27.07.2014 Views

O&M of Mid Sized Power Plants: The Modern Trends - By ... - Infraline

O&M of Mid Sized Power Plants: The Modern Trends - By ... - Infraline

O&M of Mid Sized Power Plants: The Modern Trends - By ... - Infraline

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Operation and Maintenance<br />

<strong>of</strong> <strong>Mid</strong>size <strong>Power</strong> <strong>Plants</strong><br />

<strong>The</strong> <strong>Modern</strong> <strong>Trends</strong><br />

14th DEC2006<br />

V. B. Kabra<br />

<strong>The</strong>rmax Babcock & Wilcox- R&D


<strong>Modern</strong> <strong>Trends</strong> in Energy Systems<br />

Efficiency / Reliability<br />

Improvement<br />

Energy<br />

Systems<br />

Redesign with<br />

alternate operating inputs<br />

Renewable Energy


Efficiency / Reliability Improvement<br />

Energy Audit<br />

Efficiency/<br />

Reliability<br />

Improvement<br />

Efficiency<br />

Controls<br />

Operation &<br />

Maintenance


Energy Audit<br />

Revisit the operation and maintenance<br />

philosophy with breakdown structure<br />

• Boiler, turbine, condenser, Heating and cooling systems <strong>of</strong> plant,<br />

