29.07.2014 Views

Antimicrobial activity of Tinospora cordifolia: an ethnomedicinal plant

Antimicrobial activity of Tinospora cordifolia: an ethnomedicinal plant

Antimicrobial activity of Tinospora cordifolia: an ethnomedicinal plant

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Antimicrobial</strong> <strong>activity</strong> <strong>of</strong> <strong>Tinospora</strong> <strong>cordifolia</strong> / Asi<strong>an</strong> Journal <strong>of</strong> Traditional Medicines, 2012, 7(2)<br />

Regular articles<br />

<strong>Antimicrobial</strong> <strong>activity</strong> <strong>of</strong> <strong>Tinospora</strong> <strong>cordifolia</strong>: <strong>an</strong><br />

<strong>ethnomedicinal</strong> pl<strong>an</strong>t<br />

Veeramuthu Duraip<strong>an</strong>diy<strong>an</strong> c , Savarimuthu Ignacimuthu a *, Kedike Balakrishna b ,<br />

, , ,<br />

Naif Abdullah AL-Harbi , c<br />

a. Division <strong>of</strong> Ethnopharmacology, Entomology Research Institute, Loyola College,<br />

Chennai-600 034, India<br />

b. Captain Srinivasa Murti Drug Research Institute for Ayurveda <strong>an</strong>d Siddha, Arumbakkam,<br />

Chennai-600 106, Tamil Nadu, India<br />

c. Department <strong>of</strong> Bot<strong>an</strong>y <strong>an</strong>d Microbiology, Addiriyah Chair for Environmental Studies<br />

Abstract<br />

Various org<strong>an</strong>ic solvent extracts <strong>of</strong> <strong>Tinospora</strong> <strong>cordifolia</strong> stem were tested against some Gram-positive <strong>an</strong>d Gram-negative bacteria<br />

<strong>an</strong>d fungi. Antibacterial <strong>activity</strong> <strong>of</strong> crude extract was carried out using disc diffusion method <strong>an</strong>d MIC <strong>of</strong> isolated compound was<br />

tested by broth microdilution method. The <strong>an</strong>tifungal <strong>activity</strong> was carried out using broth microdilution method. Crude eth<strong>an</strong>olic<br />

extract showed good <strong>an</strong>tibacterial <strong>an</strong>d <strong>an</strong>tifungal <strong>activity</strong> against tested microbes. A compound [(5R, 10R)-4R, 8R-Dihydroxy-2S,<br />

3R:15, 16-diepoxycleroda-13(16), 17, 12S, 18, 1S-dilactone] was isolated from eth<strong>an</strong>olic extract. The compound also showed good<br />

<strong>activity</strong> against bacteria <strong>an</strong>d fungi. The lowest MIC values were seen against Bacillus subtilis (200 µg/ml), Enterococcus faecalis<br />

(125 µg/ml) Trichophyton simii (31.25 µg/ml), Trichophyton rubrum 57 (62.5 µg/ml) <strong>an</strong>d Trichophyton rubrum 296 (62.5 µg/ml).<br />

The crude eth<strong>an</strong>ol extract <strong>of</strong> <strong>Tinospora</strong> <strong>cordifolia</strong> <strong>an</strong>d isolated compound showed <strong>activity</strong> against tested bacteria <strong>an</strong>d fungi.<br />

Key words: <strong>an</strong>tibacterial, <strong>an</strong>tifungal, <strong>Tinospora</strong> <strong>cordifolia</strong>, clerod<strong>an</strong>e diterpene<br />

1 Introduction<br />

India has a rich flora <strong>of</strong> medicinal pl<strong>an</strong>t species<br />

that are widely distributed throughout the country.<br />

They produce m<strong>an</strong>y unusual secondary metabolites<br />

which are biologically active. Despite the existence<br />

<strong>of</strong> a wide variety <strong>of</strong> <strong>an</strong>tibacterial agents the search<br />

for new ones is <strong>of</strong> great import<strong>an</strong>ce. Microbial<br />

* Author to whom correspondence should be addressed. Address:<br />

Entomology Research Institute, Loyola College, Nungambakkam,<br />

Chennai 600 034, Tamil Nadu, India; Tel: +91-44-2817 8348; Fax:<br />

+91-44-2817 5566; E-mail: entolc@hotmail.com<br />

Received: 2010-12-24 Accepted: 2012-03-02<br />

infections are the cause <strong>of</strong> a large burden <strong>of</strong><br />

diseases <strong>an</strong>d bacteria are listed in the first position<br />

among the common microorg<strong>an</strong>isms responsible<br />

for opportunistic diseases occurring in association<br />

with AIDS. Therapy <strong>of</strong> bacterial infections is a<br />

frequent problem due to the emergence <strong>of</strong> bacterial<br />

strains resist<strong>an</strong>t to numerous <strong>an</strong>tibiotics. In India<br />

catheters <strong>an</strong>d lung infections caused by Gramnegative<br />

org<strong>an</strong>isms such as Klebsiella, Pseudomonas<br />

<strong>an</strong>d Enterococci are predomin<strong>an</strong>t. Nosocomial<br />

pneumonia is most common in the surgical intensive<br />

units. The search for natural products to cure disease<br />

represents <strong>an</strong> area <strong>of</strong> great interest in which pl<strong>an</strong>ts<br />

have been the most import<strong>an</strong>t sources. In the Indi<strong>an</strong><br />

