

equal to the coating<br />

thickness<br />

The maximum milling<br />

depth is equal to the<br />

coating thickness<br />

(3.8 µm)<br />

52


EXPERIMENTAL DATA<br />

53


USE OF STATISTICAL NANOINDENTATION TECHNIQUES FOR<br />

THE MECHANICAL CHARACTERIZATION OF CEMENT PASTES<br />

54


FIB-BASED FAILURE ANALYSIS AND NANO-MECHANICAL<br />

CHARACTERIZATION OF MEMS STRUCTURES<br />

calculation of the stiffness of MEMS membrane by the use of a wedge<br />

indenter – spring stiffness taken into account<br />

55


MULTISCALE MECHANICAL CHARACTERIZATION OF<br />

POROUS CERAMICS<br />

FIB section and analysis<br />

of sub-superficial<br />

porosity<br />

56


MULTISCALE MECHANICAL CHARACTERIZATION OF<br />

POROUS CERAMICS<br />

⎛<br />

σ ⎜ max<br />

= σ<br />

0<br />

1+<br />

2<br />

⎝<br />

a ⎞<br />

⎟<br />

ρ<br />

⎠<br />

Radius of curvature<br />

at the apex of this<br />

pore is 55 nm!<br />

High stress<br />

intensification at<br />

crack tip<br />

Vertical drop in<br />

Hardness/Modulus<br />

is due to brittle<br />

failure of subsurface<br />

porosity!<br />

57


USE OF NANO-SILICA FOR PREVENTING EXPANSIVE ALKALI-<br />

SILICA REACTION IN CONCRETE<br />

• NS – SEM-FEG and TEM<br />

Analysis<br />

No tendency to particle<br />

agglomeration<br />

<br />

Particle dimension<br />

10.5±2.3 nm<br />

• BET specific surface area<br />

345 m 2 /g<br />

TEM-BF 50000x<br />

TEM-BF 380000x<br />

58


USE OF NANO-SILICA FOR PREVENTING EXPANSIVE<br />

ALKALI-SILICA REACTION IN CONCRETE<br />

Nano-Silica<br />

RILEM AAR-4 Expansion test at 60 °C - 90 days<br />

RILEM AAR-4 Expansion test at 60 °C - 150 days<br />

025 0,25<br />

0,25<br />

0,2<br />

Aggregate A<br />

Aggregate B<br />

0,2<br />

Aggregate A<br />

Aggregate B<br />

0,15<br />

0,15<br />

0,1<br />

Expansion limit at 60 °C<br />

0,1 Expansion limit at 60 °C<br />

0,05<br />

0,05<br />

0<br />

0 0,2 0,4 0,8 2 5<br />

Nano-silica content (wt %)<br />

0<br />

0 0,2 0,4 0,8 2 5<br />

Nano-silica content (wt %)<br />

Ultima ate test expansion E90 (% l/l)<br />

0,25<br />

0,2<br />

0,15<br />

0,1<br />

0,05<br />

0<br />

Berra et Al. Expansion test at 150 °C - 21 days<br />

Aggregate A<br />

Aggregate B<br />

• Aggregate A:<br />

Expansion<br />

limit a 150 °C<br />

D eff = 0,56% at 60°C - 0,03%<br />

0 0,2 0,4 0,8 2 5<br />

Nano-silica content (wt %)<br />

<br />

D eff = 0,58% at 150 °C - 0,12%<br />

The addition of NS is effective in<br />

reducine the expansion of<br />

concrete<br />

59


OUTLINE<br />

Research Group <strong>presentation</strong><br />

• People and research Partners<br />

• Vision<br />

• Facilities<br />

Ongoing g research<br />

Research topics on surface mechanical<br />

measurements and microstructure concerns,<br />

future activities<br />

60


FUTURE RESEARCH ACTIVITIES<br />

FIB + Nanoindents<br />

• Improving pillar and half space modeling: not only<br />

the edges of the pillars must be taken into into<br />

account, but also the layered character of the<br />

sample. Taking into account properly the real<br />

layered structure and reevaluate the real Young's<br />

modulus of the coating can be crucial.<br />

• A concept for direct access to the contact area<br />