Electrical systems, drives, fuel handling systems etc.<br />

Compare with a world class energy efficient units<br />

<strong>of</strong> similar nature<br />

• <strong>Power</strong>, steel, refineries, heavy chemicals etc.<br />

Apply modern tools to identify the waste areas<br />

• Over design<br />

• Wrong selection<br />

• Improper operational practices<br />

Apply modern techniques <strong>of</strong> maintenance: TPM,<br />

RLA, Diagnostic


Improving efficiency <strong>of</strong> Boiler Plant<br />

Overall efficiency <strong>of</strong> GCV - Direct/Indirect<br />

Improve efficiency<br />

• Reduce stack temp. - How low ? -<br />

Sulfur corrosion/Low LMTD for ECO<br />

•Reduce Excess air<br />

•Reduce radiation loss<br />

•Reduce Unburnt carbon loss<br />

•Reduce Blow down loss<br />

•Improve efficiency <strong>of</strong> feed pumps and fans-VFD<br />

Min.Recirculation control ,Optimum Pressures<br />

•Combustion control<br />

•Changing firing system -FBC<br />

•Minimizes water & steam side depositions<br />

Fuel additives /Combustion systems/deposit monitoring system


Energy saving potential<br />

Energy saving potential in major auxiliaries<br />

Area Potential %<br />

Fans 10 - 50<br />

Feed W ater pumps 5 - 25<br />

Cooling W ater Pumps 5 – 25<br />

Cooling Tower 10 – 15<br />

Enhancing Cogeneration 20 - 25<br />

• National Benchmark : 6.5% ( Coal Fired)<br />

NTPC Western Region<br />

• International Benchmark : 3.66% ( Coal Fired)<br />

Shanghai Shidonhkou <strong>Power</strong> Plant<br />

(2 x 600MW) for year 2000


Efficiency improvement<br />

Auxiliary power consumption- Utility<br />

Coal based Stations<br />

With cooling<br />

tower<br />

Without cooling<br />

tower<br />

25 – 100 Mwe 10-11% 9-10%<br />

200 MWe series<br />

500 MW with steam<br />

driven feed pumps<br />

9.5 % 8.5 %<br />

8.0 % 7.5 %<br />

Gas and Naphtha based stations<br />

Combined cycle<br />

plants<br />

3.0%


Efficiency improvement<br />

Install VFD/ Variable Fluid Coupling for Fan with<br />

feedback control<br />

• Quantity <strong>of</strong> air delivered - 30 TPH<br />

(7.29 m 3 / sec)<br />

• Pressure developed - 510 mmWC<br />

• <strong>Power</strong> Consumption - 73 kW<br />

• Operating efficiency <strong>of</strong> fan - 55.53%<br />

• IGV control results in drop in operating efficiency<br />

Description Before After<br />

Air Flow (TPH) 32 32<br />

Pressure developed (mmWC) 520 525<br />

<strong>Power</strong> Consumption (kW) 73 58<br />

Control<br />

IGV – 46%<br />

open<br />

VFD<br />

Efficiency 55.53 % 76.28 %


Efficiency improvement<br />

Enhancing Cogeneration<br />

• Process steam requirements<br />

- Met by steam through PRDS<br />

• Any Energy Loss<br />

- Big opportunity lost if the steam flow at lower pressure<br />

is substantial


Opportunity Loss<br />

45bar, 450deg cel,<br />

797 kCal/kg<br />

Auxiliary Steam header<br />

21bar, 310 deg cel<br />

45 - 50 TPH<br />

Any throttling process - opportunity lost


Opportunity available<br />

45 bar, 450deg cel,<br />

797 kCal/kg<br />

Opportunity<br />

: 1.1 MW<br />

Auxiliary Steam header<br />

21bar, 280 deg cel<br />

708 kcal/kg<br />

Auxiliary steam- same pressure,<br />

superheated


Install steam drives for pumps<br />

Users for low temperature steam<br />

• Fuel areas<br />

• Oil burner atomizing<br />

• Gland steam<br />

• Soot blowing<br />

• Annual saving<br />

• Investment<br />

• Payback period<br />

-Rs 59.00 Lakhs<br />

-Rs. 125 Lakhs<br />

-26 months


Steam Usage<br />

Effective Condensate Removal<br />

• Inefficient condensate removal in equipments will retard heat<br />

transfer process in equipments causing<br />

(a) Drop in production time.<br />

(b) Fall on quality <strong>of</strong> output.<br />

Methods <strong>of</strong> trap monitoring tried and discarded<br />

• Spitting on trap body-most crude method<br />

• Industrial crayon colours - Color change with temp.difference<br />

• Industrial stethoscope -Bits due to velocity change<br />

• Surface temp measurement -Not very useful Unless subcooled<br />

• Ultrasonic measurement- Gaining popularity -Require Skill<br />

• Conductivity sensor -Best method but requires investment<br />

Condensate Recovery


Enhancing efficiency<br />

Deaerator<br />

• Operate at optimum temperature<br />

Feed water temperature 105 deg cel<br />

Potential to increase temperature by 10 deg cel<br />

• Additional steam consumption <strong>of</strong> 0.9 TPH<br />

Additional power generation<br />

• 117 kWh/ ton <strong>of</strong> steam<br />

Monitor furnace gas temperature<br />

Optimise soot blowing operations<br />

Optimise for Dew Point corrosion


Operator’s interface<br />

Monitoring systems will ensure<br />

energy efficiency<br />

Link to operator’s performance<br />

Shift-wise data monitoring


Controls<br />

<strong>Modern</strong> DCS monitoring system<br />

Smart intelligent efficiency monitoring systems<br />

Computational Flow Dynamics analysis for<br />

improving the flow patterns<br />

Remote performance monitoring system


Life Extension Program<br />

A well organised Life Extension Program should<br />

consist <strong>of</strong> the following phases <strong>of</strong> work<br />

1. Evaluation and Planning<br />

2. Outage- Inspection, Testings, Condition Assessment<br />

3. Post outage Testing and Studies<br />

4. Reports, Recommendations, Implementations <strong>of</strong><br />

Recommendations


Why Life Extension?


Potential causes for Premature<br />

failures<br />

Corrosion<br />

Erosion<br />

Overheating<br />

Over stressing<br />

Hydrogen Embrittlement<br />

Wrongly applied material<br />

Cycling Fatigue<br />

Corrosion Fatigue


Internal Oxide Scale in SH Tube<br />

Scale forms on the<br />

steam side <strong>of</strong><br />

superheater tubes<br />

in service.<br />

<strong>The</strong> thickness <strong>of</strong><br />

the scale formed is<br />

a function <strong>of</strong> time in<br />

service and tube<br />

metal temperature.