59


<strong>Antimicrobial</strong> <strong>activity</strong> <strong>of</strong> <strong>Tinospora</strong> <strong>cordifolia</strong> / Asi<strong>an</strong> Journal <strong>of</strong> Traditional Medicines, 2012, 7(2)<br />

traditional medicine, the use <strong>of</strong> pl<strong>an</strong>t is a widespread<br />

practice among tribal <strong>an</strong>d rural communities. More<br />

<strong>an</strong>d more people in developing countries utilize<br />

traditional medicine for their major primary health<br />

care needs [1, 2]<br />

Natural products derived from higher pl<strong>an</strong>ts play<br />

<strong>an</strong> import<strong>an</strong>t role as useful tools in pharmacological<br />

studies. With the technological adv<strong>an</strong>cement <strong>of</strong><br />

science the isolation, identification <strong>an</strong>d elucidation<br />

<strong>of</strong> chemical principles from natural sources have<br />

become much simpler <strong>an</strong>d have contributed<br />

signific<strong>an</strong>tly to the development <strong>of</strong> new drugs from<br />

medicinal pl<strong>an</strong>ts [3].<br />

<strong>Tinospora</strong> <strong>cordifolia</strong> (Willd) Miers (Guduchi)<br />

belonging to Menisoermaceae (Family) is<br />

distributed throughout the plains <strong>of</strong> India. In folk<br />

<strong>an</strong>d tribal medicine the whole pl<strong>an</strong>t <strong>an</strong>d the powder<br />

<strong>of</strong> leaves, stem bark <strong>an</strong>d roots <strong>of</strong> T. <strong>cordifolia</strong><br />

are used to treat various ailments such as fever,<br />

jaundice, diarrhea, dysentery, general debility,<br />

cough, asthma, skin diseases, fracture, bites <strong>of</strong><br />

poisonous insect <strong>an</strong>d eye disorders [4]. In Ayurvedic<br />

medicine it is used for the treatment <strong>of</strong> liver <strong>an</strong>d<br />

intestinal disorders [5]. Pl<strong>an</strong>t stem possess immunomodulatory<br />

[6], hepatoprotective [7], <strong>an</strong>tipyretic<br />

[8], <strong>an</strong>tiulcer [9] <strong>an</strong>d <strong>an</strong>tic<strong>an</strong>cer [10] activities.<br />

<strong>Tinospora</strong> <strong>cordifolia</strong> has been clinically used to treat<br />

jaundice, rheumatoid arthritis <strong>an</strong>d diabetes [11]. The<br />

species is rich in clerod<strong>an</strong>e derived diterpinoids [12].<br />

The clerod<strong>an</strong>e diterpenoids comprise a large class<br />

<strong>of</strong> natural products with wide biological activities<br />

[13, 14]. The present study was undertaken to assess<br />

the <strong>an</strong>tibacterial <strong>an</strong>d <strong>an</strong>tifungal <strong>activity</strong> <strong>of</strong> various<br />

org<strong>an</strong>ic <strong>an</strong>d aqueous extracts <strong>of</strong> T. <strong>cordifolia</strong> stem<br />

<strong>an</strong>d <strong>an</strong> isolated compound.<br />

2 Materials <strong>an</strong>d methods<br />

2.1 Pl<strong>an</strong>t material<br />

Stems <strong>of</strong> <strong>Tinospora</strong> <strong>cordifolia</strong> were collected<br />

from Th<strong>an</strong>darai, K<strong>an</strong>chipuram distict, Tamil Nadu,<br />

India. The pl<strong>an</strong>t was identified <strong>an</strong>d confirmed by a<br />

taxonomist from the Department <strong>of</strong> Bot<strong>an</strong>y, Loyola<br />

College. Chennai <strong>an</strong>d a voucher specimen (ERIC-D-<br />

45) is deposited at the herbarium <strong>of</strong> Entomology<br />

Research Institute, Loyola College,<br />

2.2 Preparation <strong>of</strong> crude extracts<br />

One kg <strong>of</strong> powder was extracted with hex<strong>an</strong>e<br />

for a period <strong>of</strong> 48 hours. The extract was filtered<br />

through a Buchner funnel with Whatm<strong>an</strong> number 1<br />

filter paper. The filtrate was evaporated to dryness<br />

under reduced pressure using rotary evaporator<br />

at 40°C. The remains <strong>of</strong> the pl<strong>an</strong>t material were<br />

extracted with ethyl acetate, eth<strong>an</strong>ol, meth<strong>an</strong>ol<br />

<strong>an</strong>d water sequentially in a similar m<strong>an</strong>ner.<br />

2.3 Isolation <strong>an</strong>d identification <strong>of</strong> active<br />

compound<br />

Since the eth<strong>an</strong>ol extract showed promising<br />

<strong>an</strong>tibacterial <strong>an</strong>d <strong>an</strong>tifungal <strong>activity</strong>, it (25 g) was<br />

subjected to column chromatography over silica<br />

gel (200 g-Acme’s silica gel, 100–200 mesh)<br />

fractionation was followed by TLC <strong>an</strong>d similar<br />

fractions were pooled together. The fractions were<br />

then subjected to <strong>an</strong>timicrobial <strong>activity</strong> <strong>an</strong>d the<br />

active fraction was located. From the active fraction<br />

the pure compound was isolated <strong>an</strong>d identified.<br />

2.4 Test org<strong>an</strong>isms<br />

The following bacteria <strong>an</strong>d fungi were used<br />

for the experiment. Bacteria: Bacillus subtilis<br />

MTCC 441, Enterococcus faecalis ATCC 29212,<br />

Staphylococcus aureus ATCC 25923, Escherichia<br />

coli ATCC 25922, Klebsiella pneumoniae<br />

ATCC 15380, Proteus vulgaris MTCC 1771.<br />

Fungi: T. rubrum MTCC 296, T. rubrum 57/01,<br />

T. mentagrophytes 66/01, T. simii 110/02,<br />

Epidermophyton floccosum 73/01, Scopulariopsis<br />

sp. 101/01 Aspergillus niger MTCC 1344, Botyritis<br />

60


<strong>Antimicrobial</strong> <strong>activity</strong> <strong>of</strong> <strong>Tinospora</strong> <strong>cordifolia</strong> / Asi<strong>an</strong> Journal <strong>of</strong> Traditional Medicines, 2012, 7(2)<br />

cinerea, Curvularia lunata 46/0, Magnoporthe<br />

grisea. All the cultures were obtained from the<br />

Department <strong>of</strong> Microbiology, Christi<strong>an</strong> Medical<br />

