24.07.2014 Views

Development of a Mass Estimating Relationship Database for ...

Development of a Mass Estimating Relationship Database for ...

Development of a Mass Estimating Relationship Database for ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Development</strong> <strong>of</strong> a <strong>Mass</strong> <strong>Estimating</strong><br />

<strong>Relationship</strong> <strong>Database</strong> <strong>for</strong> Launch Vehicle<br />

Conceptual Design<br />

Reuben R. Rohrschneider<br />

Georgia Institute <strong>of</strong> Technology<br />

Under the Academic Supervision <strong>of</strong> Dr. John R. Olds<br />

AE 8900<br />

April 26, 2002


Table <strong>of</strong> Contents<br />

Abstract........................................................................................................................4<br />

Acronyms & Notation.................................................................................................. 5<br />

I Introduction .............................................................................................................. 6<br />

II Background ............................................................................................................. 6<br />

III Approach................................................................................................................ 7<br />

IV Description <strong>of</strong> Sources........................................................................................... 9<br />

V Future Work .......................................................................................................... 13<br />

VI Acknowledgements.............................................................................................. 13<br />

References.................................................................................................................. 14<br />

1.0 Wing.................................................................................................................1.0-1<br />

2.0 Tail...................................................................................................................2.0-1<br />

3.0 Body.................................................................................................................3.0-1<br />

4.0 TPS ..................................................................................................................4.0-1<br />

5.0 Landing Gear ...................................................................................................5.0-1<br />

6.0 Main Propulsion...............................................................................................6.0-1<br />

7.0 RCS..................................................................................................................7.0-1<br />

8.0 OMS.................................................................................................................8.0-1<br />

9.0 Primary Power .................................................................................................9.0-1<br />

10.0 Electrical Conversion & Distribution ..........................................................10.0-1<br />

11.0 Hydraulics....................................................................................................11.0-1<br />

12.0 Surface Control & Actuators .......................................................................12.0-1<br />

13.0 Avionics.......................................................................................................13.0-1<br />

14.0 Environmental Control & Life Support Systems.........................................14.0-1<br />

15.0 Personnel Equipment ...................................................................................15.0-1<br />

16.0 Dry Weight Margin......................................................................................16.0-1<br />

17.0 Crew & Gear................................................................................................17.0-1<br />

18.0 Payload Provisions.......................................................................................18.0-1<br />

19.0 Cargo (up and down) ...................................................................................19.0-1<br />

Georgia Institute <strong>of</strong> Technology<br />

TRF-2


20.0 Residual Propellants ....................................................................................20.0-1<br />

21.0 OMS/RCS Reserve Propellants ...................................................................21.0-1<br />

22.0 RCS Entry Propellants.................................................................................22.0-1<br />

23.0 OMS/RCS On-Orbit Propellants .................................................................23.0-1<br />

24.0 Cargo Discharged ........................................................................................24.0-1<br />

25.0 Ascent Reserve Propellants .........................................................................25.0-1<br />

26.0 Inflight Losses & Vents ...............................................................................26.0-1<br />

27.0 Ascent Propellants .......................................................................................27.0-1<br />

28.0 Startup Losses..............................................................................................28.0-1<br />

Technology Reduction Factors ..........................TRF-Error! Bookmark not defined.<br />

Georgia Institute <strong>of</strong> Technology<br />

TRF-3


Abstract<br />

This report attempts to bring mass estimating relations (MERs) <strong>for</strong> the conceptual design<br />

<strong>of</strong> launch vehicles into the open, and establish a baseline <strong>for</strong> their comparison. Data was<br />

taken from multiple design organizations from around the country and compiled into a<br />

database that is freely available <strong>for</strong> use. To validate the equations, Space Shuttle<br />

component masses were predicted. A percentage error was reported, with the sign<br />

indicating the direction <strong>of</strong> the error. No single set <strong>of</strong> MERs is uni<strong>for</strong>mly more accurate<br />

than another. To improve the utility <strong>of</strong> the equations, modifications can be made to the<br />

equations to model improved technologies, such as those used in advanced launch<br />

vehicles. Technology reduction factors are also compiled from multiple sources. No<br />

pro<strong>of</strong> <strong>of</strong> their accuracy is available at this time. The greatest accuracy in predicting the<br />

mass <strong>of</strong> a future launch vehicle would be attained by using the most accurate equation <strong>for</strong><br />

each component, and an appropriate technology reduction factor.<br />

Georgia Institute <strong>of</strong> Technology<br />

TRF-4


Acronyms & Notation<br />

AMLS<br />

AVID<br />

EMA<br />

ET<br />

IHOT<br />

LaRC<br />

LOX<br />

LH2<br />

MBS<br />

MER<br />

MSFC<br />

NASA<br />

NASP<br />

OMS<br />

RBCC<br />

RCC<br />

RCS<br />

SRB<br />

SSTO<br />

TRF<br />

TSTO<br />

Advanced Manned Launch System<br />

Aerospace Vehicle Interactive Design system<br />

Electro-Mechanical Actuator<br />

External Tank from Space Shuttle System<br />

Integrated Hydrogen Oxygen Technology<br />

Langley Research Center<br />

Liquid Oxygen<br />

Liquid Hydrogen<br />

<strong>Mass</strong> Breakdown Structure<br />

<strong>Mass</strong> <strong>Estimating</strong> Relation<br />

Marshall Space Flight Center<br />

National Aeronautics and Space Administration<br />

National Aero Space Plane<br />

Orbital Maneuvering System<br />

Rocket Based Combined Cycle<br />

Rein<strong>for</strong>ced Carbon-Carbon TPS<br />

Reaction Control System<br />

Solid Rocket Booster from Space Shuttle System<br />

Single Stage To Orbit<br />

Technology Reduction Factor<br />

Two Stage To Orbit<br />

Georgia Institute <strong>of</strong> Technology<br />

TRF-5


I Introduction<br />

<strong>Estimating</strong> the mass <strong>of</strong> future launch vehicles is typically done using parametric<br />

equations <strong>for</strong> each component <strong>of</strong> the vehicle. While effective, and fast, this method is not<br />

perfect. Many design organizations have their own equations, and do not trust equations<br />

from other sources. This paper attempts to solve this problem by making mass estimating<br />

relations freely available to the design community. Further, the Space Shuttle system is<br />

used as a reference point to validate the equations. It turns out there is no single set <strong>of</strong><br />

mass estimating relations (MER) that is most accurate. The highest accuracy would be<br />

gained by taking the best MER <strong>for</strong> each component, from multiple sources. Additionally,<br />

technology reduction factors are supplied to enable designers to model future vehicles<br />

using equations derived from current and past technology.<br />

II Background<br />

<strong>Mass</strong> estimation <strong>of</strong> future air and space vehicles is typically done using parameterized<br />

equations <strong>for</strong> each component <strong>of</strong> a vehicle. These equations are then summed to find the<br />

total mass <strong>of</strong> the vehicle. For example, the mass <strong>of</strong> the anti-vortex baffles in a propellant<br />

tank, according to Brothers, is given by:<br />

M<br />

antivortex<br />

mF &<br />

=<br />

ρ<br />

prop<br />

( 0 .64 + 0.0184ρ)<br />

Here the mass <strong>of</strong> the baffles is a function <strong>of</strong> propellant density, and mass flow rate from<br />

the tank. There is not a unique set <strong>of</strong> parameters to base the mass <strong>of</strong> the anti-vortex<br />

baffles on, and different equations use different parameters. Often a minor component,<br />

such as the anti-vortex baffles, may be included in another equation <strong>for</strong> a larger<br />

component, such as the tank mass. Due to the many ways to parameterize a vehicle<br />

component, and the available levels <strong>of</strong> detail that the vehicle can be broken into, different<br />

design organizations <strong>of</strong>ten have different equations to model launch vehicles. This<br />

process works, but contains flaws.<br />

The largest problem with the currently used system is the lack <strong>of</strong> data available on space<br />

vehicles. In particular, there is only one data point <strong>for</strong> reusable launch vehicles, and none<br />

Georgia Institute <strong>of</strong> Technology<br />

TRF-6


<strong>for</strong> air-breathing launch vehicles. This problem is <strong>of</strong>ten remedied by fitting curves to<br />

aircraft components and then shifting the intercept such that data from the Space Shuttle<br />

lies on the curve, as is done by Brothers, and MacConochie. Brothers also fits curves to a<br />

combination <strong>of</strong> expendable launch vehicles and the Space Shuttle. This ensures that all<br />

data is <strong>for</strong> space hardware, but the durability, and hence weight <strong>of</strong> components is lower<br />

<strong>for</strong> expendable vehicles. The lack <strong>of</strong> data is exacerbated by the fact that all data is not<br />

available to all design organizations. Hence each organization’s in-house MERs are<br />

based on different data points. All <strong>of</strong> these methods work, but <strong>for</strong> different vehicle<br />

configurations, and over different parameter ranges. More <strong>of</strong>ten that not, the valid range<br />

<strong>of</strong> the parameters is unpublished and <strong>of</strong>ten unknown since no data points exist <strong>for</strong><br />

comparison beyond values <strong>of</strong> current space vehicles or aircraft.<br />

A further flaw with this approach is the consistency between the mass predictions <strong>of</strong><br />

different organization’s MERs. If one design organization uses their in-house equations<br />

<strong>for</strong> a new vehicle, and a second organization uses their in-house equations <strong>for</strong> the same<br />

vehicle, will they get the same answer? This flaw is inspired by the difficulty in<br />

comparing ideas generated at different design organizations. If two different ideas <strong>for</strong> a<br />

launch vehicle are posed and one is lighter, it is typically labeled as the better design.<br />

This could actually be the case, or one <strong>of</strong> the design organizations may be using mass<br />

estimating relationships that are heavier (or lighter) than the other organization,<br />

producing an invalid comparison <strong>of</strong> the vehicle concepts.<br />

III Approach<br />

This paper attempts to solve the problem <strong>of</strong> comparing vehicles through a two pronged<br />

approach. First a database <strong>of</strong> MERs was created to make a large number <strong>of</strong> equations<br />

available, and second a baseline was used to compare the predicted mass <strong>of</strong> the equations<br />

to a flight vehicle.<br />

By providing a database <strong>of</strong> equations to the conceptual design community a common set<br />

<strong>of</strong> equations will be available to all design organizations. If the same equations are used<br />

<strong>for</strong> vehicle design at different organizations, then the results should be easy to compare.<br />

Georgia Institute <strong>of</strong> Technology<br />

TRF-7


Even if different equations are used from the database, they can be referenced, and the<br />

difference between the equations used can be found.<br />

By comparing the compiled mass estimating equations to a baseline vehicle the validity<br />

<strong>of</strong> the equation is verified against an actual flight vehicle. The chosen reference is the<br />

Space Shuttle, specifically orbital vehicle 103 circa 1983, and external tank 7 on a due<br />

East mission [i]. Many equations in the database are not intended to model Space Shuttle<br />

technology, and are not compared.<br />

Several organizations have provided equations <strong>for</strong> this database, and in the future users<br />

should be encouraged to submit their equations with applicable parameter ranges <strong>for</strong><br />

inclusion in the database. The database is presented in subsequent sections <strong>of</strong> this paper.<br />

The equations were compiled from multiple sources <strong>of</strong> data, many <strong>of</strong> which are<br />

unpublished. A description <strong>of</strong> each primary source (and a sub source if cited) is provided<br />

below. On a macro level the data is organized in the order <strong>of</strong> a typical mass breakdown<br />

structure. Within each group in the MBS there are two columns, and a page <strong>for</strong> each<br />

source. The first page <strong>of</strong> each component group contains the variables used to predict the<br />

mass <strong>of</strong> components in that group, and any supporting illustrations. On each subsequent<br />

page, the reference is listed along with a brief description <strong>of</strong> the data source. The first<br />

column under each reference contains the equations and applicable parameters and<br />

known limitations. The second column is a percentage error from the Space Shuttle. In<br />

the following equation E is the percent error from the Space Shuttle, M i is the mass<br />

predicted by the MER, and M shuttle is the corresponding Space Shuttle component mass.<br />

M<br />

i<br />

− M<br />

E =<br />

M<br />

A positive error percentage indicates that the equation produces a mass higher than that<br />

<strong>of</strong> the Space Shuttle, and a negative error shows an equation that predicts lighter than the<br />

Space Shuttle. All equations in the database are set up <strong>for</strong> use in the English unit system.<br />

Standard measures <strong>for</strong> this database are feet, pounds, and seconds, with pressure in psi,<br />

and power in kilowatts, unless otherwise noted.<br />

shuttle<br />

shuttle<br />

Georgia Institute <strong>of</strong> Technology<br />

TRF-8


Equations that predict this vehicle accurately are likely only good <strong>for</strong> near term<br />

technology without adjustment. This adjustment is provided in the <strong>for</strong>m <strong>of</strong> a technology<br />

reduction factor. Provided the trend <strong>of</strong> the equation is correct, the mass can be reduced<br />

by a percentage to represent an improvement in material technology. The mass <strong>of</strong> a<br />

component using improved technology can be found by the following equation:<br />

M improved = M original (1-TRF)<br />

Here M improved is the mass <strong>of</strong> the component being modeled using improved technology,<br />