Inspection Techniques<br />

Replication<br />

• Mechanical Polishing<br />

• Electro polishing<br />

Hone and Glow<br />

NOTIS<br />

(Non-destructive Oxide Thickness Inspection System)<br />

FHyNES<br />

(Furnace Hydrogen damage Non-destructive Examination Service)<br />

MANTIS<br />

(Modular Automated Non-destructive Thickness Inspection System)


Nondestructive<br />

Oscilloscope<br />

Oxide<br />

Thickness<br />

Inspection<br />

System<br />

Oxide<br />

Thickness<br />

Oxide Scale<br />

Wall<br />

Thickness<br />

Special UT<br />

Transducer<br />

Tube OD


FHyNES ®<br />

Transducer<br />

Furnace Side<br />

<strong>of</strong> Tubes<br />

Hydrogen<br />

Damage<br />

Amplitude %<br />

FHyNES Scope<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

2 4 6 8 10<br />

Signal from<br />

Undamaged<br />

Tube


Redesign with Alternate Operating<br />

Inputs<br />

Review cost <strong>of</strong> fuel input<br />

Review existing operating parameters<br />

Explore possibility <strong>of</strong> low cost fuels<br />

Review availability <strong>of</strong> waste fuels in the<br />

area<br />

Evaluation for conversion to multifuel<br />

firing capabilities through experts/ OEM


Steam Cost<br />

Cost comparison<br />

Boiler Fuel GCV Fuel cost Efficiency Heat input Steam cost<br />

Kcal/kg Rs/kg % MKcal/hr Rs/ton<br />

Oil/gas LDO 10200 19.00 87 32.59 1445.30<br />

FO 10000 17.00 86 32.97 1334.36<br />

LSHS 10500 16.00 87 32.59 1182.32<br />

NG 12000 9.00 85 33.35 595.62<br />

NAPHA 9500 22.00 87 32.59 1796.81<br />

TG COAL 4000 2.20 77 36.82 482.16<br />

LIGNITE 3600 1.50 75 37.80 375.02<br />

BAGASSE 2200 0.40 69 41.09 177.87<br />

RICE HUSK 3000 1.00 75 37.80 300.01<br />

FBC COAL 4000 2.20 84 33.75 441.98<br />

LIGNITE 3600 1.50 80 35.44 351.58<br />

RICE HUSK 3000 1.00 81 35.00 277.79<br />

OTHER BIOMAS 3200 0.75 80 35.44 197.76<br />

Coal+petcoke 6520 3.00 81 35.00 383.45<br />

CFB COAL 4000 2.20 87 32.59 426.74<br />

PETCOKE 8200 3.20 88 32.22 299.35<br />

Boiler : 42 TPH 45 Kg/cm2 420 deg.cel.<br />

Heat output : 28.3513 Mkcal/hr


TBW /<strong>The</strong>rmax Energy Solutions<br />

CFBC boilers - Multifuel firing/ Biomass<br />

AFBC boilers - Multifuel firing/ Biomass<br />

Grate fired - Multifuel firing/ Biomass/ Bagasse<br />

HRSGs -Fired/ Unfired/ Fresh air fired<br />

Oil & Gas fired radiant boilers/ FM boiler -<br />

FO, LDO, LSHS, Naphtha, NG, COG, BFG, LNG<br />

Low NOx Burners<br />

Renovation & <strong>Modern</strong>isations<br />

• Plant improvement projects<br />

• RLA studies<br />

• Build to Print/ Spares


TBW /<strong>The</strong>rmax Energy Solutions<br />

Waste heat Recovery systems<br />

• Process Integrated Boilers<br />

• Exhaust Gas Boilers<br />

• Waste Heat Boilers<br />

Fired Systems<br />

• Solid fuel fired<br />

• Fired Heaters<br />