College, Vellore, Tamil Nadu, India.<br />

2.5 Preparation <strong>of</strong> inoculums<br />

Bacterial inoculum was prepared by growing<br />

cells in Mueller Hinton Broth (Himedia) for 24 h<br />

at 37°C. These cell suspensions were diluted with<br />

sterile MHB to provide initial cell counts <strong>of</strong> about<br />

10 4 CFU/ml. The filamentous fungi were grown on<br />

Sabouraud Dextrose Agar (SDA) sl<strong>an</strong>ts at 28 o C for<br />

10 days <strong>an</strong>d the spores were collected using sterile<br />

doubled distilled water <strong>an</strong>d homogenized. Yeast was<br />

grown on Sabouraud Dextrose Broth (SDB) at 28 o C<br />

for 48 h.<br />

2.6 Antibacterial assay (Disc diffusion method)<br />

Antibacterial <strong>activity</strong> was carried out using discdiffusion<br />

method [16]. Petri plates were prepared<br />

with 20 ml <strong>of</strong> sterile Mueller Hinton Agar (MHA)<br />

(Hi-media, Mumbai). The test cultures were swabbed<br />

on the top <strong>of</strong> the solidified media <strong>an</strong>d allowed to<br />

dry for 10 min. The tests were conducted at three<br />

different concentrations <strong>of</strong> the crude extract (5 mg,<br />

2.5 mg <strong>an</strong>d 1.25 mg per disc). The loaded discs were<br />

placed on the surface <strong>of</strong> the medium <strong>an</strong>d left for 30<br />

min at room temperature for compound diffusion.<br />

Negative control was prepared using respective<br />

solvent. Streptomycin (10 µg/disc) was used as<br />

positive control. The plates were incubated for 24 h<br />

at 37 o C for bacteria <strong>an</strong>d 48 h at 27 o C for fungi. Zones<br />

<strong>of</strong> inhibition were recorded in millimeters <strong>an</strong>d the<br />

experiment was repeated twice.<br />

2.7 Antifungal <strong>activity</strong> <strong>an</strong>d minimum inhibitory<br />

concentration<br />

The <strong>an</strong>tifungal <strong>activity</strong> <strong>an</strong>d minimum<br />

inhibitory concentration (MIC) were performed<br />

according to the st<strong>an</strong>dard reference method [17].<br />

The extracts <strong>an</strong>d compound were dissolved in<br />

water +2% Dimethyl Sulfoxide (DMSO). The<br />

initial concentration <strong>of</strong> extracts was 1 mg/ml<br />

<strong>an</strong>d for compound it was 250 µg/ml. The initial<br />

test concentration was serially diluted two-fold.<br />

Each well was inoculated with 5 µl <strong>of</strong> suspension<br />

containing 10 8 CFU/ml <strong>of</strong> bacteria <strong>an</strong>d 10 4 spore/<br />

ml <strong>of</strong> fungi, respectively. Five μl <strong>of</strong> tested broth<br />

was placed on the sterile MHA plates for bacteria <strong>an</strong>d<br />

incubated at respective temperature. The <strong>an</strong>tifungal<br />

agents Ketoconazole <strong>an</strong>d Fluconazole <strong>an</strong>d <strong>an</strong>tibacterial<br />

agents Streptomycin <strong>an</strong>d Cipr<strong>of</strong>loxacin were included<br />

in the assays as positive controls. The fungal plates<br />

were incubated for 24, 48 or 72 h at 27°C up to 9 days<br />

while bacterial plates were incubated for 24 h at 37°C.<br />

MIC was defined as the lowest extract concentration<br />

showing no visible fungal growth after incubation<br />

time. The MIC for bacteria was determined as the<br />

lowest concentration <strong>of</strong> the compound inhibiting the<br />

visual growth <strong>of</strong> the test cultures on the agar plate.<br />

3 Results <strong>an</strong>d discussion<br />

The yield <strong>of</strong> hex<strong>an</strong>e, ethyl acetate, eth<strong>an</strong>ol,<br />

meth<strong>an</strong>ol <strong>an</strong>d water extracts from stems <strong>of</strong> T.<br />

<strong>cordifolia</strong> were 15 g for hex<strong>an</strong>e, 20 g for ethyl<br />

acetate, 25 g for eth<strong>an</strong>ol, 40 g for meth<strong>an</strong>ol <strong>an</strong>d<br />

5 g for water.The different solvent extracts <strong>of</strong><br />

T. <strong>cordifolia</strong> were tested against selected Grampositive<br />

<strong>an</strong>d Gram-negative pathogenic bacteria. The<br />

results are presented in Table 1. Hex<strong>an</strong>e extract did<br />

not show <strong>an</strong>y <strong>activity</strong> against tested bacteria for all<br />

tested concentrations. Ethyl acetate extract inhibited<br />

the growth <strong>of</strong> S. aureus (10 mm), S. typhi (9mm)<br />

<strong>an</strong>d P. vulgaris (13 mm) at higher concentration<br />

<strong>of</strong> 5mg/disc. Eth<strong>an</strong>ol extract showed promising<br />