M original is the mass <strong>of</strong> that component predicted by an MER <strong>for</strong> current technology, and<br />

TRF is the appropriate technology reduction factor from the last section <strong>of</strong> this paper<br />

(starting on page TRF-1). This technique allows the use <strong>of</strong> MERs created using current<br />

technology to approximate what can be done in the future. In essence, this extends the<br />

useful life <strong>of</strong> an MER.<br />

IV Description <strong>of</strong> Sources<br />

Each source <strong>of</strong> MERs is intended to model a different type <strong>of</strong> vehicle, or has been<br />

derived from a particular configuration. This helps decipher the applicable range <strong>of</strong> the<br />

equations, and the vehicle configuration that they will model best. This description<br />

attempts to make available to the database user some <strong>of</strong> this knowledge so that the<br />

equations provided can be used in their proper context, and with confidence.<br />

1. I.O. MacConochie and P.J. Klich [ii]<br />

MacConochie worked in the Vehicle Analysis Branch at the Langley Research<br />

Center in Hampton Virginia. These equations are from NASA Technical<br />

Memorandum 78661, published in 1978. This predates the Space Shuttle first<br />

flight, but makes use <strong>of</strong> known shuttle subsystem masses. Equations are based on<br />

commercial and fighter aircraft data.<br />

2. Dr. John R. Olds [iii]<br />

Dr. Olds published these equations in his PhD dissertation in 1993. They are<br />

primarily a collection <strong>of</strong> equations from sources at NASA Langley Research<br />

Center, with a few that he created himself. The equations were used <strong>for</strong> design <strong>of</strong><br />

Georgia Institute <strong>of</strong> Technology<br />

TRF-9


a vertical take <strong>of</strong>f horizontal landing RBCC SSTO vehicle, shown in Figure 1.<br />

Projects and authors <strong>of</strong> the original source are listed in the database where<br />

available.<br />

Figure 1: RBCC SSTO vehicle. [ref. 2]<br />

3. Dr. Ted Talay<br />

Dr. Talay worked in the Vehicle Analysis Branch at NASA Langley Research<br />

Center. These equations were handed out as class notes <strong>for</strong> ME250, Launch<br />

Vehicle Design, at George Washington University in 1992, which he taught.<br />

Their emphasis is on rocket powered vehicles. Many <strong>of</strong> the equations provided<br />

are based on the Space Shuttle.<br />

4. Marquardt report NAS7-377 [iv]<br />

a. These equations are from a report by The Marquardt Corporation in 1966.<br />

They are published in NAS7-377, a study <strong>of</strong> composite propulsion systems on<br />

launch vehicle mass. The study vehicle is TSTO, and takes <strong>of</strong>f horizontally.<br />

The first stage uses the composite propulsion system on multiple body<br />

configurations. The lifting body version <strong>of</strong> the first stage can be seen in Figure<br />

2 with the second stage attached. Conical and cylindrical body versions were<br />

also modeled with these equations.<br />

Georgia Institute <strong>of</strong> Technology<br />

TRF-10


. The second stage is a rocket powered lifting body, based on a previously<br />

designed second stage by General Dynamics and Convair. These equations<br />

originate from report GD/C-DCB-65-018 [v].<br />

Figure 2: TSTO composite propulsion first stage with rocket powered lifting body<br />

second stage nestled on top. [ref. 4]<br />

5. Aircraft Design: A Conceptual Approach, Daniel P. Raymer [vi]<br />

As the title implies, equations from Raymer are intended <strong>for</strong> use on aircraft. Only<br />

his equations <strong>for</strong> fighter/attack aircraft are provided in this database since they are<br />

subject to high speeds and similar redundancy requirements as space vehicles.<br />

6. Bobby Brothers<br />

Brothers’ equations are derived primarily from expendable vehicles and the Space<br />

Shuttle. He provides the most extensive set <strong>of</strong> equations, including multiple<br />

equations <strong>for</strong> many components, and careful delineation <strong>of</strong> parts based on their<br />

function and load in a vehicle. Some equations are taken from AVID, a sizing<br />

Georgia Institute <strong>of</strong> Technology<br />

TRF-11


code developed by A. W. Wilhite at NASA Langley Research Center. When<br />

applicable, he also uses aircraft derived equations.<br />

7. Airplane Design, Dr. Jan Roskam [vii]<br />

Roskam’s focus is on aircraft, including everything from single propeller planes<br />

to fighter jets. For this database, only jet vehicles were considered, and almost<br />

exclusively fighter aircraft.<br />

8. Forbis and Kotker, The Boeing Company [viii]<br />

This paper is aimed at the design <strong>of</strong> hypersonic aerospace vehicles. The only<br />

portion <strong>of</strong> this paper used is <strong>for</strong> landing gear weight.<br />

9. Forbis and Woodhead, The Boeing Company [ix]<br />

This paper is also aimed at hypersonic aerospace vehicle analysis, and it appears<br />

to be an extension <strong>of</strong> the work done in the other listed paper by Forbis. Only the<br />

landing gear weight is used from this source.<br />

10. AC-Sizer, NASA MSFC<br />

This data was taken from a spreadsheet sizing program written by D. R. Komar<br />

and company at NASA Marshall Spaceflight Center. Both rocket and airbreathing<br />

vehicles are provided. The primary use is <strong>for</strong> modeling future<br />

technology vehicles with wings, both air-breathing and rocket powered.<br />

a. Many <strong>of</strong> the equations provided are from Alpha Technologies’ MER database.<br />

Alpha Technologies is run by Bobby Brothers, so many equations are derived<br />

from those in source 6, above.<br />

b. Wing MERs are from Boeing report AFWAL-TR-87-3056 on hypersonic<br />

aerospace vehicles.<br />

c. Landing gear is from report GDA-DCB-64-073.<br />

Georgia Institute <strong>of</strong> Technology<br />

TRF-12


11. Hawkins [x]<br />

This source is focused purely on weight growth through the design cycle. The<br />

data presented is taken from a paper presented at a Society <strong>of</strong> Allied Weight<br />

Engineers Conference in Detroit Michigan, 23-25 May, 1988.<br />

12. Dr. Ted Talay, NASA LaRC<br />

This is from a presentation from the Space Systems Division at NASA Langley<br />

Research Center to Dave Pine, Code B at NASA Headquarters on June 10, 1993.<br />

It is titled “Effect <strong>of</strong> Concept Maturity on Weight Growth and Cost Estimation.”<br />

Of primary interest is a chart showing dry weight growth on NASA space vehicle<br />

projects through the development cycle.<br />

V Future Work<br />

This database is only a start towards improving mass estimation <strong>for</strong> launch vehicles. In<br />

the future more equations need to be added as they become available. A second baseline<br />

point would also be very useful, especially a vehicle that uses current technologies, and<br />

has a different configuration than the Space Shuttle. This would allow verification <strong>of</strong><br />

nearly all the equations provided in the database, and would lend some merit to the<br />

design <strong>of</strong> future vehicles. Further if an equation could predict the mass <strong>of</strong> both vehicles<br />

well, there would be improved confidence in the accuracy <strong>of</strong> the trend.<br />

VI Acknowledgements<br />

Due to the nature <strong>of</strong> the work, much <strong>of</strong> the data collected would not be available without<br />

the help <strong>of</strong> others. Mr. Bobby Brothers has been very helpful in providing data and<br />

in<strong>for</strong>mation on the topic, and answering questions. D.R. Komar also has been generous<br />

in his contributions <strong>of</strong> equations to the database. Finally, Dr. John Olds has been<br />

instrumental in helping find data sources.<br />

Georgia Institute <strong>of</strong> Technology<br />

TRF-13


References<br />

i<br />

ii<br />

iii<br />

iv<br />

v<br />

vi<br />

vii<br />

viii<br />

ix<br />

x<br />

MacConochie, I.O., “Shuttle Design Data and <strong>Mass</strong> Properties,” prepared under<br />

contract NAS1-19000, Lockheed Engineering and Sciences Company, April<br />

1992.<br />

MacConochie, I.O., Klich, P.J., “Techniques <strong>for</strong> the Determination <strong>of</strong> <strong>Mass</strong><br />

Properties <strong>of</strong> Earth – To – Orbit Transportation Systems,” NASA Technical<br />

Memorandum 78661, June 1978.<br />

Olds, J. R., "Multidisciplinary Design Techniques Applied to Conceptual<br />

Aerospace Vehicle Design," Ph.D. Dissertation, North Carolina State University,<br />

Raleigh, NC, June 1993.<br />

Escher, W.J.D., Flornes, B.J., “A Study <strong>of</strong> Composite Propulsion Systems <strong>for</strong><br />

Advanced Launch Vehicle Applications,” final report under NASA Contract<br />

NAS7-377, the Marquardt Corporation Report No. 25,294, September 1966 (7<br />

volumes). [NASA Scientific and Technical In<strong>for</strong>mation Facility no. X67-<br />

19028/19034]<br />

Brady, J.F., Lynch, R.A., “Reusable Orbital Transport Second Summary<br />

Technical Report,” GD/C-DCB-65-018, Volume I, Contract NAS8-11463, April<br />

1965. [NASA Scientific and Technical In<strong>for</strong>mation Facility no. 65X-17521]<br />

Raymer, Daniel P. Aircraft Design: A Conceptual Approach. Washington D.C.,<br />

American Institute <strong>of</strong> Aeronautics and Astronautics, 1999.<br />

Roskam, Dr. Jan. Airplane Design, Part V: Component Weight Estimation.<br />

Ottawa, Kansas, 1989.<br />

Forbis, J.C., Kotker, D.J., “Conceptual Design and Analysis <strong>of</strong> Hypervelocity<br />

Aerospace Vehicles, Volume 1 – <strong>Mass</strong> Properties,” final report <strong>for</strong> period June<br />

1986 – March 1987, prepared under contract AFWAL-TR-87-3056 by the Boeing<br />

Aerospace Company <strong>of</strong> Seattle Washington, February 1988.<br />

Forbis, J.C., Woodhead, G.E., “Conceptual Design and Analysis <strong>of</strong> Hypervelocity<br />

Aerospace Vehicles, Volume 1 – <strong>Mass</strong> Properties, Section 2 – Aerospace –<br />

Vehicle <strong>Mass</strong> Properties System,” final report <strong>for</strong> the period July 1988 – October<br />

1990, prepared by Boeing Military Airplanes, Seattle Washington, October 1990.<br />

Hawkins, K., “Space vehicle and Associated Subsystem Weight Growth,” SAWE<br />

paper 1816, May, 1988.<br />

Georgia Institute <strong>of</strong> Technology<br />

TRF-14


1.0 Wing<br />

1.0 Wing<br />

AR – Aspect ratio (b<br />

2 /S ref )<br />

AR<br />

exp – Exposed aspect ratio (b 2 exp /S exp )<br />

b – Wing span<br />

b<br />

body – Maximum width <strong>of</strong> the body<br />

b<br />

exp – Span <strong>of</strong> exposed wing (b-b body at wing root)<br />

b<br />

cthru – Width <strong>of</strong> wing carry through<br />

b<br />

str – Wing structural span along the half chord line (picture)<br />

c<br />

xx – Wing chord at xx location<br />

F<br />

safety – Safety factor<br />

M<br />

wing – <strong>Mass</strong> <strong>of</strong> all components in wing group<br />

M<br />

wing_exp – <strong>Mass</strong> <strong>of</strong> exposed wing<br />

M<br />

cthru – <strong>Mass</strong> <strong>of</strong> wing carry thru structure<br />

M<br />

elevons – <strong>Mass</strong> <strong>of</strong> elevons and attach structure<br />

M<br />

land – Landed mass <strong>of</strong> vehicle<br />

M<br />

entry – Entry mass <strong>of</strong> vehicle<br />

M<br />

glow – Gross lift<strong>of</strong>f mass <strong>of</strong> vehicle<br />

M<br />

gross – Gross vehicle mass on the pad or runway<br />

N<br />

z – Ultimate load factor = 1.5*2.5 (factor <strong>of</strong> safety * limit load)<br />

P<br />

exp – Exposed wing plan<strong>for</strong>m loading (lb/ft 2 )<br />

q<br />

max – Maximum dynamic pressure (lb/ft 2 )<br />

R<br />

t – Taper ratio ( c tip /c root )<br />

S<br />

body – Plan<strong>for</strong>m area <strong>of</strong> the body<br />

S<br />

csw – Plan<strong>for</strong>m <strong>of</strong> wing mounted control surfaces<br />