• Waste fired Boilers


Petcoke Firing Technology<br />

PC FRING: Low VM restrict use, Up to 10 % blend with high<br />

VM coal. Higher percentage firing would also call for FGD<br />

system for SO2 Scrubbing.<br />

CFBC: Most suited technology, Firing up to 100% lower<br />

emissions <strong>of</strong> Sox (


TBW/B&W EXPERIENCE IN<br />

PETCOKE FIRING<br />

Results from the R&D tests were further<br />

demonstrated by commissioning 2 X 80 TPH<br />

steam generator at Shree Cement firing Petcoke<br />

70 to 80% and units are in continuos operation<br />

since DEC2003.<br />

Based on R&D Trials <strong>of</strong> co firing Petcoke with<br />

Rice Husk up to 50 %, the data is co related for<br />

design <strong>of</strong> 50 TPH unit under Installation In UP<br />

for Paper mill captive power plant<br />

Further R&D testing is proposed for Co Firing<br />

with other Biomass/ Lignite.


TBW/B&W Experience in Petcoke<br />

Firing<br />

CFBC<br />

R&D trials were carried out by B&W at Alliance<br />

research center, USA for firing 100% Petcoke in<br />

IR-CFB. Results from the test were correlated with<br />

the boiler design criteria and used to design the<br />

SIU (southern Illinois university) project in USA<br />

for firing 100% Petcoke.<br />

Thai petroleum (Thailand) CFB boiler has been<br />

burning Petcoke & coal since 1998.<br />

TBW <strong>of</strong>fering CFBC boilers for Multifuel firing<br />

upto 300 TPH


Shree Cement<br />

AFBC performance<br />

AVERAGE PARAMETERS DURING THE<br />

PERFORMANCE GURENTEE TEST<br />

Parameter Test parameters Predicted<br />

Boiler load, TPH 75.14 * 80<br />

Steam Pressure, Kg/cm2 (g) 65 65<br />

Steam temperature, °C 485* 495+/-5<br />

Coal flow, Kg/hr 2213.28 ---<br />

Petcoke flow, Kg/hr 5308.88 ---<br />

Petcoke % in fuel mixture, 70.58 70<br />

Coal % in fuel mixture 29.40 30<br />

Sorbent flow, Kg/hr 3150.00 3500<br />

SOx in flue gas,PPM 981.00 1100<br />

O2 in flue gas % 4.40 4.0<br />

Relative Humidity, % 21.00 60<br />

Gas Temp. APH out °C 140.00 140<br />

Efficiency % 83.08** 82


Renewable Energy<br />

Agriculture Based economy get edge<br />

Biomass <strong>Power</strong> generation Potential - 16000MW<br />

<strong>Power</strong> potential from Baggasse - 3500MW<br />

===============<br />

Total 19500MW


Categorization <strong>of</strong> Biomass fuels<br />

Biomass Fuels<br />

Low fouling<br />

fuels<br />

Medium fouling<br />

fuels<br />

Highly fouling<br />

fuels<br />

Baggasse<br />

Rice husk<br />

Juli flora<br />

Palm shells,<br />

Palm kernels<br />

Chili Stalk<br />

Saw dust<br />

De Oiled<br />

Bran(DOB)<br />

Shells- Coconut,<br />

Ground nut<br />

Sunflower Stalk<br />

Rice Straw<br />

Mustard<br />

Stalk.Wheat<br />

straw<br />

Cotton stalk<br />

Empty fruit<br />

Bunch (EFB)