<strong>an</strong>tibacterial <strong>activity</strong> for all tested bacteria such as<br />

S. aureus (8 mm), B. subtilis (9mm), E. faecalis<br />

(9 mm), E. coli (9 mm), S. typhi (8 mm) <strong>an</strong>d P.<br />

vulgaris (8 mm) at lowest concentrations (Table<br />

1). Meth<strong>an</strong>ol extract showed moderate <strong>activity</strong><br />

against S. aureus, B. subtilis, E. faecalis, E. coli<br />

61


<strong>Antimicrobial</strong> <strong>activity</strong> <strong>of</strong> <strong>Tinospora</strong> <strong>cordifolia</strong> / Asi<strong>an</strong> Journal <strong>of</strong> Traditional Medicines, 2012, 7(2)<br />

Table 1. Antibacterial <strong>activity</strong> <strong>of</strong> different solvent extracts <strong>of</strong> T. <strong>cordifolia</strong> stem<br />

Extracts<br />

Conc.<br />

Mg/ disc<br />

Disc diffusion method (inhibition zone, mm)<br />

S.a B.s E.f E.c S.t K.p P.v<br />

Hex<strong>an</strong>e extract 1.25 - - - - - -<br />

2.5 - - - - - - -<br />

5 - - - - - - -<br />

Ethyl acetate extract 1.25 - - - - - - -<br />

2.5 - - - - - - -<br />

5 10 - - - 9 13<br />

Eth<strong>an</strong>ol extract 1.25 8 9 9 9 8 - 8<br />

2.5 10 14 12 11 9 - 14<br />

5 12 16 15 14 12 - 16<br />

Meth<strong>an</strong>ol extract 1.25 - - - - - - -<br />

2.5 10 - 9 - - - 10<br />

5 13 10 11 11 - - 12<br />

Water extract 1.25 - - - - - - -<br />

2.5 - - - - - - -<br />

5 - 9 9 - - - -<br />

Streptomycin 10µg 12 13 12 13 nt 11 nt<br />

Cipr<strong>of</strong>loxacin 5 µg 20 30 16 25 nt 28 nt<br />

-, no <strong>activity</strong>; S.a - Staphylococcus aureus; B.s - B. subtilis; E.f- Enterococcus faecalis; E.c - Escherichia coli; K.p – Klebsiella<br />

pneumoniae; P.v- Proteus vulgaris; Streptomycin <strong>an</strong>d Cipr<strong>of</strong>loxacin- Control <strong>an</strong>tibiotics<br />

<strong>an</strong>d P. vulgaris but did not show <strong>activity</strong> against S.<br />

typhi <strong>an</strong>d P. vulgaris. Water extract inhibited only<br />

the growth <strong>of</strong> B. subtilis (9 mm) <strong>an</strong>d E. faecalis<br />

(9 mm) at higher concentrations. The maximum<br />

inhibition zones were observed in eth<strong>an</strong>ol extract<br />

against B. subtilis (16mm), E. faecalis (15 mm), E.<br />

coli (14 mm) <strong>an</strong>d P. vulgaris (16mm). The lowest<br />

MIC values were recorded in eth<strong>an</strong>ol extract against<br />

S. aureus (0.315 mg/ml), B. subtilis (0.315 mg/ml),<br />

E. faecalis (0.315 mg/ml) <strong>an</strong>d P. vulgaris (0.315<br />

mg/ml) (Table 2). Antifungal <strong>activity</strong> <strong>of</strong> T. <strong>cordifolia</strong><br />

stems <strong>of</strong> hex<strong>an</strong>e, ethyl acetate, eth<strong>an</strong>ol, meth<strong>an</strong>ol<br />

<strong>an</strong>d water extracts were tested against fungi <strong>an</strong>d<br />

the results are presented in Table 3. Hex<strong>an</strong>e, ethyl<br />

acetate <strong>an</strong>d eth<strong>an</strong>ol extracts showed promising<br />

<strong>an</strong>tifungal <strong>activity</strong> against T. rubrum 296, T. rubrum,<br />

T. mentagrophytes, T. simii <strong>an</strong>d E. floccosum. Water<br />

<strong>an</strong>d meth<strong>an</strong>ol extracts did not show <strong>an</strong>tifungal<br />

<strong>activity</strong>.<br />

<strong>Antimicrobial</strong> screening results indicated that<br />

both <strong>an</strong>tibacterial <strong>an</strong>d <strong>an</strong>tifungal activities were<br />

observed in eth<strong>an</strong>ol extract <strong>of</strong> T. <strong>cordifolia</strong>. The<br />

active compound after bioassay guided fractionation<br />

was identified as 8-hydroxy arc<strong>an</strong>gelisin Structure<br />

o f ( 5 R , 1 0 R ) - 4 R , 8 R - d i h y d r o x y - 2 S , 3 R : 1 5 ,<br />

16-diepoxycleroda-13(16), 17, 12S, 18, 1S-dilactone<br />

(clerod<strong>an</strong>e diterpene) (Fig. 1). The compound which<br />

is a clerod<strong>an</strong>e diterpene has been previously reported<br />

by us as <strong>an</strong>tic<strong>an</strong>cer compound against hepatocellular<br />

carcinoma [15].<br />

Antic<strong>an</strong>cer property <strong>of</strong> this compound has been<br />

reported by Dh<strong>an</strong>asekar<strong>an</strong> et al [15]. <strong>Antimicrobial</strong><br />