S<br />

exp – Exposed wing plan<strong>for</strong>m area<br />

S<br />

fairing – Surface area <strong>of</strong> wing fairing<br />

S<br />

ref – Theoretical wing plan<strong>for</strong>m area<br />

S<br />

strakes – Plan<strong>for</strong>m area <strong>of</strong> wing strakes<br />

S ref (Shaded)<br />

b cthru<br />

S csw<br />

b<br />

S exp (Shaded)<br />

C root<br />

C exp_root<br />

C tip<br />

Georgia Institute <strong>of</strong> Technology 1-1


1.0 Wing<br />

S<br />

TEextensions – Plan<strong>for</strong>m area <strong>of</strong> trailing edge extensions<br />

t<br />

xx – Wing max thickness at xx location<br />

TRF – Technology reduction factor<br />

Λ – Wing sweep at 25% MAC<br />

θ le – Sweep angle <strong>of</strong> leading edge<br />

b str<br />

Sbody<br />

b body<br />

θ le<br />

L<br />

Georgia Institute <strong>of</strong> Technology 1-2


1.0 Wing<br />

Reference: 1<br />

Derived from: Aircraft and Space Shuttle.<br />

Options: Materials, and wing tanks.<br />

0.386<br />

⎡<br />

⎤<br />

⎢<br />

⎥<br />

0.572<br />

⎢<br />

1 ⎥ ⎛ Sexp<br />

⎞<br />

M<br />

wing<br />

= ⎢N<br />

zM<br />

land<br />

⎥<br />

wing str<br />

+<br />

S<br />

⎜<br />

t<br />

⎟<br />

⎢<br />

⎛<br />

body<br />

⎞ ⎝ root ⎠<br />

1+<br />

η⎜<br />

⎟⎥<br />

⎢<br />

S<br />

⎥<br />

⎣<br />

⎝ exp ⎠⎦<br />

0.572<br />

0.572<br />

[ K b K b ]<br />

ct<br />

body<br />

Space Shuttle<br />

Comparison<br />

2%<br />

Exposed wing material/configuration constants<br />

K wing = 0.286 – Aluminum skin/stringer, dry wing, no TPS<br />

= 0.343 – same as above but wet wing <strong>for</strong> storable propellants<br />

= 0.229 – metallic composite (Boron Aluminum) honeycomb dry wing, no TPS<br />

= 0.263 – same as above but wet wing <strong>for</strong> storable propellant such as RP<br />

= 0.214 – Organic composite honeycomb, no TPS<br />

= 0.453 – Honeycomb dry wing super alloy hot structure, no TPS required<br />

Wing carry-thru constants<br />

K ct = 0.0267 – dry carry-thru (integral)<br />

= 0.0347 – wet carry-thru (integral)<br />

= 0.100 – dry carry-thru (conventional)<br />

= 0.120 – wet carry-thru (conventional)<br />

Wing/body efficiency factor<br />

η = 0.20 – <strong>for</strong> conventional vehicle to<br />

= 0.15 – <strong>for</strong> control configured vehicle.<br />

Georgia Institute <strong>of</strong> Technology 1-3


1.0 Wing<br />

b body – Maximum width <strong>of</strong> the body<br />

b str – Wing structural span along the half chord line<br />

M land – Landed mass <strong>of</strong> vehicle<br />

N z – Ultimate load factor = 1.5*2.5 (factor <strong>of</strong> safety * limit load)<br />

S body – Plan<strong>for</strong>m area <strong>of</strong> the body<br />

S exp – Exposed wing plan<strong>for</strong>m area<br />

t root – Wing thickness at root<br />

Georgia Institute <strong>of</strong> Technology 1-4


1.0 Wing<br />

Reference: 2<br />

Derived <strong>for</strong>: Airbreathing horizontal take<strong>of</strong>f vehicle.<br />

Options: Wing material technology.<br />

M<br />

wing<br />

0.4<br />

⎡ 1+<br />

Rt<br />

⎤ ⎡ N<br />

zM<br />

land ⎤ 0.67 0.67<br />

−exp<br />

= 0.82954⎢<br />

Sexp<br />

AR<br />

t ⎥ ⎢ ⎥<br />

exp<br />

1<br />

⎣ c ⎦ ⎣ 1000 ⎦<br />

0.48<br />

( − TRF )<br />

Space Shuttle<br />

Comparison<br />

-13%<br />

M<br />

cthru<br />

b b<br />

= 0.00636<br />

t exp ⎢ ⎥⎢<br />

⎥ 1<br />

⎣ 1000 ⎦⎣<br />

troot<br />

⎦<br />

0.5 ⎡M<br />

land<br />

N<br />

z ⎤⎡<br />

str body ⎤<br />

[( 1−<br />

R ) AR ] ( − TRF )<br />

TRF<br />

= 1.0 – <strong>for</strong> aluminum skin stringer construction<br />

= 0.4 – <strong>for</strong> Ti3Al Beta 21S w/SiC<br />

AR exp – Exposed aspect ratio (b exp 2 /S exp )<br />

b body – Maximum width <strong>of</strong> the body<br />

b str – Wing structural span along the half chord line<br />

M land – Landed mass <strong>of</strong> vehicle<br />

N z – Ultimate load factor = 1.5*2.5 (factor <strong>of</strong> safety * limit load)<br />

R t – Taper ratio ( c tip /c root )<br />

S exp – Exposed wing plan<strong>for</strong>m area<br />

t root – Wing thickness at root<br />

(t/c) – Thickness to chord ratio on the wing<br />

Georgia Institute <strong>of</strong> Technology 1-5


1.0 Wing<br />

Reference: 3<br />

Derived from: Dr. Talay, LaRC.<br />

Options: None.<br />

M<br />

wing<br />

2375 ⎡M<br />

⎢<br />

9<br />

10<br />

⎥ ⎤<br />

entry<br />

N<br />

zbstr<br />

Sref<br />

=<br />

⎣ troot<br />

× ⎦<br />

0.584<br />

Space Shuttle<br />

Comparison<br />

43%<br />

b str – Wing structural span along the half chord line<br />

M entry – Entry mass <strong>of</strong> vehicle<br />

N z – Ultimate load factor = 1.5*2.5 (factor <strong>of</strong> safety * limit load)<br />

S ref – Theoretical wing plan<strong>for</strong>m area<br />

t root – Wing thickness at root<br />

Georgia Institute <strong>of</strong> Technology 1-6


1.0 Wing<br />

Reference: 4a<br />

Derived from: Airbreathing booster.<br />

Options: Maximum airbreathing Mach number.<br />

M<br />

wing _ exp<br />

= K<br />

wing<br />

S exp<br />

Includes exposed wing and carry through<br />

Space Shuttle<br />

Comparison<br />

N/A<br />

elevons<br />

K wing = 9.847 – <strong>for</strong> max airbreathing Mach number <strong>of</strong> 8?<br />

S exp – Exposed wing plan<strong>for</strong>m area<br />

M = K S <strong>Mass</strong> <strong>of</strong> elevons using columbium, including hardware<br />

elevons<br />

csw<br />

K elevons = 11.51 – max airbreathing Mach number <strong>of</strong> 8<br />

= 13.70 – max airbreathing Mach number <strong>of</strong> 12<br />

S csw – Plan<strong>for</strong>m <strong>of</strong> wing mounted control surfaces<br />

Georgia Institute <strong>of</strong> Technology 1-7


1.0 Wing<br />

Reference: 4b<br />

Derived from: Lifting body rocket.<br />

Options: None.<br />

elevons<br />

( 0.14Sbody<br />

) 0. Sbody<br />

M = 9 .4 + 07<br />

Elevons and attachment <strong>for</strong> lifting body second stage.<br />

S body – Plan<strong>for</strong>m area <strong>of</strong> the body<br />

Space Shuttle<br />

Comparison<br />

N/A<br />

Georgia Institute <strong>of</strong> Technology 1-8


1.0 Wing<br />

Reference: 5<br />

Derived from: Aircraft.<br />

Options: Varying wing shapes.<br />

M<br />

wing<br />

0.5 0.622 0.785<br />

( ) ( t −0.4<br />

0.05<br />

−1<br />

0. 04<br />

M N S AR ) ( 1+<br />

R ) ( cos Λ) S<br />

= 0.0103K<br />

K<br />

c<br />

t<br />

csw<br />

dw<br />

vs<br />

gross<br />

z<br />

ref<br />

root<br />

Space Shuttle<br />

Comparison<br />

-54%<br />

Wing configuration factors<br />

K dw = 0.768 – <strong>for</strong> delta wing<br />

= 1.0 – otherwise<br />

K vs = 1.19 – <strong>for</strong> variable sweep<br />

= 1.0 – otherwise<br />

N z here is the ultimate load factor = 1.5*limit load factor<br />

1.5 is the typical factor <strong>of</strong> safety and the limit load factor is typically 2.5<br />

AR – Aspect ratio (b 2 /S ref )<br />

M gross – Gross vehicle mass on the pad or runway<br />

N z – Ultimate load factor = 1.5*2.5 (factor <strong>of</strong> safety * limit load)<br />

R t – Taper ratio ( c tip /c root )<br />

S csw – Plan<strong>for</strong>m <strong>of</strong> wing mounted control surfaces<br />

S ref – Theoretical wing plan<strong>for</strong>m area<br />

(t/c) root – Thickness to chord ratio at the wing root<br />

Λ – Wing sweep at 25% MAC<br />

Georgia Institute <strong>of</strong> Technology 1-9


1.0 Wing<br />

Reference: 6<br />

Derived from: AVID equations from LaRC adjusted to Space Shuttle, includes aircraft <strong>for</strong> curve fit.<br />

Options: Two equations with different parameters.<br />

0.67<br />

⎡M<br />

land<br />

3.75bSexp<br />

⎤<br />

1575⎢<br />

9 ⎥<br />

c (<br />

t<br />

root c)<br />

× 10 ⎦<br />

M<br />

wing−exp<br />

=<br />

Primary wing equation<br />

⎣<br />

Space Shuttle<br />

Comparison<br />

1%<br />

M<br />

wing−carrythru<br />

wing − fairing<br />

⎡1.06c<br />

= ⎢<br />

⎢⎣<br />

S<br />

fairing<br />

root<br />

ref<br />

( b<br />

cthru<br />

) ⎤ ⎡M<br />

⎥1575⎢<br />

⎥⎦<br />

⎣ c<br />

land<br />

root<br />

3.75bS<br />

(<br />

t<br />

)<br />

c<br />

× 10<br />

[ 0002499q<br />

+ 1.7008 + (.00003695q<br />

− . ) b ]<br />

M = S<br />

003252<br />

exp<br />

9<br />

⎤<br />

⎥<br />

⎦<br />

0.67<br />

.<br />

max<br />

max<br />

b – Wing span<br />

b body – maximum width <strong>of</strong> the body<br />

c root – Wing chord at exposed root<br />

M land – Landed mass <strong>of</strong> vehicle<br />

q max – maximum dynamic pressure (psf)<br />

S exp – Exposed wing plan<strong>for</strong>m area<br />

S fairing – Surface area <strong>of</strong> wing fairing<br />

S ref – theoretical wing plan<strong>for</strong>m area<br />

(t/c) – Thickness to chord ratio on the wing<br />

body<br />

1.176<br />

M<br />

wing− exp<br />

= 1.<br />

498S<br />

ref<br />

Includes carry through, and is considered a secondary equation.<br />

2%<br />

S ref – theoretical wing plan<strong>for</strong>m area<br />

Georgia Institute <strong>of</strong> Technology 1-10


1.0 Wing<br />

Reference: 7<br />

Derived from: Aircraft<br />

Options: fixed or variable sweep wings.<br />

( K N M )<br />

0.593<br />

2<br />

⎡⎧<br />

w z glow ⎫<br />

1 R<br />

⎤<br />

t<br />

6<br />

3.08⎢<br />

⎪<br />

⎧⎛<br />

− ⎞ ⎪<br />

⎫<br />

−<br />

⎨<br />

⎬⎨<br />

tan(<br />

le<br />

) 2<br />

+ 1.0⎬10<br />

⎥<br />

t ref<br />

(<br />

t<br />

⎢ c) ⎜ θ −<br />

max<br />

AR( 1 Rt<br />

)<br />

⎟<br />

+<br />

⎥<br />

M<br />

wing<br />

=<br />

+<br />

⎣⎩<br />

⎭⎪⎩<br />

⎝<br />

⎠ ⎪⎭ ⎦<br />

0.89 0. 741<br />

{ AR( 1 R )} S<br />

Space Shuttle<br />

Comparison<br />

-35%<br />

K w<br />

= 1.0 – <strong>for</strong> fixed wing airplanes<br />

= 1.175 – <strong>for</strong> variable sweep wing airplanes<br />

AR – aspect ratio (b 2 /S ref )<br />

M glow – Gross lift<strong>of</strong>f mass <strong>of</strong> vehicle<br />

N z – ultimate load factor = 1.5*2.5 (factor <strong>of</strong> safety * limit load)<br />

R t – taper ratio ( c tip /c root )<br />

S ref – theoretical wing plan<strong>for</strong>m area<br />

(t/c) max – Maximum thickness to chord ratio on the wing<br />

θ le – sweep angle <strong>of</strong> leading edge<br />

Georgia Institute <strong>of</strong> Technology 1-11


1.0 Wing<br />

Reference: 10b<br />

Derived from: Hypervelocity Aircraft<br />

Options: Continuous our discontinuous carry thru, landing gear location, strakes, trailing edge extension, and more.<br />

