29.07.2014 Views

STAT 610 Homework #10 solution 5.12. Note that for any n and for ...

STAT 610 Homework #10 solution 5.12. Note that for any n and for ...

STAT 610 Homework #10 solution 5.12. Note that for any n and for ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>STAT</strong> <strong>610</strong> <strong>Homework</strong> <strong>#10</strong> <strong>solution</strong><br />

<strong>5.12.</strong> <strong>Note</strong> <strong>that</strong> <strong>for</strong> <strong>any</strong> n <strong>and</strong> <strong>for</strong> <strong>any</strong> X i , i = 1, ..., n one has<br />

∣ 1<br />

n∑ ∣∣∣∣<br />

Y 1 =<br />

X i ≤ 1 n∑<br />

|X i | = Y 2<br />

∣n<br />

n<br />

i=1<br />

so, the same ineqaulity holds <strong>for</strong> expectations.<br />

Thus,<br />

E(Y 1 ) =<br />

=<br />

∫ ∞<br />

−∞<br />

∫ 0<br />

−∞<br />

∫ ∞<br />

√ n<br />

{<br />

|z| √ exp − n 2π 2 z2} dz<br />

√ n<br />

−z √ exp 2π<br />

{<br />

− n 2 z2} dz +<br />

√ n<br />

= 2 z √ exp<br />

0 2π<br />

√ ∫ n 1 ∞<br />

= 2√ exp{−u}du<br />

2π n 0<br />

√<br />

2<br />

= √ nπ<br />

∫ ∞<br />

0<br />

i=1<br />

1<br />

n<br />

n∑<br />

X i ∼ N(0, 1 n ) since X i ∼ N(0, 1).<br />

i=1<br />

√ n<br />

{<br />

z √ exp − n 2π 2 z2} dz<br />

{<br />

− n 2 z2} dz ( Let n 2 x2 = u, nxdx = du)<br />

5.15. (a)<br />

E(Y 2 ) = 1 n<br />

=<br />

= 2<br />

= 2<br />

=<br />

i=1<br />

∫ ∞<br />

n∑<br />

E(|X i |) = E(|X 1 |)<br />

−∞<br />

∫ ∞<br />

0<br />

∫ ∞<br />

0<br />

√<br />

2<br />

√ π<br />

.<br />

1<br />

|x| √ exp 2π<br />

Thus, E(Y 1 ) < E(Y 2 ).<br />

(b)<br />

{− 1 2 x2 }<br />

dx<br />

x√ 1 exp<br />

{− 1 }<br />

2π 2 x2 dx ( Let 1 2 x2 = u, xdx = du)<br />

1<br />

√<br />

2π<br />

exp −udu<br />

¯X n+1 =<br />

∑ n+1<br />

i=1 X i<br />

n + 1<br />

= X n+1 + ∑ n<br />

i=1 X i<br />

n + 1<br />

= X n+1 + n ¯X n<br />

.<br />

n + 1<br />

nS 2 n+1 =<br />

=<br />

=<br />

n<br />

n∑<br />

(X i −<br />

(n + 1) − 1<br />

¯X n+1 ) 2<br />

i=1<br />

n+1<br />

∑<br />

(<br />

X i − X n+1 + n ¯X ) 2<br />

n<br />

( use (a) )<br />

n + 1<br />

i=1<br />

n+1<br />

∑<br />

(<br />

X i − X n+1<br />

n + 1 − n ¯X ) 2<br />

n<br />

n + 1<br />

i=1<br />

= ∑ i = 1 n+1 [(X i − ¯X n ) −<br />

1<br />

(<br />

Xn+1<br />

n + 1 −<br />

¯X )] 2<br />

n<br />

(±<br />

n + 1<br />

¯X n )