<strong>activity</strong> <strong>of</strong> this compound is given in Table 2<br />

<strong>an</strong>d 3. The compound inhibited the growth <strong>of</strong> B.<br />

subtilis (200 µg/ml), E. faecalis (125 µg/ml), E.<br />

62


<strong>Antimicrobial</strong> <strong>activity</strong> <strong>of</strong> <strong>Tinospora</strong> <strong>cordifolia</strong> / Asi<strong>an</strong> Journal <strong>of</strong> Traditional Medicines, 2012, 7(2)<br />

Table 2. MIC <strong>of</strong> T. <strong>cordifolia</strong> stem extracts <strong>an</strong>d isolated compound against bacteria<br />

Microorg<strong>an</strong>ism<br />

MIC (mg/ml)<br />

MIC (µg/ml)<br />

H E Et Me W C Cfl Strep (µg/ml)<br />

Staphylococcus aureus >5.0 2.5 0.315 2.5 >5.0 >200 5.0 >5.0 0.315 0.625 5.0 200 5.0 >5.0 0.315 1.25 5.0 125 6.25 25<br />

Escherichia coli >5.0 >5.0 1.25 2.5 >5.0 200 5.0 5.0 1.25 >5.0 >5.0 >200 nt 25<br />

Klebsiella pneumoniae >5.0 >5.0 >5.0 >5.0 >5.0 >200 5.0 2.5 0.315 1.25 >5.0 125 nt nt<br />

nt, not tested; H- Hex<strong>an</strong>e extract; E- Ethyl acetate extract; Et- Eth<strong>an</strong>ol extract; Me- Meth<strong>an</strong>ol extract; W-Water extract; C-<br />

Isolated Compound; Strept- Streptomycin; Cfl- Cipr<strong>of</strong>loxacin (Control <strong>an</strong>tibiotic for bacteria)<br />

Table 3: MIC <strong>of</strong> T. <strong>cordifolia</strong> stem extracts <strong>an</strong>d isolated compound against fungi<br />

Tested org<strong>an</strong>ism<br />

Dermatophytes<br />

Minimum inhibitory concentration (mg/ml)<br />

H E Et Me W C (µg/ml) Fl (µg/ml)<br />

Trichophyton rubrum 296 0.125 0.250 0.125 1.0 >1.0 62.5 1.0 >1.0 62.5 25<br />

Trichophyton mentagrophytes 0.250 0.5 0.250 >1.0 >1.0 125 25<br />

Trichophyton simii 0.250 0.5 0.625 >1.0 >1.0 31.2 1.0 >1.0 125 12.5<br />

Scopulariopsis sp. >1.0 >1.0 >1.0 >1.0 >1.0 >200 1.0 >1.0 >1.0 >1.0 >1.0 >200 100<br />

Botyritis cinerea >1.0 >1.0 >1.0 >1.0 >1.0 >200 -<br />

Curvularia lunata >1.0 >1.0 >1.0 >1.0 >1.0 >200 1.0 >1.0 200 -<br />

-, no <strong>activity</strong>; H- Hex<strong>an</strong>e extract; E- Ethyl acetate extract; Et- Eth<strong>an</strong>ol extract; Me- Meth<strong>an</strong>ol extract; W- Water extract; C-<br />

Isolated Compound; Fluconazole Control <strong>an</strong>tibiotic for fungi.<br />

coli (200 µg/ml) <strong>an</strong>d P. vulgaris (125 µg/ml). The<br />

compound also inhibited the growth <strong>of</strong> T. rubrum<br />

57 (62.5 µg/ml), T. rubrum 296 (62.5 µg/ml), T.<br />

mentagrophytes (125 µg/ml), T. simii (31.2 µg/ml),<br />

E. floccosum (125 µg/ml) <strong>an</strong>d M. grisea (200 µg/<br />

ml). The compound did not show <strong>activity</strong> against<br />

S. aureus <strong>an</strong>d S. typhi. This compound has not been<br />

reported previously for <strong>an</strong>timicrobial <strong>activity</strong>. The<br />

search for natural products to cure disease represents<br />

<strong>an</strong> area <strong>of</strong> great interest in which pl<strong>an</strong>ts have<br />

been the most import<strong>an</strong>t sources. In recent years<br />

<strong>an</strong>timicrobial properties <strong>of</strong> Indi<strong>an</strong> medicinal pl<strong>an</strong>ts<br />

have been increasingly reported [18-20]. Over the<br />

years there have been several studies documenting<br />

the <strong>an</strong>tibacterial properties <strong>of</strong> pl<strong>an</strong>ts from India <strong>an</strong>d<br />

Tamil Nadu [21-28]<br />

The crude extracts <strong>of</strong> T. <strong>cordifolia</strong> stem showed<br />

<strong>activity</strong> against bacteria <strong>an</strong>d fungi. Among the<br />

tested extracts eth<strong>an</strong>ol extract showed good <strong>activity</strong><br />

against both bacteria <strong>an</strong>d fungi. Aqueous, eth<strong>an</strong>ol<br />

<strong>an</strong>d chlor<strong>of</strong>orm crude extract <strong>of</strong> T. <strong>cordifolia</strong><br />

63


<strong>Antimicrobial</strong> <strong>activity</strong> <strong>of</strong> <strong>Tinospora</strong> <strong>cordifolia</strong> / Asi<strong>an</strong> Journal <strong>of</strong> Traditional Medicines, 2012, 7(2)<br />