M = K K K K K K K K K K K K + K<br />

wing _ box<br />

wing<br />

lcf<br />

trc<br />

arc<br />

tac<br />

swc<br />

bwc<br />

gear<br />

dwr<br />

tm<br />

ps<br />

dc<br />

dw<br />

Space Shuttle<br />

Comparison<br />

-34%<br />

Elastic Axis Sweep =30deg ?<br />

bexp=baero ?<br />

1.334<br />

K wing = .7072S<br />

- <strong>for</strong> continuous wing/carry-thru structures<br />

0<br />

ref<br />

1.334<br />

= 0.7072S<br />

- <strong>for</strong> discontinuous wing/carry-thru structures (mid mount wings)<br />

exp<br />

S exp – Exposed wing plan<strong>for</strong>m area<br />

S ref – theoretical wing plan<strong>for</strong>m area<br />

K lfc – loading correction factor<br />

=<br />

0.581<br />

0.5585<br />

0.00286N z<br />

Pexp<br />

+ 0.1624N<br />

z<br />

N z – Ultimate load factor = 1.5*2.5 (factor <strong>of</strong> safety * limit load)<br />

P exp – Exposed wing plan<strong>for</strong>m loading (lb/ft 2 )<br />

−1.385<br />

⎛ t ⎞<br />

K trc – taper ratio correction factor = 0.0141⎜<br />

⎟ + 0. 758<br />

⎝ c ⎠ struct<br />

(t/c) struct – Thickness to chord ratio <strong>of</strong> the wing structure<br />

K arc – aspect ratio correction factor<br />

1.148<br />

= 0.0588AR exp<br />

+ 0.28<br />

AR exp – Aspect ratio <strong>of</strong> the exposed wing (b 2 exp/S exp )<br />

K tac – taper ratio correction factor 0 .47R<br />

+ 0. 833<br />

=<br />

t<br />

Georgia Institute <strong>of</strong> Technology 1-12


1.0 Wing<br />

Rt – Wing taper ratio = tip chord over centerline root chord<br />

K swc – sweepback correction factor<br />

θ elastic_axis – unknown number??<br />

−1.282<br />

= 0.9031cos( θ elastic _ axis<br />

)<br />

K bwc – body width correction factor<br />

b<br />

= 1.011−<br />

0.07<br />

b<br />

body<br />

b body – maximum width <strong>of</strong> vehicle body<br />

b exp – Exposed wing span = wing span less b body<br />

exp<br />

⎛ b<br />

− 0.5⎜<br />

⎝ b<br />

body<br />

exp<br />

⎞<br />

⎟<br />

⎠<br />

2<br />

K gear – landing gear support penalty = 1.1 – <strong>for</strong> wing mounted gear, 1.0 – otherwise<br />

K dwr – dead weight relief factor<br />

= 1.0 – <strong>for</strong> wing without fuel or vertical tail<br />

⎛ M<br />

f _ wing<br />

D<br />

f _ wing<br />

+ M<br />

vert _ wing<br />

Dvert<br />

⎞<br />

= −1.2⎜<br />

⎟ − <strong>for</strong> wings with fuel and vertical tails attached.<br />

⎝ 0.5M<br />

wing<br />

Dcp<br />

⎠<br />

D vert – distance from vehicle centerline to CG <strong>of</strong> wing mounted vertical tail<br />

D f_wing – distance from vehicle centerline to CG <strong>of</strong> wing stored fuel<br />

D cp – distance from vehicle centerline to wing center <strong>of</strong> pressure<br />

M f_wing – mass <strong>of</strong> fuel in the wing<br />

M vert_wing – mass <strong>of</strong> vertical control surfaces attached to the wing<br />

M wing – mass <strong>of</strong> the wing<br />

K tm – temperature and materials factor<br />

= 1.0 – <strong>for</strong> aluminum<br />

= 1.15 – <strong>for</strong> titanium<br />

= 2.8 – <strong>for</strong> nickel based superalloy<br />

Georgia Institute <strong>of</strong> Technology 1-13


1.0 Wing<br />

= 0.88 – <strong>for</strong> cold composite<br />

= 0.92 – <strong>for</strong> titanium composite<br />

K ps – panel stiffness factor = 1.92 – <strong>for</strong> ceramic TPS, 1.0 – otherwise<br />

K dc – design concept factor = 0.97 – <strong>for</strong> thick truss structure design, 1.0 – otherwise<br />

K dw – discontinuous wing structural penalty = 0.0 – <strong>for</strong> continuous wing/carry-thru structures<br />

1<br />

= ( M<br />

wing _ box<br />

− M<br />

)<br />

continuous wing _ box<br />

3<br />

discontinuous<br />

− <strong>for</strong> discontinuous wing/carry-thru structures<br />

M<br />

1.275<br />

wing _ misc<br />

= 0.1716Sexp<br />

0. 564<br />

−0.2098<br />

⎛ bbody<br />

⎞<br />

⎜ ⎟<br />

⎝ bexp<br />

⎠<br />

b body – maximum width <strong>of</strong> vehicle body<br />

b exp – Exposed wing span = wing span less b body<br />

M = 6 +<br />

wing _ extensions<br />

( S S )<br />

strakes<br />

TEextensions<br />

S strakes – plan<strong>for</strong>m area <strong>of</strong> wing strakes<br />

S TEextensions – plan<strong>for</strong>m area <strong>of</strong> trailing edge extensions<br />

Georgia Institute <strong>of</strong> Technology 1-14


2.0 Tail<br />

2.0 Tail<br />

AR vert – Aspect ratio <strong>of</strong> vertical tail or tip fins<br />

b body – Maximum width <strong>of</strong> the body<br />

b vert – Span <strong>of</strong> tail or tip fins<br />

c tip – Tip chord <strong>of</strong> vertical tail or wingtip fins<br />

M – Maximum flight Mach number<br />

M glow – Gross lift<strong>of</strong>f mass <strong>of</strong> vehicle<br />

N z – Ultimate load factor = 1.5*2.5 (factor <strong>of</strong> safety * limit load)<br />

R vert – Taper ratio <strong>of</strong> vertical tail or tip fins ( c tip /c root )<br />

S rud – Plan<strong>for</strong>m area <strong>of</strong> rudder<br />

S vert – Total plan<strong>for</strong>m area <strong>of</strong> vertical tail or wingtip fins<br />

(t/c)vert – Thickness to chord ratio <strong>of</strong> the vertical tail or wingtip fins<br />

TRF – Technology reduction factor<br />

Λ vert – Sweep angle at 25% MAC<br />

b vert<br />

C root<br />

C tip<br />

S rud<br />

S vert<br />

S body<br />

b body<br />

L<br />

Georgia Institute <strong>of</strong> Technology 2-1


2.0 Tail<br />

Reference: 1<br />

Derived from: Aircraft and Space Shuttle.<br />

Options: Materials.<br />

M = K<br />

tail<br />

t<br />

( S ) 1. 24<br />

vert<br />

Space Shuttle<br />

Comparison<br />

23%<br />

K t<br />

=1.872 – aluminum skin/stringer, no TPS<br />

=1.108 – metallic composite structure, no TPS<br />

=1.000 − graphite epoxy composite structure, no TPS<br />

S vert – Total plan<strong>for</strong>m area <strong>of</strong> vertical tail or wingtip fins<br />

Georgia Institute <strong>of</strong> Technology 2-2


2.0 Tail<br />

Reference: 2<br />

Derived <strong>for</strong>: Airbreathing horizontal take<strong>of</strong>f vehicle.<br />

Options: Wing material technology.<br />

M<br />

tail<br />

= 5.0S<br />

1.09<br />

vert<br />

(1 − TRF )<br />

Space Shuttle<br />

Comparison<br />

36%<br />

TRF<br />

=1.0 – aluminum skin/stringer structure<br />

=0.2 – Ti3Al Beta 21s<br />

S vert – Total plan<strong>for</strong>m area <strong>of</strong> vertical tail or wingtip fins<br />

Georgia Institute <strong>of</strong> Technology 2-3


2.0 Tail<br />

Reference: 3<br />

Derived from: Dr. Talay, LaRC.<br />

Options: None.<br />

M =<br />

tail<br />

1.24<br />

1.678Svert<br />

Space Shuttle<br />

Comparison<br />

13%<br />

S vert – Total plan<strong>for</strong>m area <strong>of</strong> vertical tail or wingtip fins<br />

Georgia Institute <strong>of</strong> Technology 2-4


2.0 Tail<br />

Reference: 4a<br />

Derived from: Airbreathing booster.<br />

Options: Maximum airbreathing Mach number.<br />

M = K<br />

tail<br />

vert<br />

S<br />

vert<br />

K vert = 7.68 – <strong>for</strong> max airbreathing Mach number <strong>of</strong> 8<br />

= 9.20 – <strong>for</strong> max airbreathing Mach number <strong>of</strong> 12<br />

Space Shuttle<br />

Comparison<br />

22%<br />

using<br />

K vert =7.68<br />

S vert – Total plan<strong>for</strong>m area <strong>of</strong> vertical tail or wingtip fins<br />

Georgia Institute <strong>of</strong> Technology 2-5


2.0 Tail<br />

Reference: 4b<br />

Derived from: Lifting body rocket.<br />

Options: None.<br />

tail<br />

( 0.2Sbody<br />

) 0. Sbody<br />

M = 6 .8 + 15 Vertical tail mass <strong>for</strong> a lifting body upper stage.<br />

Space Shuttle<br />

Comparison<br />

89%<br />

S body – Plan<strong>for</strong>m area <strong>of</strong> the body<br />

Georgia Institute <strong>of</strong> Technology 2-6


2.0 Tail<br />

Reference: 5<br />

Derived from: Aircraft.<br />

Options: Varying tail shapes.<br />

M<br />

tail<br />

0.348<br />

0.488 0.718 0.341 −1<br />

0.25<br />

0. 323<br />

( )<br />

⎛ S<br />

−<br />

M N S M b 1 +<br />

rud ⎞<br />

AR ( 1+<br />

R ) ( cos( Λ )) = 0.452<br />

glow z vert<br />

vert ⎜ ⎟ vert vert<br />

vert<br />

⎝ S<br />

vert ⎠<br />

Assumes no T-tail and no rolling tail.<br />

Space Shuttle<br />

Comparison<br />

28%<br />

N z = 3.75<br />

0%<br />

N z = 2.25<br />

AR vert – Aspect ratio <strong>of</strong> vertical tail or tip fins<br />

b vert – Span <strong>of</strong> tail or tip fins<br />

M – Maximum flight Mach number<br />

M glow – Gross lift<strong>of</strong>f mass <strong>of</strong> vehicle<br />

N z – Ultimate load factor = 1.5*2.5 (factor <strong>of</strong> safety * limit load)<br />

R vert – Taper ratio <strong>of</strong> vertical tail or tip fins<br />

S rud – Plan<strong>for</strong>m area <strong>of</strong> rudder<br />

S vert – Total plan<strong>for</strong>m area <strong>of</strong> vertical tail or wingtip fins<br />

Λ vert – Sweep angle at 25% MAC<br />

Georgia Institute <strong>of</strong> Technology 2-7


2.0 Tail<br />

Reference: 6<br />

Derived from: Boeing aircraft tail equations adjusted <strong>for</strong> Space Shuttle.<br />

Options: Component inclusion.<br />

The following three equations must be summed to find the total tail mass.<br />

Space Shuttle<br />

Comparison<br />

-8%<br />

0.244 0.0364<br />

( S ( ) ) t<br />

0. 8674<br />

c b<br />

M = 26.06<br />

vert<br />

M<br />

tail<br />

vert _ spar<br />

=<br />

fairing<br />

c<br />

tip<br />

2S<br />

vert<br />

b<br />

fairing<br />

vert<br />

vert<br />

M<br />

vert<br />

tail<br />

( .02499q<br />

+ 1.7008 + ( 0.003695q<br />

− 0. ) b )<br />

M = S<br />

3252<br />

0<br />

max<br />

max<br />

body<br />

b body – Maximum width <strong>of</strong> the body<br />

b vert – Span <strong>of</strong> tail or tip fins<br />

c tip – Tip chord <strong>of</strong> vertical tail or wingtip fins<br />

q max – Maximum dynamic pressure during flight<br />

S fairing – Surface area <strong>of</strong> tail fairing<br />

S vert – Total plan<strong>for</strong>m area <strong>of</strong> vertical tail or wingtip fins<br />

(t/c) vert – Thickness to chord ratio <strong>of</strong> the vertical tail or wingtip fins<br />

Georgia Institute <strong>of</strong> Technology 2-8


2.0 Tail<br />

Reference: 10<br />

Derived from: NASA MSFC 3rd generation launch vehicle <strong>of</strong>fice (mostly airbreathing).<br />

Options: None.<br />

0.901 0.244 0.0364<br />

[( S ) R b ] 0. 8674<br />

M<br />

tail<br />

= 28.1<br />

vert vert vert<br />

Space Shuttle<br />

Comparison<br />

9%<br />

b vert – Span <strong>of</strong> tail or tip fins<br />

R vert – Taper ratio <strong>of</strong> vertical tail or tip fins<br />

S vert – Total plan<strong>for</strong>m area <strong>of</strong> vertical tail or wingtip fins<br />

Georgia Institute <strong>of</strong> Technology 2-9


3.0 Body<br />

3.0 Body<br />

A as – surface area <strong>of</strong> aft structure<br />

A body – surface area <strong>of</strong> vehicle body<br />

A body-tank – exposed area <strong>of</strong> body minus exposed area <strong>of</strong> integral tanks<br />

