25.07.2014 Views

Surface voltage and surface photovoltage - Dieter Schroder ...

Surface voltage and surface photovoltage - Dieter Schroder ...

Surface voltage and surface photovoltage - Dieter Schroder ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Surface</strong> <strong>voltage</strong> <strong>and</strong> <strong>surface</strong> photo<strong>voltage</strong><br />

R<br />

Φ(λ)<br />

s 1 s 2<br />

p-Type<br />

τ, D, L<br />

0 d x<br />

(a)<br />

R<br />

Φ(λ)<br />

s 1 s 2<br />

p-Type<br />

τ, D, L<br />

∆n(W)<br />

0 W d x<br />

(b)<br />

Figure A1. Homogeneous p-type sample geometry with optical<br />

excitation: (a) neutral, (b) with <strong>surface</strong>-induced space-charge region.<br />

photon flux density , wavelength λ <strong>and</strong> absorption coefficient<br />

α is incident on one side of this wafer. We assume that carriers<br />

generated by absorbed photons diffuse in the x-direction <strong>and</strong><br />

that the wafer has infinite extent in the y–z-plane, allowing the<br />

neglect of edge effects. The steady state, small-signal excess<br />

minority carrier density n(x) is obtained from a solution of<br />

the one-dimensional continuity equation<br />

D d2 n(x)<br />

dx 2<br />

− n(x)<br />

τ<br />

subject to the boundary conditions<br />

+ G(x) = 0 (A1)<br />

x = 0: dn(x) n(0)<br />

= s 1<br />

dx x=0 D<br />

<strong>and</strong><br />

x = d: dn(x) n(d)<br />

=−s 2<br />

dx x=d D . (A2)<br />

The electric field in the semiconductor sample is low <strong>and</strong><br />

is neglected for simplicity. The generation rate is given by<br />

G(x, λ) = (λ)α(λ)[1 − R(λ)]exp(−α(λ)x).<br />

(A3)<br />

An implicit assumption in this expression is that each<br />

absorbed photon generates one ehp. This is usually a good<br />

assumption for semiconductors.<br />

The solution to equation (A1) using (A2) <strong>and</strong> (A3) is [62]<br />

{[ ( )<br />

(1 − R)ατ<br />

d − x<br />

n(x) = K<br />

(α 2 L 2 1 sinh<br />

− 1)<br />

L<br />

( ) [ ( d − x<br />

x<br />

+K 2 cosh +e −αd K 3 sinh<br />

L<br />

L)<br />

( )]][( x s1 s 2 L<br />

+K 4 cosh<br />

L D<br />

+ D ) ( d<br />

sinh<br />

L L)<br />

( d −1 }<br />

+(s 1 + s 2 ) cosh − e<br />

L)] −αx (A4)<br />

where<br />

K 1 = s 1s 2 L<br />

D + s 2αL K 2 = s 1 + αD<br />

K 3 = s 1s 2 L<br />

D − s 1αL K 4 = s 2 − αD.<br />

For SPV measurements, a <strong>surface</strong> charge induced spacecharge<br />

region of width W exists as shown in figure A1(b). The<br />

light generates excess carriers <strong>and</strong> it is well known from pn<br />

junction theory (law of the junction) that the excess carrier<br />

density at the scr edge is related to the resulting <strong>surface</strong><br />

<strong>voltage</strong> V S through the relation [25]<br />

n(W) = n 0 (exp(qV S /kT) − 1) ≈ n 0 qV S /kT<br />

(A5)<br />

where n 0 is the equilibrium minority carrier density. The<br />

approximation in equation (A5) holds for V S ≪ kT/q.<br />

To determine the <strong>surface</strong> <strong>voltage</strong>, we need an expression<br />

for n(W). Forx = W, equation (A4) becomes<br />

{[ ( ) ( )<br />

d − W<br />

d − W<br />

n(W) = A K 1 sinh + K 2 cosh<br />

L<br />

L<br />

( ) ( )]]<br />

W W<br />

+e<br />

[K −αd 3 sinh + K 4 cosh<br />

L L<br />

[(<br />

s1 s 2 L<br />

×<br />

D<br />

+ D ) ( ( d d −1<br />

sinh + (s 1 + s 2 ) cosh<br />

L L)<br />

L)]<br />

}<br />

−e −αW (A6)<br />

with A = (1 − R)ατ/(α 2 L 2 − 1). Let us now examine the<br />

various assumptions that are made for the simplified equation<br />

usually used to analyse SPV data. The space-charge region<br />

width W is usually much smaller than the wafer thickness d,<br />

hence d −W ≈ d. Assumption (i): d −W ≫ L, i.e., the wafer<br />

is much thicker than the minority carrier diffusion length. This<br />

allows equation (A6) to be written as<br />

{[ [ ( ) ( )]<br />

W W<br />

n(W) = A (K 1 + K 2 ) cosh − sinh<br />

L L<br />

( ) ( )]/ ]<br />

W W<br />

+e<br />

[K −αd 3 sinh + K 4 cosh cosh(d/L)<br />

L L<br />

[<br />

s1 s 2 L<br />

×<br />

D + D ] −1 }<br />

L + s 1 + s 2 − e −αW . (A7)<br />

For W ≪ L <strong>and</strong> α(d − W) ≈ αd ≫ 1, we have<br />

{( [<br />

(1 − R)ατ<br />

n(W) = (K<br />

(α 2 L 2 1 + K 2 ) 1 − W ])<br />

− 1)<br />

L<br />

(<br />

s1 s 2 L<br />

×<br />

D + D ) −1 }<br />

L + s 1 + s 2 − e −αW . (A8)<br />

The assumption αW ≪ 1 leads to<br />

{[(<br />

(1 − R)αL<br />

n(W) = s<br />

(α 2 L 2 2 + D ) (<br />

(αL − 1) 1+ s )]<br />

1W<br />

− 1) L<br />

D<br />

[<br />

× s 2 s 1 + D ( )] D −1 }<br />

L L + s 1 + s 2<br />

{[(<br />

(1 − R)αL<br />

= 1+ D )(<br />

1+ s )]<br />

1W<br />

(αL +1) s 2 L D<br />

[<br />

× s 1 + D (<br />

1+ D<br />

L s 2 L + s )] −1 }<br />

1<br />

. (A9)<br />

s 2<br />

If we assume the back contact to have very high <strong>surface</strong><br />

recombination, i.e., s 2 →∞, equation (A9) becomes<br />

n(W) =<br />

(1 − R)αL<br />

(αL +1)<br />

( 1+s1 W/D<br />

s 1 + D/L<br />

The term s 1 W/D is usually ≪1, leading to<br />

(1 − R) αL<br />

n(W) =<br />

(s 1 + D/L) (1+αL)<br />

which is the desired result.<br />

)<br />

. (A10)<br />

(A11)<br />

R29

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!