The present work supports the claim in the<br />

traditional medicine that the pl<strong>an</strong>t c<strong>an</strong> be used in<br />

the treatment <strong>of</strong> various infectious diseases as fever,<br />

diarrhea, dysentery, cough etc. which are <strong>of</strong> bacterial<br />

origin <strong>an</strong>d skin diseases caused by fungi.<br />

stems showed <strong>an</strong>tibacterial <strong>activity</strong> against E.<br />

coli, P. vulgaris, E. faecalis. S. typhi <strong>an</strong>d Serratia<br />

marcesecens [29]. Dhar et al. [30] reported that<br />

eth<strong>an</strong>olic stem extract <strong>of</strong> T. <strong>cordifolia</strong> showed<br />

<strong>an</strong>tiviral <strong>activity</strong> against R<strong>an</strong>ikhet diseases. The<br />

active compound was isolated from eth<strong>an</strong>ol<br />

extract. Isolated compound showed <strong>activity</strong><br />

against bacteria <strong>an</strong>d fungi. The lowest MIC values<br />

were observed against E. faecalis (125 µg/ml)<br />

<strong>an</strong>d P. vulgaris (125 µg/ml). The compound also<br />

showed <strong>activity</strong> against fungi; the lowest MIC<br />

values were seen against T. simii, T. rubrum 57 <strong>an</strong>d<br />

T. rubrum (296). The fact that diterpenoids seem to<br />

be key compounds in the <strong>an</strong>timicrobial <strong>activity</strong> <strong>of</strong><br />

the resinous exudates from pl<strong>an</strong>ts has been recently<br />

documented with a comparative <strong>an</strong>timicrobial study<br />

<strong>of</strong> several pl<strong>an</strong>ts in which the diterpenoids are the<br />

principal components in these extracts [31]. Zagodaspols<br />

et al. [32] reported that four diterpenes were<br />

isolated from the stem bark <strong>of</strong> Mitrephora celebica<br />

through bioassay-guided fractionation. These<br />

compounds were responsible for the <strong>an</strong>timicrobial<br />

<strong>activity</strong> <strong>of</strong> the pl<strong>an</strong>t against methicillin-resist<strong>an</strong>t<br />

Staphylococcus aureus <strong>an</strong>d Mycobacterium<br />

smegmatis.<br />

Reference<br />

[1] Farnsworth NR. Ethnopharmacology <strong>an</strong>d future drug<br />

development: the North Americ<strong>an</strong> experience. J<br />

Ethnopharmacol, 1993, 38: 145-152.<br />

[2] Houghton PJ. The role <strong>of</strong> pl<strong>an</strong>ts in traditional medicine<br />

<strong>an</strong>d current therapy. J Alternat Complement Med. 1995,<br />

1: 131-143.<br />

[3] Cox PA. Ethnopharmacology <strong>an</strong>d the search for new<br />

Fig. 1. Structure <strong>of</strong> (5R, 10R)-4R, 8R-dihydroxy-2S, 3R:<br />

Fig.1.Structure <strong>of</strong> (5R,10R)-4R,8R-dihydroxy-2S,3R:15, 16-diepoxycleroda-<br />

drugs. In Bioactive compounds from pl<strong>an</strong>ts (Eds.D.J.<br />

13(16),17,12S,18,1S-dilactone<br />

15, 16-diepoxycleroda-13(16), 17, 12S, 18, 1S-dilactone<br />

(clerod<strong>an</strong>e diterpene).<br />

(clerod<strong>an</strong>e diterpene)<br />

Chadwick <strong>an</strong>d J.Marsh).Ciba Foundation Symposium<br />

154, John Wiley & Sons, Chickester, 1990, 40-55.<br />

Antic<strong>an</strong>cer <strong>of</strong> this compound has been reported by Dh<strong>an</strong>asekar<strong>an</strong> et al.[15]. <strong>Antimicrobial</strong> [4] Singh J, Sinha K, Sharma A, Mishra NP, Kh<strong>an</strong>uja SPS.<br />

Traditional uses <strong>of</strong> <strong>Tinospora</strong> <strong>cordifolia</strong> (Guduchi). J<br />

<strong>activity</strong> <strong>of</strong> this compound is given in table 2 <strong>an</strong>d 3. The compound inhibited the growth <strong>of</strong> B. subtilisMed Aromat Pl<strong>an</strong>t Sci. 2003, 25:748-758.<br />

[5] Chadha YR. Publication <strong>an</strong>d Information Directorate.<br />

(200 µg/ml), E. faecalis (125 µg/ml), E. coli (200 µg/ml) <strong>an</strong>d P. vulgaris (125 µg/ml). The compound<br />

CSIR, NewDelhi, The wealth <strong>of</strong> India, 1976, 10: 251.<br />

also inhibited the growth <strong>of</strong> T. rubrum 57 (62.5µg/ml), T. rubrum 296 (62.5µg/ml), T. mentagrophytes [ 6 ] A t a l C K , S h a r m a M L , K a u l A , K h a j u r i a A .<br />

Immunomodulating agents <strong>of</strong> pl<strong>an</strong>t origin. Preliminary<br />

(125 µg/ml), T. simii (31.2 µg/ml), E. floccosum (125 µg/ml) <strong>an</strong>d M. grisea (200 µg/ml). The<br />

screening. J Ethnopharmacol, 1986, 18: 133-141.<br />

compound did not show <strong>activity</strong> against S. aureus <strong>an</strong>d S. typhi. This compound has not been reported [7] Peer F, Sharma MC. Therapeutic evaluations <strong>Tinospora</strong><br />