A exit – Total exit area <strong>of</strong> main engines<br />

A inlet – cross sectional area <strong>of</strong> inlet<br />

A tank – Surface area <strong>of</strong> tank<br />

b body – Maximum width <strong>of</strong> the body<br />

D eng – Diameter <strong>of</strong> a main engine<br />

D nose – Diameter <strong>of</strong> the nosecone base<br />

F ullage – Ullage fraction (typically ~4 to 5%)<br />

F prop – Propellant fraction <strong>of</strong> either oxidizer or fuel<br />

H body – height <strong>of</strong> body<br />

H inlet – Height <strong>of</strong> engine inlet<br />

Isp – Specific impulse <strong>of</strong> engines<br />

L – Length <strong>of</strong> vehicle<br />

L inlet – Length <strong>of</strong> engine inlet<br />

L s – Length <strong>of</strong> single duct (<strong>for</strong> Y inlet ducts)<br />

m& − Total propellant mass flow rate (lbm/s)<br />

M body – Total mass <strong>of</strong> body group<br />

M eng – <strong>Mass</strong> <strong>of</strong> a single main engine<br />

M glow – Gross lift<strong>of</strong>f mass<br />

M gross – Gross vehicle mass on the pad or runway prior to lift<strong>of</strong>f<br />

M insert – Insertion mass, sometimes called burnout mass<br />

M land – Landed mass <strong>of</strong> vehicle<br />

M pl – <strong>Mass</strong> <strong>of</strong> payload<br />

M strapon – <strong>Mass</strong> <strong>of</strong> strap on boosters<br />

M tot_fuel – <strong>Mass</strong> <strong>of</strong> all fuel on stage<br />

M tot_ox – <strong>Mass</strong> <strong>of</strong> all oxidizer on stage<br />

S body<br />

L<br />

b body<br />

Georgia Institute <strong>of</strong> Technology 3-1


3.0 Body<br />

N crew – Number <strong>of</strong> crew<br />

N days – Number <strong>of</strong> days spent on orbit<br />

N eng – Number <strong>of</strong> main engines on stage<br />

N inlet – Number <strong>of</strong> inlets<br />

N struts – Number <strong>of</strong> struts in engine inlet<br />

N t – Number <strong>of</strong> fuel tanks<br />

N z – Ultimate load factor = 1.5*2.5 (factor <strong>of</strong> safety * limit load)<br />

P 2 – Pressure in inlet<br />

P f – Pressure <strong>of</strong> fuel tank<br />

P ox – Pressure <strong>of</strong> oxidizer tank<br />

q max – Maximum dynamic pressure during flight (lb/ft 2 )<br />

S as – Surface area <strong>of</strong> aft skirt<br />

S base – Surface area <strong>of</strong> base closeout<br />

S body – Plan<strong>for</strong>m area <strong>of</strong> vehicle body<br />

S bf – Plan<strong>for</strong>m area <strong>of</strong> body flap<br />

S ec – Surface area <strong>of</strong> engine compartment<br />

S f – Surface area <strong>of</strong> fuel tanks<br />

S fwds – Surface area <strong>of</strong> <strong>for</strong>ward skirt<br />

S inlet – Surface area <strong>of</strong> inlet and cowl ring<br />

S is – Surface area <strong>of</strong> interstage structure<br />

S it – Surface area <strong>of</strong> intertank structure<br />

S nose – Surface area <strong>of</strong> nosecone<br />

S ns_cowl – Non-inlet surface area <strong>of</strong> cowl<br />

S ox – Surface area <strong>of</strong> oxidizer tanks<br />

S pl – Surface area <strong>of</strong> payload bay, not including doors<br />

S pldoors – Surface area <strong>of</strong> payload bay doors<br />

S tc – Surface area <strong>of</strong> tail cone<br />

SFC – Specific fuel consumption<br />

T sls – Total stage thrust at sea level static conditions<br />

T vac – Vacuum thrust per main engine<br />

V crew – Volume <strong>of</strong> crew cabin<br />

Georgia Institute <strong>of</strong> Technology 3-2


3.0 Body<br />

V f – Total fuel volume<br />

V i – Fuel volume in integral tanks<br />

V ox – Total oxidizer volume<br />

ρ f – Density <strong>of</strong> fuel<br />

ρ ox – Density <strong>of</strong> oxidizer<br />

θ nose – Nose cone angle<br />

Georgia Institute <strong>of</strong> Technology 3-3


3.0 Body<br />

Reference: 1<br />

Derived from: Aircraft and Space Shuttle.<br />

Options: Materials, windshield, and tanks..<br />

body<br />

c<br />

0.5<br />

crew<br />

b<br />

body<br />

1/ 3<br />

z<br />

f<br />

f<br />

ox<br />

1.1<br />

ox<br />

t<br />

1. 15<br />

( N T ) K S<br />

M = K N + K A N + K V + K V + K +<br />

Crew cabin constants<br />

K c = 2043 – full windshield aluminum construction<br />

= 1293 – aluminum construction with no windshield<br />

= 1740 – full windshield composite construction<br />

= 1140 – composite construction with no windshield<br />

eng<br />

vac<br />

bf<br />

bf<br />

Space Shuttle<br />

Comparison<br />

-7%<br />

Assumes no<br />

ascent<br />

propellant in<br />

orbiter.<br />

Body construction constants<br />

K b = 2.72 – composite structure, no TPS<br />

= 3.20 – aluminum structure, no composites, no TPS<br />

= 3.40 – hot metallic Ti/Rene HC, no TPS required<br />

= 4.43 – moldline tankage; tank, body structure, cryogenic insulation integrated<br />

Tank geometry/propellant constants<br />

K f , and K ox – see table below.<br />

Georgia Institute <strong>of</strong> Technology 3-4


3.0 Body<br />

Table showing tank constants from [ref. 1].<br />

* EN designates in-house LARC study vehicles.<br />

Georgia Institute <strong>of</strong> Technology 3-5


3.0 Body<br />

K t<br />

= 0.0030 – aluminum thrust structure<br />

= 0.0024 – composite thrust structure<br />

Body flap construction constants<br />

K bf = 1.59 – hot structure<br />

= 1.38 – aluminum skin/stringer, no TPS<br />

A body – surface area <strong>of</strong> vehicle body<br />

M body – Total mass <strong>of</strong> body group<br />

N crew – Number <strong>of</strong> crew<br />

N eng – Number <strong>of</strong> main engines on stage<br />

N z – Ultimate load factor = 1.5*2.5 (factor <strong>of</strong> safety * limit load)<br />

S bf – Plan<strong>for</strong>m area <strong>of</strong> body flap<br />

T vac – Vacuum thrust per main engine<br />

V f – Total fuel volume<br />

V ox – Total oxidizer volume<br />

Georgia Institute <strong>of</strong> Technology 3-6


3.0 Body<br />

Reference: 2<br />

Derived <strong>for</strong>: Airbreathing horizontal take<strong>of</strong>f vehicle.<br />

Options: Material technology.<br />

M = K<br />

no sec one<br />

nc<br />

S<br />

nose<br />

Space Shuttle<br />

Comparison<br />

-42%<br />

M =<br />

N<br />

0.5<br />

crew _ cabin<br />

1455 crew<br />

M 15M<br />

pl _ bay<br />

= K<br />

pl<br />

S<br />

pl<br />

+ K<br />

pldoors<br />

S<br />

pldoors<br />

+ 0.<br />

pl<br />

M<br />

fuel _ tan k<br />

K<br />

f<br />

V<br />

f<br />

+<br />

= K S includes insulation<br />

f _ ins<br />

f<br />

M<br />

ox _ tan k<br />

K<br />

oxVox<br />

+<br />

= K S includes insulation<br />

ox _ ins<br />

ox<br />

M = K S + K<br />

aft _ body<br />

tc<br />

tc<br />

base<br />

S<br />

base<br />

M = K<br />

2 +<br />

cowl<br />

ns _ cowl<br />

S<br />

ns _ cowl<br />

+ K<br />

inlet<br />

Sinlet<br />

K<br />

struts<br />

Linlet<br />

H<br />

inlet<br />

N<br />

struts<br />

airbreather only<br />

K nc<br />

K pl<br />

= 2.21 – Ti3Al Beta 21S<br />

= 2.21 – Ti3Al Beta 21S<br />

K pldoors = 3.5 – 20% less than STS honeycomb doors (incl. fittings & mechanisms)<br />

K f = 0.255 – Hydrogen, wound integral Gr/PEEK<br />

K f_ins = 0.26 – Based on rohacell insulation<br />

K ox = 0.33 – LOX, aluminum lithium, non-integral<br />

K ox_ins = 0.20 – Based on rohacell insulation<br />

K tc = 2.21 – Ti3Al Beta 21S<br />

= 1.99 – Secondary structure (10% lower than baseline?)<br />

K base<br />

Georgia Institute <strong>of</strong> Technology 3-7


3.0 Body<br />

K ns_cowl =2.21 – Ti3Al Beta21S<br />

K inlet = 2.75 – Advanced materials, 150psi, top & bottom required<br />

K struts = 2.21 – Baseline structural unit weight<br />

S nose – Surface area <strong>of</strong> nosecone<br />

S pl – Surface area <strong>of</strong> payload bay, not including doors<br />

S pldoors – Surface area <strong>of</strong> payload bay doors<br />

M pl – <strong>Mass</strong> <strong>of</strong> payload<br />

S f – Surface area <strong>of</strong> fuel tanks<br />

S ox – Surface area <strong>of</strong> oxidizer tanks<br />

S tc – Surface area <strong>of</strong> tail cone<br />

S base – Surface area <strong>of</strong> base closeout<br />

S ns_cowl – Non-inlet surface area <strong>of</strong> cowl<br />

S inlet – Surface area <strong>of</strong> inlet and cowl ring<br />

L inlet – Length <strong>of</strong> engine inlet<br />

H inlet – Height <strong>of</strong> engine inlet<br />

N crew – Number <strong>of</strong> crew<br />

N struts – Number <strong>of</strong> struts in engine inlet<br />

V f – Total fuel volume<br />

V ox – Total oxidizer volume<br />

Georgia Institute <strong>of</strong> Technology 3-8


3.0 Body<br />

Reference: 3<br />

Derived from: Dr. Talay, LaRC, rocket based.<br />

Options: None.<br />

M<br />

fuse<br />

3.4A body −tan<br />

ks<br />

= Includes <strong>for</strong>e, aft, mid fuselage, and payload bay doors<br />

( S S )<br />

M +<br />

sec ondary<br />

= 2. 0<br />

base pl<br />

Add any other secondary structures’ areas specific to vehicle<br />

Space Shuttle<br />

Comparison<br />

-3%<br />

M =<br />

N<br />

0.5<br />

crew _ cabin<br />

2347 crew<br />

M = 3. 135<br />

bf<br />

S bf<br />

M 0. 0023T<br />

thrust _ struct<br />

=<br />

vac<br />

N<br />

eng<br />

M<br />

fuel _ tan k<br />

=<br />

K<br />

f<br />

V<br />

(1 − F<br />

f<br />

ullage<br />

)<br />

M<br />

ox _ tan k<br />

K<br />

oxV<br />

=<br />

(1 − F<br />

ox<br />

ullage<br />

)<br />

K f<br />

K ox<br />

= 0.5595 – Shuttle technology<br />

= 0.8086 – Shuttle technology<br />

A body-tank – Exposed area <strong>of</strong> body minus exposed area <strong>of</strong> integral tanks<br />

F ullage – Ullage fraction (typically ~4 to 5%)<br />

N crew – Number <strong>of</strong> crew<br />

N eng – Number <strong>of</strong> main engines on stage<br />

Georgia Institute <strong>of</strong> Technology 3-9


3.0 Body<br />

S base – Surface area <strong>of</strong> base closeout<br />

S bf – Plan<strong>for</strong>m area <strong>of</strong> body flap<br />

S pl – Surface area <strong>of</strong> payload bay, not including doors<br />

T vac – Vacuum thrust per main engine<br />

V f – Total fuel volume<br />

V ox – Total oxidizer volume<br />

Georgia Institute <strong>of</strong> Technology 3-10


3.0 Body<br />

Reference: 4a<br />

Derived from: Airbreathing booster.<br />

Options: Maximum airbreathing Mach number, engine type, and body type.<br />

M =<br />

aft _ struct<br />

K<br />

as<br />

Aas<br />

Inconel 718 aft structure mass<br />

K as = 2.86 – Max airbreathing Mach number <strong>of</strong> 8<br />

= 3.10 – Max airbreathing Mach number <strong>of</strong> 12<br />

A as – surface area <strong>of</strong> aft structure<br />

Space Shuttle<br />

Comparison<br />

N/A<br />

Air-breathing<br />

vehicles only<br />

M = K T Thrust structure mass <strong>for</strong> aibreathing booster vehicle<br />

thrust<br />

thrust<br />

sls<br />

M<br />

K thrust = 0.01025 – Thrust acting below body (ie. Ramjet)<br />

= 0.0070 – Thrust acting on aft expansion surface (ie. Scramjet)<br />

T sls – Total stage thrust at sea level static conditions<br />

fuel _ tan ks<br />

=<br />

K<br />

fuel<br />

M<br />

tot _ fuel<br />

<strong>Mass</strong> <strong>of</strong> liquid hydrogen tanks <strong>for</strong> an airbreathing booster vehicle. This tank is integral with the <strong>for</strong>ebody <strong>of</strong><br />

the vehicle and includes structure.<br />

K fuel<br />

= 0.259 – Augmented rocket<br />

= 0.409 – Ejector ramjet, or supercharged ejector ramjet<br />

= 0.416 – Ejector scramjet, or supercharged ejector scramjet<br />

= 0.341 – RL, or RRL, or SRL, or RSRL<br />

= 0.339 – SL, or RSL, or SSL, or RSSL<br />

M tot_fuel – <strong>Mass</strong> <strong>of</strong> all fuel on stage<br />

Georgia Institute <strong>of</strong> Technology 3-11


3.0 Body<br />

M<br />

ox _ tan ks<br />

0. 0255<br />

= M <strong>Mass</strong> <strong>of</strong> liquid oxygen tanks <strong>for</strong> an airbreathing booster vehicle<br />

tot _ ox<br />

cowl<br />

M tot_oxl – <strong>Mass</strong> <strong>of</strong> all oxidizer on stage<br />