without guess work and / or tip calibration even in<br />

the Angstrom scale (we give support to Norbert<br />

Schwarzer work, Saxonian Institute of Surface<br />

Mechanics)<br />

61


FUTURE RESEARCH ACTIVITIES<br />

FIB + DIC<br />

• Improving stress profiling method, which no other<br />

method can in a site specific way by the use of a<br />

more efficient correlation algorithms<br />

• Extension of the method to different coated<br />

systems, with different elastic and plastic behaviour<br />

at different scale values (i.e. soft materials or<br />

foams)<br />

62


RELATED PUBLICATIONS: 2008-2009<br />

1. A. KORSUNSKY, M. SEBASTIANI, E. BEMPORAD,<br />

Residual Stress Evaluation at the Micrometre Scale: FIB Ring-Drilling and Digital Image<br />

Correlation Analysis,<br />

Acta Materialia, submitted;<br />

2. A. KORSUNSKY, M. SEBASTIANI, E. BEMPORAD,<br />

FIB Ring-Drilling illi For Residual Stress Evaluation,<br />

Materials Letters, in press, doi:10.1016/j.matlet.2009.06.020 ;<br />

3. C. Bartuli, J.M. Tulliani, E. Bemporad, J. Tirillò, G. Pulci, M. Sebastiani, Mechanical properties of<br />

cellular ceramics obtained by gel casting: characterization and modeling, Journal of the<br />

European Ceramic Society, in press, doi:10.1016/j.jeurceramsoc.2009.04.035<br />

4. Jean - Marc Tulliani, Cecilia Bartuli, Edoardo d Bemporad, Valentina Naglieri, Marco Sebastiani,<br />

Preparation and mechanical characterization of dense and porous zirconia produced by gel<br />

casting with gelatin as a gelling agent, Ceramics International 35 (2009) 2481–2491<br />

5. RIZZO A, SIGNORE MA, TAPFER L, PISCOPIELLO E, CAPPELLO A, BEMPORAD E, EBASTIANI M,<br />

Graded selective coatings based on zirconium and titanium oxynitride, Journal of physics d:<br />

apllied physics, 42, 2009, 1-10<br />

10<br />

6. Bemporad E. and Carassiti F. and Sebastiani M. and Lanza G. and Palmieri V. and Padamsee H.,<br />

Superconducting and microstructural studies on sputtered niobium thin films for accelerating<br />

cavity applications, SUPERCONDUCTOR SCIENCE AND TECHNOLOGY, 21, 2008<br />

7. E. BEMPORAD, M. SEBASTIANI, F. CARASSITI, Tribological studies on PVD/HVOF duplex<br />

coatings on Ti6Al4V substrate t , Surface & Coatings Technology 203 (2008) 566–571571<br />

8. CARASSITI F. and SEBASTIANI M. and MANGIALARDI T. and PAOLINI A.E. and BERRA M. , USE<br />

OF NANO-SILICA FOR PREVENTING EXPANSIVE ALKALI-SILICA REACTION IN CONCRETE,<br />

proceedings of the ICAAR 2008 – 13th International Conference on Alkali-Aggregate<br />

Reaction in Concrete<br />

9. BEMPORAD E. , SEBASTIANI M., CASADEI F., CARASSITI F., Modelling, production and<br />

characterisation of duplex coatings (HVOF and PVD) on Ti–6Al–4V substrate for specific<br />

mechanical applications, Surface & Coatings Technology 201 (2007) 7652–7662<br />

10. E. Bemporad, M. Sebastiani, F. Carassiti, R. Valle, F. Casadei, Development of a duplex coating<br />

procedure (HVOF and PVD) on TI-6AL-4V substrate for automotive applications, Ceramic<br />

Engineering and Science Proceedings 28 (3), pp. 145-158158 ISBN 978-0-470-24679-5<br />

64


e.bemporad@stm.uniroma3.it<br />

marco.sebastiani@stm.uniroma3.it<br />

i@ t i it<br />

65

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!