<strong>cordifolia</strong> in CCl4 induced hepatopathy in goats. Ind J<br />

previously for <strong>an</strong>timicrobial. The search for natural products to cure disease represents <strong>an</strong> area <strong>of</strong> great Vet Med, 1989, 9: 154-156.<br />

[8] Vedavathy S, Rao KN. Antipyretic <strong>activity</strong> <strong>of</strong> six<br />

interest in which pl<strong>an</strong>ts have been the most import<strong>an</strong>t sources. In recent years <strong>an</strong>timicrobial properties<br />

indigenous medicinal pl<strong>an</strong>ts <strong>of</strong> Tirumala Hills Andhra<br />

<strong>of</strong> Indi<strong>an</strong> medicinal pl<strong>an</strong>ts have been increasingly reported [18-20]. Over the years there have been Pradesh, India. J Ethnopharmacol, 1991, 33: 1-2.<br />

[9] Sharma DNK, Khosa,RL, Ch<strong>an</strong>souria JPN, Sahai M.<br />

several studies documenting the <strong>an</strong>tibacterial properties <strong>of</strong> pl<strong>an</strong>ts from India <strong>an</strong>d Tamil Nadu [21-28]<br />

Antiulcer <strong>activity</strong> <strong>of</strong> <strong>Tinospora</strong> <strong>cordifolia</strong> Miers <strong>an</strong>d<br />

The crude extracts <strong>of</strong> T. <strong>cordifolia</strong> stem showed <strong>activity</strong> against bacteria <strong>an</strong>d fungi. Among the tested Centella asiatica Linn extracts. Phytother Res, 1995, 9:<br />

589-590.<br />

extracts eth<strong>an</strong>ol extract showed good <strong>activity</strong> against both bacteria <strong>an</strong>d fungi. Aqueous, eth<strong>an</strong>ol [10] <strong>an</strong>d Jagetia GC, Nayak V, Vidyasagar MS. Evaluation <strong>of</strong> the<br />

<strong>an</strong>tineoplastic <strong>activity</strong><strong>of</strong> guduchi (<strong>Tinospora</strong> <strong>cordifolia</strong>)<br />

chlor<strong>of</strong>orm crude extract <strong>of</strong> T. <strong>cordifolia</strong> stems showed <strong>an</strong>tibacterial <strong>activity</strong> against E. coli, P.<br />

in cultured HeLa cells. C<strong>an</strong>cer Letter, 1998, 127: 71-82.<br />

vulgaris, E. faecalis. S. typhi <strong>an</strong>d Serratia marcesecens [29]. Dhar et al. [30] reported that eth<strong>an</strong>olic [11] Kirtikar KR, Basu DD. Indi<strong>an</strong> Medicinal Pl<strong>an</strong>ts. Lalit<br />

Moh<strong>an</strong> Basu Publication, Allahabad, 1980, 1: 75-81.<br />

stem extract <strong>of</strong> T. <strong>cordifolia</strong> showed <strong>an</strong>tiviral <strong>activity</strong> against R<strong>an</strong>ikhet diseases. The active compound<br />

[12] Oberlies NM, Burgess JP, Navarro HA, Pinos RE,<br />

Fairchild CR, Peterson RW, Soejatto DD, Famaworth<br />

NR, Kingdom AD, W<strong>an</strong>i MC, Wall ME. Novel bioactive<br />

clerod<strong>an</strong>e diterpenoids from the leaves <strong>an</strong>d twings <strong>of</strong><br />

Casearia sylvestris. J Nat Prod, 2002, 65: 95-99.<br />

[13] Sai prakash CV, Hoch JM, Kingston DG. Structure <strong>an</strong>d<br />

stereochemistry <strong>of</strong> new cytotoxic clerod<strong>an</strong>e diterpenoids<br />

from the bark <strong>of</strong> Casearia lucida from the Madagascar<br />

rainforest. J Nat Prod, 2002, 65: 100-107.<br />

64


<strong>Antimicrobial</strong> <strong>activity</strong> <strong>of</strong> <strong>Tinospora</strong> <strong>cordifolia</strong> / Asi<strong>an</strong> Journal <strong>of</strong> Traditional Medicines, 2012, 7(2)<br />

[14] Hu<strong>an</strong>g DM, Shen YC, Wu C, Hu<strong>an</strong>g YT, Kung LF, Teng<br />

CM, Guh JH. Investigation <strong>of</strong> extrinsic <strong>an</strong>d intrinsic<br />

apoptosis pathways <strong>of</strong> new clerod<strong>an</strong>e diterpenoids in<br />

hum<strong>an</strong> prostate c<strong>an</strong>cer PC-3 cells. Eur J Pharmacol,<br />

2004, 503: 17-24.<br />

[15] Dh<strong>an</strong>asekar<strong>an</strong> M, Albert Baskar A, Ignacimuthu S,<br />

Agasti<strong>an</strong> P, Duraip<strong>an</strong>diy<strong>an</strong> V. Chemopreventive<br />

potential <strong>of</strong> Epoxy clerod<strong>an</strong>e diterpene from <strong>Tinospora</strong><br />

<strong>cordifolia</strong> against diethylnitrosamine-induced<br />

hepatocellular carcinoma. Invest New Drug, 2009, 27:<br />

347-355.<br />

[16] Murray PR, Baron EJ, Pfaller MA, Tenover FC, Yolke<br />

RH. M<strong>an</strong>ual <strong>of</strong> Clinical Microbiology, vol. 6. ASM,<br />

Washington, DC, 1995.<br />

[17] NCCLS NCCLS. Reference method for broth dilution<br />

<strong>an</strong>tifungal susceptibility testing <strong>of</strong> filamentous fungi.<br />

