06.08.2014 Views

Remote sensing of natural hazards

Remote sensing of natural hazards

Remote sensing of natural hazards

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Remote</strong> <strong>sensing</strong> <strong>of</strong> <strong>natural</strong> <strong>hazards</strong><br />

Commercial applications <strong>of</strong> satellite data - 28 January 2009<br />

Dr Nick Rosser– n.j.rosser@dur.ac.uk - Institute <strong>of</strong> Hazard and Risk Research - Durham<br />

University


<strong>Remote</strong> Sensing & Natural Hazards<br />

Research<br />

• Introduction to IHRR<br />

– Combine social & physical approaches to<br />

understanding hazard & risk<br />

– ‘Global South’ focus<br />

– Applied & responsive research<br />

– Flooding, EQs & Landslides<br />

• IHRR application <strong>of</strong> RS to NH research<br />

• Process understanding &modelling<br />

• Linking process to earth observation<br />

• Prediction &upscaling<br />

– Coastal change<br />

– Post-earthquake sedimentation<br />

www.dur.ac.uk/ihrr<br />

• Future research directions &<br />

challenges<br />

Hazards research v <strong>hazards</strong> impact


Monitoring processes<br />

Rock cliff retreat – influence <strong>of</strong> precision<br />

• Challenges . . .<br />

– Input data for coastline retreat prediction<br />

– Poor quality monitoring data, looking in the<br />

wrong direction?<br />

– Resolution & sampling frequency<br />

• Integrating air-borne with terrestrial remote<br />

<strong>sensing</strong> data to better interpret remote<br />

<strong>sensing</strong> data<br />

• 3D laser scanning survey at 0.01 m<br />

resolution, over > 50,000 m 2 <strong>of</strong> cliff face<br />

• 3D modelling <strong>of</strong> scan data can detect 3D<br />

change to the cliff face < 0.0001 m 3


3D data processing &rockfall geometry extraction<br />

NJ Rosser, DN Petley, M. Lim, SA Dunning & RJ Allison 2005 Terrestrial laser scanning for monitoring the process <strong>of</strong><br />

hard rock coastal cliff erosion Quarterly Journal <strong>of</strong> Engineering Geology and Hydrogeology, 38, 363–375


Reassessing retreat<br />

654,373 rockfalls monitored over 5 years (mean = 0.001 m 3 , largest = 2,500 m 3 )<br />

Aggregate recession rate = 0.01 m/yr (published rate = 0.1 m/yr)<br />

Predicted 100 yr retreat = 3.6 m (published prediction 100 yr retreat – 90 m)


Sea-level control on cliff erosion rate?<br />

3D data processing &rockfall geometry extraction<br />

NJ Rosser, DN Petley, M. Lim, SA Dunning & RJ Allison 2005 Terrestrial laser scanning for monitoring the process <strong>of</strong><br />

hard rock coastal cliff erosion Quarterly Journal <strong>of</strong> Engineering Geology and Hydrogeology, 38, 363–375


Environmental control on rockfall occurrence?<br />

3D data processing &rockfall geometry extraction<br />

NJ Rosser, DN Petley, M. Lim, SA Dunning & RJ Allison 2005 Terrestrial laser scanning for monitoring the process <strong>of</strong><br />

hard rock coastal cliff erosion Quarterly Journal <strong>of</strong> Engineering Geology and Hydrogeology, 38, 363–375<br />

Squares represent 11 m x 11 m <strong>of</strong> cliff face, at monthly<br />

survey intervals


Precursors & failure prediction?<br />

•3D assessment identifies precursors<br />

•Potential to predict v forecast<br />

•Applied more widely to:<br />

•Embankments<br />

•Mine high-walls<br />

•Permanent monitoring<br />

3D data processing &rockfall geometry extraction<br />

Rosser, N.J., Lim, N, Petley, D.N., Dunning, S. & Allison, R.J. 2007 Patterns <strong>of</strong> precursory rockfall prior to slope failure.<br />

Journal <strong>of</strong> Geophysical Research.<br />

Squares represent 11 m x 11 m <strong>of</strong> cliff face, at monthly<br />

survey intervals


Post-earthquake<br />

landslides &<br />

sedimentation<br />

•EQ triggered landslide<br />

potentially hold great insight<br />

into earthquake dynamics &<br />

prediction<br />

•History <strong>of</strong> extreme postearthquake<br />

landscape change<br />

& sedimentation<br />

Sichuan<br />

2008<br />

(after, Bilham (2007))<br />

•What is the likely future nature<br />

<strong>of</strong> sediment dynamics in post-<br />

EQ Sichuan?<br />

Challenges:<br />

•Limited image availability<br />

•Topography<br />

•Monsoon<br />

•Politically sensitive<br />

(after, Keefer (1990))