M = K A <strong>Mass</strong> <strong>of</strong> inlets<br />

cowl<br />

inlet<br />

K cowl<br />

= 175 – Cylindrical body with wing configuration, 120 psia inlet pressure<br />

= 154 – Lifting body configuration, subsonic combustion, 120 psia inlet pressure<br />

= 125 – Lifting body configuration, supersonic combustion, 120 psia inlet pressure<br />

= See chart <strong>for</strong> different inlet pressures.<br />

A inlet – cross sectional area <strong>of</strong> inlet<br />

M = 1400 860 Fixed mass <strong>for</strong> crew cabin structure, and personnel compartment.<br />

crew _ cabin<br />

+<br />

M = 0. 0133<br />

separation<br />

M insert<br />

Separation system on booster stage, piggy-back configuration. Includes separation rockets, mounting system,<br />

and controls.<br />

M insert – Orbital insertion mass <strong>of</strong> vehicle, sometimes called burnout mass.<br />

Georgia Institute <strong>of</strong> Technology 3-12


3.0 Body<br />

Chart showing inlet weight per square foot <strong>of</strong> inlet area as a function <strong>of</strong> inlet pressure <strong>for</strong> three different vehicle<br />

configurations. Source [ref. 4].<br />

Georgia Institute <strong>of</strong> Technology 3-13


3.0 Body<br />

Reference: 4b<br />

Derived from: Lifting body rocket.<br />

Options: None.<br />

M = 3 .0724A<br />

+ 0. 0008T<br />

body<br />

body<br />

vac<br />

N<br />

eng<br />

Body mass including fuselage, thrust structure, and miscellaneous, <strong>for</strong> a lifting body upper stage.<br />

Space Shuttle<br />

Comparison<br />

N/A<br />

Lifting body<br />

design<br />

M<br />

crew<br />

_ cabin<br />

= 1801 + 1.15V<br />

crew<br />

+ 180<br />

<strong>Mass</strong> <strong>of</strong> crew cabin and windscreen/canopy. This reference recommends that the volume <strong>for</strong> the crew be<br />

calculated as: V crew = 60N crew +255<br />

M 0. 224S<br />

M<br />

M<br />

aft _ skirt<br />

=<br />

body<br />

<strong>Mass</strong> <strong>of</strong> aft skirt, aerodynamic fairing over engines.<br />

S body – Plan<strong>for</strong>m area <strong>of</strong> vehicle body<br />

ox _ tan k<br />

= 0. 0181<br />

M<br />

tot _ ox<br />

<strong>Mass</strong> <strong>of</strong> liquid oxygen tank <strong>for</strong> lifting body second stage<br />

M tot_ox – <strong>Mass</strong> <strong>of</strong> all oxidizer on stage<br />

f _ tan k<br />

= 0. 1188<br />

M<br />

tot _ fuel<br />

<strong>Mass</strong> <strong>of</strong> liquid hydrogen tank <strong>for</strong> lifting body second stage, including mounting.<br />

M tot_fuel – <strong>Mass</strong> <strong>of</strong> all fuel on stage<br />

M<br />

_<br />

= 555<br />

f<br />

ins<br />

0.666<br />

1.<br />

V<br />

f<br />

<strong>Mass</strong> <strong>of</strong> insulation <strong>for</strong> liquid hydrogen tank on lifting body second stage.<br />

V f – Total fuel volume<br />

Georgia Institute <strong>of</strong> Technology 3-14


3.0 Body<br />

M = 1. 4<br />

plbay<br />

V plbay<br />

<strong>Mass</strong> <strong>of</strong> payload bay, including doors.<br />

Recommended cargo volume is: V plbay = 0.111M pl<br />

V plbay – Volume <strong>of</strong> payload bay<br />

M<br />

sep _ syst<br />

= 220<br />

<strong>Mass</strong> <strong>of</strong> separation system on second stage lifting body, piggy-back config.<br />

Georgia Institute <strong>of</strong> Technology 3-15


3.0 Body<br />

Reference: 5<br />

Derived from: Aircraft.<br />

Options: Different inlet geometry including variable shape, and wing shape.<br />

M =<br />

fuse<br />

0.35 0.25 0.5 0.849 0.685<br />

0.499K<br />

dwf<br />

M<br />

gross<br />

N<br />

z<br />

L H<br />

body<br />

bbody<br />

Space Shuttle<br />

Comparison<br />

-26%<br />

M<br />

thrust<br />

_<br />

= 0 .013N<br />

T N + 0. 01M<br />

struct<br />

0.795<br />

eng<br />

0.579<br />

vac<br />

z<br />

0.717<br />

eng<br />

N<br />

eng<br />

N<br />

z<br />

M<br />

cowl<br />

⎛<br />

⎜<br />

⎝<br />

L<br />

⎞<br />

⎟<br />

⎠<br />

−.0373<br />

0.643 0.182 1.498 s<br />

= 13.29K<br />

vg<br />

Linlet<br />

K<br />

duct<br />

N<br />

eng ⎜<br />

Deng<br />

L ⎟<br />

based on fighter aircraft inlet ducts<br />

inlet<br />

M<br />

−0.095<br />

0.249<br />

⎛ ⎞<br />

0.47<br />

0.066 0.052<br />

_ tan<br />

7.45<br />

⎜<br />

V<br />

⎛ ⎞<br />

= 1 +<br />

i<br />

⎟<br />

TvacSFC<br />

fuel ks<br />

V<br />

f<br />

N N<br />

t eng ⎜ ⎟ JP fuel tanks only<br />

⎝ V<br />

f ⎠<br />

⎝ 1000 ⎠<br />

K dwf = 0.774 – <strong>for</strong> delta wing<br />

K vg<br />

K duct<br />

= 1.0 – otherwise<br />

= 1.62 – <strong>for</strong> variable geometry inlet<br />

= 1.0 – fixed geometry inlet<br />

= 1.0 – circular inlet<br />

= 1.31 – half circle inlet<br />

= 2.2 – square and circle combination inlet (stretched D)<br />

= 2.75 – square inlet<br />

= 1.68 – ellipsoid, height to width ratio <strong>of</strong> 1.5:1<br />

= 2.6 – ellipsoid, height to width ratio <strong>of</strong> 2:1<br />

= 3.43 – smile shape (ie. F-16), height to width ratio <strong>of</strong> 1:3.2<br />

Georgia Institute <strong>of</strong> Technology 3-16


3.0 Body<br />

Inlet duct geometry coefficients [ref. 5].<br />

b body – Maximum width <strong>of</strong> the body<br />

D eng – Diameter <strong>of</strong> a main engine<br />

H body – height <strong>of</strong> body<br />

L – Vehicle length<br />

L s – Length <strong>of</strong> single duct (<strong>for</strong> Y inlet ducts)<br />

M eng – <strong>Mass</strong> <strong>of</strong> a single main engine<br />

M gross – Gross vehicle mass on the pad or runway prior to lift<strong>of</strong>f<br />

N eng – Number <strong>of</strong> main engines on stage<br />

N t – Number <strong>of</strong> fuel tanks<br />

N z – Ultimate load factor = 1.5*2.5 (factor <strong>of</strong> safety * limit load)<br />

SFC – Specific fuel consumption<br />

T vac – Vacuum thrust per main engine<br />

V f – Total fuel volume<br />

V i – Fuel volume in integral tanks<br />

Georgia Institute <strong>of</strong> Technology 3-17


3.0 Body<br />

Reference: 6<br />

Derived from: Fuselage from aircraft & Space Shuttle, others from Space Shuttle and expendable vehicles.<br />

Options: Stage number, attachment configuration.<br />

Shuttle comparison includes fuselage, nosecap, thrust structure, payload bay and doors, crew cabin, and stage to stage<br />

attachment structure.<br />

Space Shuttle<br />

Comparison<br />

2%<br />

M = <strong>Mass</strong> <strong>of</strong> vehicle body, including base<br />

fuse<br />

1.075<br />

2.167Abody<br />

M<br />

M<br />

nose<br />

nose<br />

= S<br />

nose<br />

nose<br />

( ) ( 0.0001034q<br />

)<br />

max −0.5878<br />

14.31−<br />

0.003462qmax<br />

θ<br />

nose<br />

+<br />

−9<br />

−5<br />

−3<br />

( 0.0006864 − 6.1e<br />

q ) θ + ( 4.385e<br />

q − 3.252e<br />

)<br />

⎡<br />

{ }⎥ ⎥ ⎤<br />

⎢<br />

⎢⎣<br />

max nose<br />

max<br />

Dnose<br />

⎦<br />

−4<br />

−5<br />

−3<br />

[ 2.499e<br />

q + 1.7008 + ( 3.695e<br />

q − 3.252e<br />

) D ]<br />

= S<br />

ellipsoid<br />

max<br />

max<br />

nose<br />

right cone<br />

( 0.8548+<br />

0.0003189ρox<br />

)<br />

( 2.44 − 0. ρ )<br />

M ox<br />

= V<br />

P


3.0 Body<br />

M<br />

slosh _<br />

2<br />

−7<br />

ρ<br />

baffles<br />

= 6.77e<br />

bbodyV<br />

adapt <strong>for</strong> propellant type<br />

1.01<br />

For M antivortex and M slosh_baffles the volume, density and F prop need to have the correct subscript <strong>for</strong> the fluid in the<br />

tank. For example <strong>for</strong> a LOX tank F prop would be the oxidizer fraction, V would be the oxidizer tank volume,<br />

and ρ would be the density <strong>of</strong> LOX.<br />

k it 2<br />

M = S K b Structure between tanks <strong>for</strong> inline configuration<br />

int er tan k<br />

it<br />

it<br />

body<br />

K it = 26.36 – stage 1 <strong>of</strong> 1<br />

= 27.04 – stage 1 <strong>of</strong> 2<br />

= 21.47 – stage 2 <strong>of</strong> 2<br />

K it2 = 0.5169 – stage 1 <strong>of</strong> 1 or stage 1 <strong>of</strong> 2<br />

= 0.6025 – stage 2 <strong>of</strong> 2<br />

K is 2<br />

M = S K b Structure connecting two stages <strong>of</strong> an inline vehicle<br />

int erstage<br />

is<br />

is<br />

body<br />

K is = 17.92 – stage 1 <strong>of</strong> 1<br />

= 18.57 – stage 1 <strong>of</strong> 2<br />

= 22.94 – stage 2 <strong>of</strong> 2<br />

K is2 = 0.4856 – stage 1 <strong>of</strong> 1 or stage 1 <strong>of</strong> 2<br />

= 0.6751 – stage 2 <strong>of</strong> 2<br />

fwd _ skirt<br />

fwds<br />

fwds<br />

K fwds 2<br />

body<br />

M = S K b <strong>Mass</strong> <strong>of</strong> structure between <strong>for</strong>ward tank and payload or next stage<br />

K fwds = 37.35 – stage 1 <strong>of</strong> 1<br />

= 38.70 – stage 1 <strong>of</strong> 2<br />

= 15.46 – stage 2 <strong>of</strong> 2<br />

K fwds2 = 0.6722 – stage 1 <strong>of</strong> 1 or stage 1 <strong>of</strong> 2<br />

= 0.5210 – stage 2 <strong>of</strong> 2<br />

M = K T<br />

Thrust structure mass<br />

thrust<br />

thrust<br />

1.0687<br />

vac<br />

Georgia Institute <strong>of</strong> Technology 3-19


3.0 Body<br />

K thrust = 1.949e-3 – inline launch vehicle<br />

= 7.995e-4 – side mount propulsion module (orbiter type)<br />

K ec 2<br />

M = S K b structure from aft tank to interstage or pad tie-down<br />

M<br />

eng _ comp<br />

aft<br />

ec<br />

ec<br />

body<br />

K ec = 31.66 – stage 1 <strong>of</strong> 1<br />

= 32.48 – stage 1 <strong>of</strong> 2<br />

= 15.97 – stage 2 <strong>of</strong> 2<br />

K ec2 = 0.5498 – stage 1 <strong>of</strong> 1 or stage 1 <strong>of</strong> 2<br />