Approved st<strong>an</strong>dard M38-A. National Committee for<br />

Clinical Laboratory St<strong>an</strong>dards, Wayne, PA. 2002.<br />

[18] Aswal BS, Goel AK, Kulshreshtha DK, Mehtrota BN,<br />

Patnaik GK. Screening <strong>of</strong> Indi<strong>an</strong> medicinal pl<strong>an</strong>ts for<br />

biological <strong>activity</strong>. Ind J Exp Biol. 1996, 34: 444-467.<br />

[19] Ahmad UV, Ali MS, Usm<strong>an</strong>gh<strong>an</strong>i K. Bodenolide, a new<br />

diterpenoid from the seeds <strong>of</strong> caesalpinia bonduc. Z.<br />

Naturforsch. 1997, 52b: 410-412.<br />

[20] Ahmad I, Beg AZ. <strong>Antimicrobial</strong> <strong>an</strong>d phytochemical<br />

studies on 45 Indi<strong>an</strong> medicinal pl<strong>an</strong>ts against multi-drug<br />

resist<strong>an</strong>t hum<strong>an</strong> pathogens. J Ethnopharmacol, 2001, 74:<br />

113-123.<br />

[21] Valsaraj R, Pushp<strong>an</strong>gad<strong>an</strong> P, Smitt UW, Andersen<br />

A, Nym<strong>an</strong> U. <strong>Antimicrobial</strong> screening <strong>of</strong> selected<br />

medicinal pl<strong>an</strong>ts from India. J Ethnopharmacol, 1997,<br />

58: 75-83.<br />

[22] Ahmad I, Mehmood Z, Mohammad F. Screening <strong>of</strong><br />

some Indi<strong>an</strong> medicinal pl<strong>an</strong>ts for their <strong>an</strong>timicrobial<br />

properties. J Ethnopharmacol, 1998, 62: 183-193.<br />

[23] Perumalsamy R, Ignacimuthu S, Sen A. Screening <strong>of</strong> 34<br />

Indi<strong>an</strong> medicinal pl<strong>an</strong>ts for <strong>an</strong>tibacterial properties. J<br />

Ethnopharmacol, 1998, 62: 173-181.<br />

[24] Perumalsamy R, Ignacimuthu S. Antibacterial <strong>activity</strong><br />

<strong>of</strong> some folklore medicinal pl<strong>an</strong>ts used by tribals in<br />

Western Ghats <strong>of</strong> India. J Ethnopharmacol, 2000, 69:<br />

63-71.<br />

[25] Srinivas<strong>an</strong> D, Nath<strong>an</strong> S, Suresh T, Lakshm<strong>an</strong>a Perumalsamy<br />

P. <strong>Antimicrobial</strong> <strong>activity</strong> <strong>of</strong> certain Indi<strong>an</strong> medicinal pl<strong>an</strong>ts<br />

used in folkloric medicine. J Ethnopharmacol. 2001, 74,<br />

217-220.<br />

[26] Dabur R, Singh H, Chhillar A K, Ali M, Sharma GL.<br />

Antifungal potential <strong>of</strong> Indi<strong>an</strong> medicinal pl<strong>an</strong>ts.<br />

Fitoterapia 2004, 75: 389-391.<br />

[27] Vonshak A, Baraz<strong>an</strong>i O, Sathiyamoorthy P, Shalev R,<br />

Vardy D, Gol<strong>an</strong>-Goldhirsh A. Screening South Indi<strong>an</strong><br />

medicinal pl<strong>an</strong>ts for <strong>an</strong>tifungal <strong>activity</strong> against cut<strong>an</strong>eous<br />

pathogens. Phytother Res, 2003, 17: 1123-1125.<br />

[28] Vijay<strong>an</strong>thimala J, An<strong>an</strong>di C, Udhaya V, Pugalendi KV.<br />

Antic<strong>an</strong>didal <strong>activity</strong> <strong>of</strong> certain South Indi<strong>an</strong> medicinal<br />

pl<strong>an</strong>ts. Phytother Res, 2000, 14: 207-209.<br />

[29] Jayach<strong>an</strong>dr<strong>an</strong> R, Xavier TF, An<strong>an</strong>d SP. Antibacterial<br />

<strong>activity</strong> <strong>of</strong> stem extracts <strong>of</strong> <strong>Tinospora</strong> <strong>cordifolia</strong> (Willd.)<br />

Hook.F & Thomsons. Ancient Science <strong>of</strong> Life, 2003,<br />

XXIII, 40-43.<br />

[30] Dhar ML, Dhar MM, Dhaw<strong>an</strong> BN, Mehrotra BN, Ray<br />

C. Screening <strong>of</strong> Indi<strong>an</strong> medicinal pl<strong>an</strong>ts for Biological<br />

<strong>activity</strong>: Part I; Ind J Exp Biology, 1968, 6: 232-245.<br />

[31] Mendoza L, Wilkens M, Urzua A. <strong>Antimicrobial</strong> study <strong>of</strong><br />

the resinous exudates <strong>an</strong>d <strong>of</strong> diterpenoids <strong>an</strong>d flavonoids<br />

isolated from some Chile<strong>an</strong> Pseudognaphalium<br />

(Asteraceae). J Ethnopharmacol, 1997, 58: 85-88.<br />

[32] Zgoda-Pols JR, Freyer AJ, Killmer LB et al.<br />

<strong>Antimicrobial</strong> diterpenes from the stem bark <strong>of</strong><br />

Mitrephora celebica. Fitoterapia, 2002, 73: 434-438.<br />

65

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!