Post 1999 Chi Chi, Taiwan river-bed<br />

aggradation<br />

1998<br />

2005<br />

2004


Post-earthquake<br />

sedimentation –<br />

Sichuan?<br />

17 June<br />

18 Nov<br />

Aggradation <strong>of</strong> >10 m in Beichuan in 5<br />

months, due to landslide remobilization


Steep topography - Poor lighting - Monsoon conditions - Data access<br />

http://www.eeri.org/site/images/lfe/china_20080512_zwang.ppt


http://www.eeri.org/site/images/lfe/china_20080512_zwang.ppt<br />

Continuing collapse – Monsoon driven failure<br />

http://www.eeri.org/site/images/lfe/china_20080512_zwang.ppt


Combined use <strong>of</strong> ALOS, EO1, QB, & SPOT imagery


Post-EQ<br />

sedimentation<br />

Automatic landslide mapping<br />

Combined multispectral analysis, using a<br />

range <strong>of</strong> available satellite imagery:<br />

•SPOT, IKONOS, LANDSAT, ALOS,<br />

EO1<br />

•Develop combine topographic / spectral<br />

model to classify landslides<br />

•Repeat over successive images<br />

Model <strong>of</strong> landslide distribution based<br />

upon:<br />

•Topographic amplification (DEM)<br />

•Slope / curvature<br />

•Ground cover (SPOT)<br />

Future EQ landslide prediction


30 % ground surface failed, > 100,000 landslides mapped, to date > 40,000<br />

reactivated


Post-EQ sedimentation<br />

Automatic landslide mapping<br />

•Modelled landslide<br />

distribution<br />

•Demonstrates limits<br />

to image resolution<br />

•Model transfer to<br />

other examples


Future research directions<br />

• Combining ground-based<br />

observations with wide-scale air<br />

&space-bourne monitoring<br />

• TLS, GB-InSAR<br />

• Potential for rapid assessment<br />

• Move towards predictive<br />

monitoring:<br />

• PSInSAR, TRMM, TLS<br />

• Temporal & spatial resolution<br />

• ? = ???????


www.dur.ac.uk/ihrr<br />

<strong>Remote</strong> <strong>sensing</strong> <strong>of</strong> <strong>natural</strong> <strong>hazards</strong><br />

Commercial applications <strong>of</strong> satellite data - 28 January 2009<br />

Dr Nick Rosser – n.j.rosser@dur.ac.uk - Institute <strong>of</strong> Hazard and Risk Research - Durham University


Flood modelling<br />

Why do we need satellite<br />

imagery for flood<br />

inundation modelling?<br />

1. Source <strong>of</strong> boundary<br />

condition data<br />

•Topography, especially<br />

given finer resolution models<br />

where topographic data<br />

handling is spatially explicit<br />

(e.g. 1.0 m resolution)<br />

•Friction, especially as it is<br />

controlled by land-use<br />

cover, although both<br />

theoretical arguments and<br />

sensitivity analysis points to<br />

inundation being less<br />

sensitive to floodplain<br />

friction but very sensitive to<br />

in-channel friction)<br />

York floods, 2000


2. In model parameterisation . . .<br />

• All flood inundation<br />

models are simplifications<br />

<strong>of</strong> the governing<br />

processes<br />

• Results in parameters<br />

with uncertain physical<br />

meaning (e.g. roughness)<br />

as they are effective<br />

• Need predictions that can<br />

be used to constrain<br />

those parameters<br />

• Inundation extent is really<br />

useful here<br />

York floods, 2000<br />

Yu, D. & Lane, S. 2005. Urban flood modelling using a 2-dimensional diffusionwave<br />

treatment. Hydrological Processes


3. For model validation<br />

100<br />

90<br />

Subject to data not being used in<br />

parameterisation, as a means <strong>of</strong><br />

assessing model performance<br />

Important when assessing<br />

different models<br />

Model performance<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

Accuracy<br />

Conditional Kappa<br />

(for wet cells)<br />

4<br />

8<br />

16<br />

32<br />

32 m<br />

16 m<br />

8 m<br />

4 m

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!