Technologies for Biomass power<br />

generation<br />

Grate firing<br />

Combustion- Direct<br />

Firing Technologies<br />

Fluidised-bed<br />

combustion<br />

Gasification<br />

Biomass<br />

Burner<br />

Anaerobic<br />

digestion<br />

Bio-diesel<br />

Ethanol<br />

Travelling<br />

Pin hole<br />

Vibrating<br />

Conventional<br />

Hopper bottom


Biomass <strong>Power</strong> - Andhra Sugar<br />

TRAVAGRATE BOILER<br />

• Capacity- 40 tph, 42 KG Cm2g, 440 Deg C<br />

• Fuel : Bagasse and Rice Husk<br />

• Operational since 1995<br />

UNIQUE BENEFITS<br />

• Continuous automatic ash removal system avoids pressure<br />

dip while removing ash<br />

• Efficiently burns fuels like Rice Husk, Bagasse, Wood chips,<br />

C<strong>of</strong>fee husk etc.<br />

• Catenary design eliminates external chain tightening<br />

mechanism<br />

• Short section grate bars ensures low maintenance<br />

• Grate curvature ensures air sealing<br />

• Easy grate removal<br />

• Hardened Grate support for high temperature applications<br />

• Over fire air system for suspension firing for better<br />

combustion efficiency<br />

• Drum coil attemperator for better steam temperature control


Biomass <strong>Power</strong> - JOCIL<br />

OPEN HOPPER BOTTOM AFBC BOILER<br />

• Capacity - 30 tph, 66kg cm2g, 485 Deg C,r 6MW<br />

• Design - Open Hopper Bottom Design<br />

• Fuels- Rice Husk, Cotton & Chilly Stalk, Juliflora etc.<br />

• Operational since February’2001.<br />

FEATURES<br />

• Open Hopper Bottom - Babcock & Wilcox Unique Design instead<br />

<strong>of</strong> conventional bed plate design.<br />

• India’s First Multifuel biomass fired AFBC boiler designed to<br />

handle high alkali fuels.<br />

• Easy control <strong>of</strong> bed chemistry ensures high availability and<br />

continues power generation<br />

• Easy removal <strong>of</strong> agglomerates,large amount <strong>of</strong> stones and mud<br />

ensure trouble free operation round the year<br />

• Separate bunkers & feeders for storing and feeding variety <strong>of</strong><br />

fuels to meet any interruption in fuel availability.<br />

• High fuel flexibility ensures cost effectiveness in power<br />

generation.<br />

• Staggered air supply arrangement ensures complete combustion<br />

and high thermal efficiency.


IR-CFBC -<strong>The</strong><br />

modern Trend in<br />

Multifuel firing


Internal Recirculation - Circulating<br />

Fluidized Bed Boilers<br />

A simplified approach<br />

to improved flexibility<br />

and reliability<br />

Design Features<br />

• High combustion<br />

efficiency<br />

• Compact, economical<br />

design<br />

• Higher reliability and<br />

availability<br />

• Lower maintenance costs<br />

• Reduced erosion<br />

• Fuel flexibility<br />

• Low emissions


Why Build a CFB Boiler to Generate<br />

Steam and Electric <strong>Power</strong><br />

CFB is a Fuel Flexible Technology<br />

• Accepts wide range <strong>of</strong> fuels<br />

–Volatile matter - 4 - 40%<br />

–Ash - 0 - 60%<br />

–Heating value- > 1500 Kcal/kg (2700 BTU/lb)<br />

–Moisture - < 55%<br />

• Use <strong>of</strong> lower rank fuels reduces fuel costs<br />

• Fuel flexibility - minimizes fuel supply uncertainties<br />

• Ability to burn low cost and waste fuels


Internal Recirculation - Circulating<br />

Fluidized Bed Boilers


IR-CFB Boilers<br />

Furnace density pr<strong>of</strong>ile


IR-CFB Boiler Solids Flow<br />

A. Fuel and sorbent solids<br />

entering the furnace<br />

B. Upward solids flow<br />

C. Solids reflected by ro<strong>of</strong><br />

D. In-furnace U-Beam<br />

recycle<br />

E. External U-Beam recycle<br />

F. Multicyclone recycle<br />

G. Solids not captured by<br />

multicyclone<br />

H. Bed drain


IR-CFB Solids Collection Schematics


IR-CFB Boilers<br />

IR-CFB Primary Particle<br />

Collection System<br />

IR-CFB Particle<br />

Transfer Hopper


U-Beam separators<br />

1<br />

4<br />

1. Sidewall<br />

membrane panel<br />

2. U-beam - SS309H/<br />

SS310H/RA253MA<br />

3. Seal baffle<br />

4. Refractory<br />

Flue<br />

Gas<br />

&<br />

Solid<br />

Flow<br />

3<br />

Flue<br />

Gas<br />

2


U-Beams


Multicyclone Secondary Collector<br />

Individual Gas<br />

Outlet Hoods<br />

• Proven modular design<br />

• Predictable high<br />

performance<br />

• Low maintenance<br />

- Easy access<br />

- High hardness cyclone<br />

tubes<br />

- No refractory<br />

Access for<br />

Inspection<br />

High Hardness<br />

Collection<br />

Components


Kanoria Chemicals & Ind. Ltd<br />

• One CFB; installed<br />

in 1996<br />

• Sub-bituminous<br />

waste coal (45%<br />

ash)<br />

• 231,400 lb/hr (105<br />

TPH) steam flow<br />

• 938 psig (65 barg) /<br />

938°F (503°C)