=<br />

=<br />

=<br />

n+1<br />

∑<br />

i=1<br />

[<br />

(X i − ¯X n ) 2 − 2(X i − ¯X n )<br />

(<br />

Xn+1 − ¯X )<br />

n<br />

+<br />

n + 1<br />

n∑<br />

(X i − ¯X n ) 2 + (X n+1 − ¯X n ) 2 − 2(X n+1 − ¯X n )<br />

i=1<br />

n∑<br />

(X i − ¯X n ) 2 + n<br />

n + 1 (X n+1 − ¯X n ) 2<br />

i=1<br />

= (n − 1)S 2 n + n<br />

n + 1 (X n+1 − ¯X n ) 2<br />

The sixth equlity holds since ∑ n<br />

i=1 (X i − ¯X n ) = 0.<br />

3∑<br />

( ) 2 Xi − i<br />

5.16. (a)<br />

∼ χ 2<br />

i<br />

3.<br />

i=1<br />

/ √ √√ 3∑<br />

( ) 2 /<br />

Xi − i<br />

(b) (X 1 − 1)<br />

2 ∼ t 2 .<br />

i<br />

i=2<br />

/ ( 3∑<br />

( ) 2 / )<br />

(c) (X 1 − 1) 2 Xi − i<br />

2 ∼ F 1,2 .<br />

i<br />

i=2<br />

]<br />

1<br />

(n + 1) 2 (X n+1 − ¯X n ) 2<br />

(<br />

Xn+1<br />

n + 1 −<br />

5.18. If X ∼ t p , then X = Z/ √ V/p where Z ∼ N(0, 1), V ∼ χ 2 p <strong>and</strong> Z <strong>and</strong> V are independent.<br />

(a) E(X) = E(Z)/E(1/ √ V/p) = 0, since E(Z) = 0, as long as the other expectation is<br />

finite. This is so if p > 1. Var(X) = E(X 2 ) = p/(p − 2) if p > 2 since X 2 ∼ F 1,p .<br />

(b) X 2 = Z 2 /(V/p). Z 2 ∼ χ 2 1, so the ratio is distributed F 1,p .<br />

(c) The pdf of X is<br />

f X (x) =<br />

[ ]<br />

Γ((p + 1)/2)<br />

Γ(p/2) √ 1<br />

pπ (1 + p/x 2 ) . (p+1)/2<br />

Denote the qunatity in square brackets by C p . Using Stirling’s <strong>for</strong>mula<br />

lim C p = lim<br />

p→∞ p→∞<br />

= e−1/2<br />

√ π<br />

= e−1/2<br />

√<br />

2π<br />

= e−1/2<br />

√<br />

2π<br />

√<br />

2π<br />

( p−1<br />

2<br />

√<br />

2π<br />

( p−2<br />

lim<br />

p→∞<br />

lim<br />

p→∞<br />

lim<br />

p→∞<br />

) p−1<br />

2 + 1 2<br />

e − p−1<br />

2<br />

) p−2<br />

2 + 1 2<br />

e − p−2<br />

2<br />

2<br />

( p−1<br />

2<br />

( p−2<br />

) p−2<br />

2<br />

) p−1<br />

2 + 1 2<br />

1<br />

√ pπ<br />

2 + 1 2<br />

√ p<br />

( ) p−2 ( p − 1<br />

2 p − 1<br />

p − 2 p − 2<br />

(<br />

) p−2<br />

2<br />

1 −<br />

1/2<br />

(p − 2)/2<br />

Also we can show <strong>that</strong> <strong>for</strong> each x<br />

lim<br />

(1 + x2<br />

p→∞ p<br />

) (p+1)/2<br />

= lim<br />

p→∞<br />

) 1<br />

( 2<br />

p − 1<br />

p<br />

( ) 1<br />

p − 1<br />

p − 2<br />

(<br />

1 + x2 /2<br />

p/2<br />

) 1<br />

2<br />

2 ( p − 1<br />

p<br />

¯X )<br />

n<br />

+ 1<br />

n + 1 n + 1 (X n+1 − ¯X n ) 2<br />

) 1<br />

2<br />

=<br />

e −1/2 e 1/2<br />

√<br />

2π<br />

= 1 √<br />

2π<br />

.<br />

) p/2 ) 1/2 (1 + x2<br />

= e x2 /2 .<br />

p<br />

(d) As the r<strong>and</strong>om variable F 1,p is the square of a t p , we conjecture <strong>that</strong> it would converge<br />

to the square of N(0, 1) r<strong>and</strong>om variable, a χ 2 1.<br />

(e) The r<strong>and</strong>om variable qF q,p can be thought of as the sum of q r<strong>and</strong>om variables, each a<br />

t p squared. Thus, by all of the above, we expect it to converge to a χ 2 q rondom variable<br />

as p → ∞.<br />

2


5.22. Calculating the cdf of Z 2 , we obtain<br />

F Z 2(z) = P ((min(X, Y )) 2 ≤ z) = P (− √ z ≤ min(X, Y ) ≤ √ z)<br />

= P (min(X, Y ) ≤ √ z) − P (min(X, Y ) ≤ − √ z)<br />

= [1 − P (min(X, Y ) > √ z)] − [1 − P (min(X, Y ) > − √ z)]<br />

= P (min(X, Y ) > − √ z) − P (min(X, Y ) > √ z)<br />

= P (X > − √ z)P (Y > − √ z) − P (X > √ z)P (Y > √ z) X <strong>and</strong> Y are independent<br />

= (1 − F X (− √ z)) 2 − (1 − F X ( √ z)) 2 X <strong>and</strong> Y are identically distributed<br />