= 0.4676 – stage 2 <strong>of</strong> 2<br />

skirt<br />

as<br />

−4<br />

−5<br />

−3<br />

[ 2.499e<br />

q + 1.7008 + ( 3.695e<br />

q − 3. e ) b ]<br />

_<br />

= S<br />

max<br />

max<br />

252 aerodynamic fairing<br />

stg _ attach<br />

( M M )<br />

M = 0. 0148 +<br />

gross<br />

pl<br />

Orbiter type vehicle to ET or booster stage where attach structure stays with ET or booster stage.<br />

body<br />

M 0. 00148M<br />

stg _ attach<br />

=<br />

strapon<br />

SRB to ET or core stage where attach structure stays with ET or booster stage<br />

M 000314<br />

stg _ attach<br />

= 0. M<br />

strapon<br />

SRB attach structure stays with SRB<br />

M<br />

crew _ cabin<br />

= .3139. 66<br />

1.002<br />

[ ( N N ) ] 0. 6916<br />

28<br />

crew days<br />

Abody<br />

M<br />

pldoors<br />

= 0.257 Payload bay doors including hardware<br />

2<br />

Abody<br />

M<br />

plbay<br />

= 0.4808Abody<br />

+ 0.2336 Internal cargo bay mass, including support structure (ie.STS)<br />

2<br />

Georgia Institute <strong>of</strong> Technology 3-20


3.0 Body<br />

A body – Surface area <strong>of</strong> the vehicle body<br />

b body – Maximum width <strong>of</strong> the body<br />

D nose – Diameter <strong>of</strong> the nosecone base<br />

F prop – Propellant fraction <strong>of</strong> either oxidizer or fuel<br />

m& − Total propellant mass flow rate (lbm/s)<br />

M gross – Gross vehicle mass on the pad or runway prior to lift<strong>of</strong>f<br />

M pl – <strong>Mass</strong> <strong>of</strong> payload<br />

M strapon – <strong>Mass</strong> <strong>of</strong> strap on boosters<br />

N crew – Number <strong>of</strong> crew<br />

N days – Number <strong>of</strong> days spent on orbit<br />

P f – Pressure <strong>of</strong> fuel tank<br />

P ox – Pressure <strong>of</strong> oxidizer tank<br />

q max – Maximum dynamic pressure during flight (lb/ft 2 )<br />

S as – Surface area <strong>of</strong> aft skirt<br />

S ec – Surface area <strong>of</strong> engine compartment<br />

S fwds – Surface area <strong>of</strong> <strong>for</strong>ward skirt<br />

S is – Surface area <strong>of</strong> interstage structure<br />

S it – Surface area <strong>of</strong> intertank structure<br />

S nose – Surface area <strong>of</strong> the nosecone<br />

T vac – Vacuum thrust per main engine<br />

V f – Total fuel volume<br />

V ox – Total oxidizer volume<br />

ρ f – Density <strong>of</strong> fuel<br />

ρ ox – Density <strong>of</strong> oxidizer<br />

θ nose – Nose cone angle<br />

Georgia Institute <strong>of</strong> Technology 3-21


3.0 Body<br />

Reference: 7<br />

Derived from: Aircraft.<br />

Options: Inlet geometry and pressure.<br />

M<br />

fuse<br />

0.95<br />

0.283<br />

1.42 ⎛ qmax<br />

⎞ ⎛ M<br />

glow ⎞ ⎛ ⎞<br />

20.86<br />

⎜<br />

L<br />

= K ⎜ ⎟<br />

⎟<br />

100<br />

⎜<br />

1000<br />

⎟<br />

inl<br />

⎝ ⎠<br />

⎝ ⎠ ⎝ H<br />

body ⎠<br />

Fuselage mass based on fighter planes using the General Dynamics method.<br />

0.71<br />

Space Shuttle<br />

Comparison<br />

3%<br />

M<br />

cowl<br />

=<br />

0.5<br />

( S L P ) 0. 731<br />

K<br />

inlet<br />

N<br />

inlet inlet inlet 2<br />

Cowl mass based on aircraft inlets<br />

K inlet = 3.0 – turbojet<br />

= 7.435 – turb<strong>of</strong>an<br />

q max – Maximum dynamic pressure during flight (lb/ft 2 )<br />

M glow – Gross lift<strong>of</strong>f mass<br />

L – Length <strong>of</strong> vehicle<br />

H body – height <strong>of</strong> body<br />

N inlet – Number <strong>of</strong> inlets<br />

L inlet – Length <strong>of</strong> engine inlet<br />

P 2 – Pressure in inlet<br />

S inlet – Surface area <strong>of</strong> inlet and cowl ring<br />

Georgia Institute <strong>of</strong> Technology 3-22


3.0 Body<br />

Reference: 10<br />

Derived from: NASA MSFC 3rd generation launch vehicle <strong>of</strong>fice (mostly airbreathing).<br />

Options: Integral or non-integral tanks.<br />

Shuttle comparison includes the rocket fuselage, body flap, payload bay and doors, crew cabin, stage to stage<br />

attachment, and separation system.<br />

Space Shuttle<br />

Comparison<br />

-9%<br />

2<br />

( + 0.272ρ veh<br />

/ 9.55 + 0.046( veh<br />

/ 9.55)<br />

) body<br />

M fuse<br />

= 2.8279 0.682<br />

ρ A Airbreather smeared fuse<br />

M<br />

fuse<br />

( T N b )<br />

0.9846<br />

⎡<br />

( )<br />

( ) ⎥ ⎥ ⎤<br />

1.075<br />

0.000011689<br />

sls eng body<br />

= 2.0833Abody<br />

+ ⎢<br />

Rocket smeared fuse<br />

⎢⎣<br />

+ 5.02 Sbase<br />

− Aexit<br />

⎦<br />

Integral tanks are included in the body area <strong>for</strong> these equations.<br />

⎧<br />

⎫<br />

⎪<br />

( 0.8548+<br />

0.0003189ρ<br />

)<br />

[( 2.44 − 0.007702ρ<br />

) V<br />

] + ⎪<br />

⎪<br />

⎪<br />

⎪⎡Tsls<br />

( 1−<br />

R) ( )<br />

⎤ ⎪<br />

M<br />

non −int<br />

egral−tan<br />

ks<br />

= 1.68⎨⎢<br />

0.64 + 0.0184ρ<br />

⎥ + ⎬ (source 10a)<br />

⎪⎣<br />

Isp ρ<br />

⎦<br />

⎪<br />

V<br />

⎪<br />

⎪ ⎪⎪ 2<br />

0.000000677bbody<br />

ρ<br />

⎩<br />

1.01<br />

⎭<br />

Valid <strong>for</strong> all propellant types, includes slosh baffles, anti-vortex baffles, and are intended <strong>for</strong> use with pump fed<br />

engines in the horizontal mounting position.<br />

M<br />

insulation _ non int egral _ tan k<br />

0. 2<br />

= A For non-integral tanks only<br />

tan k<br />

M = 3. 421 Body flap mass<br />

bf<br />

S bf<br />

M = 0. 5108 Payload bay mass<br />

plbay<br />

S pl<br />

Georgia Institute <strong>of</strong> Technology 3-23


3.0 Body<br />

M = 0. 5623 Payload bay doors mass<br />

pldoors<br />

S pldoors<br />

M<br />

_<br />

= 31 Crew cabin mass<br />

crew<br />

cabin<br />

0.6916<br />

28.<br />

Vcrew<br />

M = 0. 00155 State to stage attachment structure, <strong>for</strong> either booster or orbiter<br />

attach<br />

M land<br />

M = Booster side <strong>of</strong> separation system<br />

sep<br />

0.7728<br />

0.0404M<br />

insert<br />

M = Orbiter side <strong>of</strong> separation system<br />

sep<br />

0.9182<br />

0.00989M<br />

gross<br />

A body – surface area <strong>of</strong> vehicle body<br />

A exit – Total exit area <strong>of</strong> main engines<br />

A tank – Surface area <strong>of</strong> tank<br />

b body – Maximum width <strong>of</strong> the body<br />

Isp – Specific impulse <strong>of</strong> engines<br />

M gross – Gross vehicle mass on the pad or runway prior to lift<strong>of</strong>f<br />

M insert – Insertion mass, sometimes called burnout mass<br />

M land – Landed mass <strong>of</strong> vehicle<br />

N eng – Number <strong>of</strong> main engines on stage<br />

R – fraction <strong>of</strong> total ascent propellant that is the propellant used in this tank<br />

S base – Surface area <strong>of</strong> base closeout<br />

S bf – Plan<strong>for</strong>m area <strong>of</strong> body flap<br />

S pl – Surface area <strong>of</strong> payload bay, not including doors<br />

S pldoors – Surface area <strong>of</strong> payload bay doors<br />

T sls – Total stage thrust at sea level static conditions<br />

V – volume <strong>of</strong> propellant stored in tank<br />

V crew – Volume <strong>of</strong> crew cabin<br />

ρ – density <strong>of</strong> propellant stored in tank<br />

Georgia Institute <strong>of</strong> Technology 3-24


3.0 Body<br />

ρ veh – Vehicle bulk density<br />

Georgia Institute <strong>of</strong> Technology 3-25


4.0 TPS<br />

4.0 TPS<br />

A acc – Area <strong>of</strong> advanced carbon-carbon TPS<br />

A body – surface area <strong>of</strong> vehicle body<br />

A body_tps – Wetted area <strong>of</strong> TPS on vehicle body<br />

A exit – Exit area <strong>of</strong> main engines<br />

A ins – Wetted area <strong>of</strong> vehicle covered by insulation<br />

A ref – reference aerodynamic area (front projected shadow area)<br />

A sa_stand<strong>of</strong>f – Area <strong>of</strong> superalloy stand<strong>of</strong>f TPS<br />

A sb – exposed surface area <strong>of</strong> speed brakes<br />

A ti_stand<strong>of</strong>f – Area <strong>of</strong> titanium stand<strong>of</strong>f TPS<br />

A tps – Wetted area <strong>of</strong> vehicle covered by TPS<br />

C L – Average coefficient <strong>of</strong> lift from orbit to Mach 10<br />

D nose – Diameter <strong>of</strong> base <strong>of</strong> nosecone<br />

H le – Height <strong>of</strong> leading edge<br />

L cowl_le – Length <strong>of</strong> cowl leading edge<br />

L le – Length <strong>of</strong> leading edges (wing and nose if applicable)<br />

L wing_le – Length <strong>of</strong> wing leading edge<br />

M entry – Entry mass <strong>of</strong> vehicle<br />

N crew – Number <strong>of</strong> crew<br />

N eng – Number <strong>of</strong> main engines on stage<br />

q max – Maximum dynamic pressure during flight (lb/ft 2 )<br />

S bf – Plan<strong>for</strong>m area <strong>of</strong> body flap<br />

S body – Plan<strong>for</strong>m area <strong>of</strong> vehicle body<br />

S exp – Plan<strong>for</strong>m area <strong>of</strong> exposed wing<br />

S f – Surface area <strong>of</strong> fuel tanks<br />

S mono_tank – Surface area <strong>of</strong> monopropellant tank<br />

S ox – Surface area <strong>of</strong> oxidizer tanks<br />

S tps – Plan<strong>for</strong>m area covered by TPS<br />

S vert – Total plan<strong>for</strong>m area <strong>of</strong> vertical tail or wingtip fins<br />

S body<br />

L<br />

S exp (Shaded)<br />

b body<br />

Georgia Institute <strong>of</strong> Technology 4-1


4.0 TPS<br />

T vac – Vacuum thrust per main engine<br />

V crew – Volume <strong>of</strong> crew cabin<br />

ψ le – Leading edge angle (? Sweep or angle <strong>of</strong> airfoil nose)<br />

C tip<br />

S vert<br />

b vert<br />

C root<br />

Georgia Institute <strong>of</strong> Technology 4-2


4.0 TPS<br />

Reference: 1<br />

Derived from: Aircraft and Space Shuttle.<br />

Options: Materials.<br />

Shuttle comparison uses C l = 0.65 and K flow = 0.556.<br />

Space Shuttle<br />

Comparison<br />

0%<br />

M<br />

tps<br />

0.302<br />

K<br />

flow<br />

⎛ 1 ⎞ ⎛ M<br />

entry<br />

⎞<br />

= K ⎜<br />

⎟<br />

r<br />

⎜<br />

( )<br />

( Abody<br />

+ 2S<br />

exp<br />

)<br />

K<br />

⎟<br />

Rocket vehicle, lifting re-entry.<br />

t<br />

Sbody<br />

S<br />

exp<br />

C<br />

⎝ ⎠ ⎝ +<br />

L ⎠<br />

K r<br />

= 0.140 – RSI (shuttle technology) – material/config. constant<br />

= 0.110 – RSI Advanced<br />

= 0.145 – metallic<br />

K t = 0.100 – aluminum skin/stringer – equivalent thermal thickness <strong>of</strong> backup structure (in.)<br />