Overall Grade Separation Efficiency<br />

Comparison<br />

IR-CFB Two Stage Solids Collection System vs<br />

Competitors Cyclone Based CFB System<br />

100<br />

Efficiency, %<br />

90<br />

80<br />

70<br />

60<br />

U-Beam and<br />

MDC-Based<br />

CFB<br />

Cyclone<br />

-Based<br />

CFB<br />

50<br />

40<br />

0 20 40 60 80 100 120<br />

Particle Size, Micron


<strong>The</strong> B&W IR-CFB Two-Staged Solids<br />

Separation System<br />

Benefits<br />

• High overall solid collection efficiency ~ More than<br />

99.7%<br />

• Precise furnace temperature control ~ <strong>By</strong> controlling solid<br />

recycle rate from the secondary collector<br />

• Extended turndown ratio without use <strong>of</strong> auxiliary fuel<br />

(oil/gas) ~ 100% to 20% MCR<br />

• Low auxiliary power requirements compared to<br />

competitor cyclone-based CFB technologies ~ 50-100 mm<br />

w.c.


IR-CFB Furnace Predicted<br />

Temperature Pr<strong>of</strong>iles


Kyoto Protocol<br />

Opportunities in INDIA<br />

<strong>Power</strong> Sector (51%)<br />

• IGCC <strong>Power</strong> : Potential 10,000 MW ~5Million mt CO 2 pa<br />

Transport Sector (16%)<br />

Industrial Sector<br />

• Steel (10%)<br />

• Cement (4%)<br />

• Chemicals (4%)<br />

• CO 2 Potential >5Million mt CO 2 pa<br />

Renewable Sector ( wind , solar, bagasse, minihydro)<br />

• Potential 35,000 MW: ~60 Million mt CO 2 pa


Renewable Fuel<br />

Utilisation


Fuel Characteristics<br />

Highly variable characteristics- No<br />

generalization<br />

High Volatile Matter - More combustion in free<br />

board<br />

High Moisture- Fuel Handling<br />

Less Ash<br />

High Alkaline content <strong>of</strong> ash<br />

Low Steam to Fuel weight ratio (Low Specific<br />

heat content


Firing Technologies<br />

Grate firing<br />

• Travelling<br />

• Pin hole<br />

• Vibrating<br />

Fluidised bed combustion<br />

• Conventional<br />

• Hopper bottom<br />

Burner


Technological solutions<br />

Tailor made Combustor design<br />

• TG,CCZ ,Hopper Bottom design<br />

• FEGT, ( < 810 °C )<br />

• Combustion air control system<br />

• Fuel flexibility<br />

Co- Combustion, Right mix <strong>of</strong> fuel<br />

Additives / Cleaning <strong>of</strong> heating surfaces<br />

Furnace & Convection Banks Design


Facts about Biomass as fuel<br />

<strong>The</strong> limited furnace volume and high furnace exit<br />

gas temperatures <strong>of</strong> most biomass boilers promote<br />

slagging or deposits from those bi<strong>of</strong>uels that<br />

contain significant amounts <strong>of</strong> potassium or<br />

sodium, sulfur, chlorine and silica.


Hopper bottom design<br />

Unique design <strong>of</strong> B&W (Developed for effluent<br />

/MDF firing ) which can handle the difficult ,<br />

agglomerating fuels.<br />

Allowing uniform draining <strong>of</strong> agglomerate /<br />

clinkers through hopper bottom.<br />

Ease on multiple fuel firing through over bed .


Biomass Energy


Thank You!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!