= 1 − 2F X (− √ z) since 1 − F X ( √ z) = F X (− √ z)<br />

Differentiating <strong>and</strong> substituting gives<br />

the pdf of χ 2 1 r<strong>and</strong>om variable.<br />

f Z 2(z) = d dz F Z 2(z) = f X(− √ z) 1 √ z<br />

= 1 √<br />

2π<br />

e −z/2 z −1/2<br />

5.23.<br />

∞∑<br />

∞∑<br />

P (Z > z) = P (Z > z|x)P (X = x) = P (U 1 > z, ..., U x > z|x)P (X = x)<br />

=<br />

x=1<br />

∞∑<br />

x=1 i=1<br />

x=1<br />

x∏<br />

P (U i > z)P (X = 1) (by independence of theU is)<br />

′<br />

∞∑<br />

∞∑<br />

= P (U i > z) x P (X = x) = (1 − z) x 1<br />

(e − 1)x!<br />

x=1<br />

x=1<br />

= 1 ∞∑ (1 − z) x<br />

= e1−z − 1<br />

0 < z < 1<br />

e − 1 x! e − 1<br />

x=1<br />

5.24. F X (x) = x/θ, 0 < x < θ. Let Y = X (n) , Z = X (1) . Then from Theorem 5.4.6.<br />

( ) n−2<br />

n! y − z n(n − 1)<br />

f Y,Z (y, z) =<br />

=<br />

(n − 2)! θ<br />

θ n (y − z) n−2 , 0 < z < y < θ.<br />

Now let W = Z/Y, Q = Y. Then Y = Q, Z = W Q, <strong>and</strong> |J| = q. There<strong>for</strong>e<br />

f W,Q (w, q) =<br />

n(n − 1)<br />

θ n (q − wq) n−2 n(n − 1)<br />

q =<br />

θ n (1 − w) n−2 q n−1 , 0 < w < 1, 0 < q < θ.<br />

5.35. (a) µ X = 1 <strong>and</strong> σX 2 = 1 since X i ∼ exponential(1). By CLT, ¯Xn is approximately distributed<br />

as N(0, 1/n). So<br />

( )<br />

¯X n − 1<br />

¯Xn<br />

1/ √ n → Z ∼ N(0, 1) <strong>and</strong> P − 1<br />

1/ √ n ≤ x → P (Z ≤ x).<br />

(b)<br />

d<br />

d<br />

P (Z ≤ x) =<br />

dx dx F Z(x) = f Z (x) = √ 1 e −x2 /2 . 2π<br />

( )<br />

d ¯Xn<br />

dx P − 1<br />

1/ √ n ≤ x = d<br />

n dx P ( ∑<br />

X i ≤ x √ n + n) , (W =<br />

i=1<br />

n∑<br />

X i ∼ gamma(n, 1))<br />

i=1<br />

= d<br />

dx F W (x √ n + n) = f W (x √ n + n) √ n<br />

= 1<br />

Γ(n) (x√ n + n) n−1 e −(x√ n+n) √ n.<br />

3


1<br />

There<strong>for</strong>e,<br />

Γ(n) (x√ n + n) n−1 e −(x√ n+n) √ n ≈ √ 1 −x2 /2<br />

e as n → ∞. Substituting<br />

2π<br />

x = 0 yields n! ≈ n n+1/2 e −n√ 2π.<br />

5.36. (a)<br />

E(X) = E(E(X|N)) = E(2N) = 2θ<br />

Var(X) = E(Var(X|N)) + Var(E(X|N)) = E(4N) + Var(2N) = 4θ + 4θ = 8θ<br />

(b) The moment generating function of Y is<br />

[ ( ) ] N 1<br />

∞∑<br />

( ) n 1<br />

M Y (t) = E[E(e tY e −θ θ n ∑ ∞<br />

|N)] = E<br />

=<br />

= e −θ [θ(1 − 2t) −1 ] n<br />

1 − 2t<br />

1 − 2t n!<br />

n!<br />

n=0<br />

= e 2θt/(1−2t) .<br />

Using M aY +b (t) = e bt M Y (at), the moment generating function of Y − EY/ √ Var(Y ) is<br />

√ θ/2t<br />

M √<br />

Y −EY/ Var(Y )<br />

(t) = e −√θ/2t 1−<br />

e<br />

√ 1/2θt<br />

= e −√ √<br />

e√ θ/2t θ/2t(1+ 1/2θt+O(t 2 /θ)) → e t2 /2 .<br />

n=0<br />

The last equality is obtained by taylor expansion of 1/(1 − √ 1/2θt).<br />

4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!