= 0.085 – titanium<br />

= 0.115 – graphite epoxy<br />

K flow – Flow constant in the range below.<br />

= 0.5 – Pure laminar flow<br />

= 0.8 – Pure turbulent flow<br />

A body – surface area <strong>of</strong> vehicle body<br />

C L – Average coefficient <strong>of</strong> lift from orbit to Mach 10<br />

M entry – Entry mass <strong>of</strong> vehicle<br />

S body – Plan<strong>for</strong>m area <strong>of</strong> vehicle body<br />

S exp – Plan<strong>for</strong>m area <strong>of</strong> exposed wing<br />

Georgia Institute <strong>of</strong> Technology 4-3


4.0 TPS<br />

Reference: 2<br />

Derived <strong>for</strong>: Airbreathing horizontal take<strong>of</strong>f vehicle.<br />

Options: Material technology.<br />

M 3. 50A<br />

active _ cooling<br />

= 150 + 2.70Lcowl<br />

_ le<br />

+ 2.70Lwing<br />

_ le<br />

+<br />

exit<br />

Based on 5deg. Cone <strong>for</strong> heat rates (Wilhite)<br />

Includes nosecap (150 lbs.), wing leading edges, cowl leading edges, and cooled engine exit are. Primarily<br />

intended <strong>for</strong> airbreather.<br />

Space Shuttle<br />

Comparison<br />

N/A<br />

Different<br />

technology<br />

M<br />

acc<br />

= 2. 0A acc<br />

Advanced carbon/carbon, based on advanced NASP TPS, Shideler. For T>1800F<br />

Typically used on wing, body, and cowl windward sides.<br />

M<br />

M<br />

=<br />

sa _ s tan d<strong>of</strong>f<br />

1. 06<br />

A<br />

sa _ s tan d<strong>of</strong>f<br />

Superalloy stand<strong>of</strong>f, based on advanced metallic NASP, Shideler. For T>1200F<br />

=<br />

ti _ s tan d<strong>of</strong>f<br />

0. 508<br />

A<br />

ti _ s tan d<strong>of</strong>f<br />

Titanium stand<strong>of</strong>f, based on advanced metallic NASP, Shideler. For T


4.0 TPS<br />

Reference: 3<br />

Derived from: Dr. Talay, LaRC, rocket based.<br />

Options: None.<br />

M<br />

tps<br />

0.5<br />

⎛ M<br />

entry<br />

⎞<br />

= 0.35⎜<br />

⎟ Atps<br />

Shuttle technology.<br />

S<br />

⎝ tps ⎠<br />

Space Shuttle<br />

Comparison<br />

39%<br />

A tps – Wetted area <strong>of</strong> vehicle covered by TPS<br />

M entry – Entry mass <strong>of</strong> vehicle<br />

S tps – Plan<strong>for</strong>m area covered by TPS<br />

Georgia Institute <strong>of</strong> Technology 4-5


4.0 TPS<br />

Reference: 4a<br />

Derived from: Airbreathing booster.<br />

Options: Maximum airbreathing Mach number.<br />

M = K<br />

tps<br />

tps<br />

A<br />

tps<br />

TPS mass <strong>for</strong> an airbreathing booster stage using reusable metallic (inconel and columbium shingles) TPS,<br />

including 2% contingency.<br />

Space Shuttle<br />

Comparison<br />

N/A Different<br />

technology<br />

K tps = 1.42 – <strong>for</strong> maximum airbreathing Mach number <strong>of</strong> 8<br />

= 1.54 – <strong>for</strong> maximum airbreathing Mach number <strong>of</strong> 12<br />

M<br />

ins<br />

= K<br />

ins<br />

Ains<br />

Insulation mass <strong>for</strong> an airbreathing booster stage, including 2% contingency.<br />

A ins – surface area requiring insulation.<br />

K ins = 1.07 – <strong>for</strong> max airbreathing Mach number <strong>of</strong> 8<br />

= 1.23 – <strong>for</strong> max airbreathing mach number <strong>of</strong> 12<br />

A ins – Wetted area <strong>of</strong> vehicle covered by insulation<br />

A tps – Wetted area <strong>of</strong> vehicle covered by TPS<br />

Georgia Institute <strong>of</strong> Technology 4-6


4.0 TPS<br />

Reference: 4b<br />

Derived from: Lifting body rocket.<br />

Options: None.<br />

M = 1. 51<br />

ins<br />

A body<br />

M =<br />

<strong>Mass</strong> <strong>of</strong> external insulation on a lifting body second stage. No cover panels are used.<br />

0.6666<br />

crew _ ins<br />

5.<br />

2V<br />

crew<br />

Insulation protecting the crew cabin. This reference recommends that the volume <strong>for</strong> the crew be calculated as:<br />

V crew = 60N crew +255<br />

Space Shuttle<br />

Comparison<br />

-57%<br />

compared to<br />

all TPS<br />

249%<br />

compared to<br />

insulation<br />

only<br />

A body – surface area <strong>of</strong> vehicle body<br />

N crew – Number <strong>of</strong> crew<br />

V crew – Volume <strong>of</strong> crew cabin<br />

Georgia Institute <strong>of</strong> Technology 4-7


4.0 TPS<br />

Reference: 6<br />

Derived from: Space Shuttle, ET, and Saturn launch vehicles.<br />

Options: None.<br />

Shuttle uses the first 7 equations listed.<br />

Space Shuttle<br />

Comparison<br />

2%<br />

M 366<br />

M<br />

tps _ fuse<br />

= 1. Abody<br />

Fuselage TPS<br />

( )<br />

tps _ wing<br />

= 2.845<br />

2Sexp<br />

Wing TPS<br />

M 2<br />

( S )<br />

tps _ vert<br />

= 1.572<br />

vert<br />

Vertical control surface TPS<br />

M 3.468 2<br />

( S )<br />

tps _ bf<br />

=<br />

bf<br />

Body flap TPS<br />

M<br />

6<br />

tps _ base<br />

= 0.82Aref<br />

Tvac<br />

N<br />

eng<br />

/ 1e<br />

Base TPS<br />

For boosters T vac N eng should be replaced with T sls .<br />

M 366<br />

tps _ sb<br />

= 1. Asb<br />

Speed brake TPS<br />

M = 0. 508<br />

Body insulation<br />

insulation<br />

A body<br />

M 0. 2574S<br />

ox _ tan k _ ins<br />

=<br />

ox<br />

Oxidizer tank insulation. For boosters only cryogenic oxidizer is insulated.<br />

M 0. 2361S<br />

f _ tan k _ ins<br />

=<br />

f<br />

Fuel tank insulation. All cryogenic fuels are insulated. Non cryogenic fuels are not.<br />

Georgia Institute <strong>of</strong> Technology 4-8


4.0 TPS<br />

M<br />

=<br />

mono _ tan k _ ins<br />

0. 2574<br />

S<br />

mono _ tan k<br />

Mono-propellant tank insulation. All cryogenic mono-propellants are insulated except on booster stages.<br />

A ref – reference aerodynamic area (front projected shadow area)<br />

A sb – exposed surface area <strong>of</strong> speed brakes<br />

A body – surface area <strong>of</strong> vehicle body<br />

S exp – Plan<strong>for</strong>m area <strong>of</strong> exposed wing<br />

S vert – Total plan<strong>for</strong>m area <strong>of</strong> vertical tail or wingtip fins<br />

S bf – Plan<strong>for</strong>m area <strong>of</strong> body flap<br />

T vac – Vacuum thrust per main engine<br />

N eng – Number <strong>of</strong> main engines on stage<br />

S ox – Surface area <strong>of</strong> oxidizer tanks<br />

S f – Surface area <strong>of</strong> fuel tanks<br />

S mono_tank – Surface area <strong>of</strong> monopropellant tank<br />

Georgia Institute <strong>of</strong> Technology 4-9


4.0 TPS<br />

Reference: 10<br />

Derived from: NASA MSFC 3rd generation launch vehicle <strong>of</strong>fice (mostly airbreathing).<br />

Options: TPS technology.<br />

Shuttle comparison uses tiles, and blankets, not including wing leading edge, or nose cap RCC.<br />

Space Shuttle<br />

Comparison<br />

-16%<br />

M<br />

tps<br />

tps<br />

( 2 Sexp<br />

+ 2S<br />

vert<br />

+ 2Sbf<br />

) + 0. Abody<br />

_ tps<br />

= K A R + K R<br />

Including insulation.<br />

body _ tps type wtps type<br />

2<br />

R type – Percentage <strong>of</strong> TPS area covered by the type <strong>of</strong> TPS used <strong>for</strong> K tps<br />

K tps – <strong>Mass</strong> per area <strong>of</strong> chosen TPS type<br />

= 0.63 – body metallic TPS<br />

= 1.67 – body blanket TPS<br />

= 1.50 – body tile TPS<br />

= 2.25 – body HEX panel TPS (active cooling)<br />

K wtps – wing, body flap, tail, and control surface TPS mass per area<br />

= 1.59 – wing metallic TPS<br />

= 0.49 – wing blanket TPS<br />

= 1.50 – wing tile TPS<br />

2<br />

⎛ Dnose<br />

⎞<br />

M<br />

nose ⎜ ⎟<br />

max<br />

max<br />

003252<br />

sharp<br />

( 0.0002499q<br />

+ 1.7008 + ( 0.00003695q<br />

− 0. ) D )<br />

= π<br />

nose<br />

(source 10a) Body or TPS<br />

⎝ 2 ⎠<br />

For semispherical nose cap with passive TPS.<br />

M = 280H<br />

2 tan( ψ ) L<br />

le<br />

le<br />

le<br />

For thin leading edges using the sharp TPS (density = 280 lb/ft 3 )<br />

M<br />

active<br />

= L le<br />

5.75<br />

For thin nose leading edge and wing and tail leading edges with active cooling.<br />

Georgia Institute <strong>of</strong> Technology 4-10


4.0 TPS<br />

A body_tps – Wetted area <strong>of</strong> TPS on vehicle body<br />

D nose – Diameter <strong>of</strong> base <strong>of</strong> nosecone<br />

H le – Height <strong>of</strong> leading edge<br />

L le – Length <strong>of</strong> leading edges (wing and nose if applicable)<br />

q max – Maximum dynamic pressure during flight (lb/ft 2 )<br />

S bf – Plan<strong>for</strong>m area <strong>of</strong> body flap<br />

S exp – Plan<strong>for</strong>m area <strong>of</strong> exposed wing<br />

S vert – Total plan<strong>for</strong>m area <strong>of</strong> vertical tail or wingtip fins<br />

ψ le – Leading edge angle (? Sweep or angle <strong>of</strong> airfoil nose)<br />

Georgia Institute <strong>of</strong> Technology 4-11


5.0 Landing Gear<br />

5.0 Landing Gear<br />

L mg – Length <strong>of</strong> main landing gear<br />

L ng – Length <strong>of</strong> nose landing gear<br />

M glow – Gross lift<strong>of</strong>f mass<br />

M gross – Gross vehicle mass on the pad or runway prior to lift<strong>of</strong>f<br />

M land – Landed mass <strong>of</strong> vehicle<br />

N land = (number <strong>of</strong> gear)*1.5 – ultimate landing load factor<br />

N mgw – Total number <strong>of</strong> wheels on main gear<br />

N ngw – Total number <strong>of</strong> wheels on nose gear<br />

Georgia Institute <strong>of</strong> Technology 5-1


5.0 Landing Gear<br />

Reference: 1<br />

Derived from: Aircraft and Space Shuttle.<br />

Options: Materials, and skids or wheels.<br />

M<br />

lg<br />

=<br />

K<br />

lgM land<br />

K lg<br />

= 0.033 – shuttle gear<br />

= 0.030 – advanced composite gear<br />

= 0.0255 – composite skid system with no brakes<br />

Space Shuttle<br />

Comparison<br />

15%<br />

M land – Landed mass <strong>of</strong> vehicle<br />

Georgia Institute <strong>of</strong> Technology 5-2


5.0 Landing Gear<br />

Reference: 2<br />

Derived <strong>for</strong>: Airbreathing horizontal take<strong>of</strong>f vehicle.<br />

Options: None.<br />

Same equation as above, but additionally the ratio <strong>of</strong> nose gear/main gear is 15%/85%<br />

K lg = 0.026 – advanced landing gear<br />

Space Shuttle<br />

Comparison<br />

-9%<br />

Georgia Institute <strong>of</strong> Technology 5-3


5.0 Landing Gear<br />

Reference: 3<br />

Derived from: Dr. Talay, LaRC, rocket based.<br />

Options: None.<br />

Same equation as above.<br />

K lg = 0.033 – shuttle technology<br />

Space Shuttle<br />

Comparison<br />

15%<br />

Georgia Institute <strong>of</strong> Technology 5-4


5.0 Landing Gear<br />

Reference: 4a<br />

Derived from: Airbreathing booster.<br />

Options: None.<br />

M<br />

lg<br />

= 0. 0357M gross<br />

Gear weight <strong>for</strong> horizontal take<strong>of</strong>f airbreathing booster vehicle<br />

Space Shuttle<br />

Comparison<br />

N/A<br />

Horizontal<br />

take<strong>of</strong>f only<br />

M gross – Gross vehicle mass on the pad or runway prior to lift<strong>of</strong>f<br />

Georgia Institute <strong>of</strong> Technology 5-5


5.0 Landing Gear<br />

Reference: 4b<br />

Derived from: Lifting body rocket upper stage.<br />

Options: None.<br />

( 0.036 + 0.0061+<br />

0.002 0. ) M<br />

land<br />

M =<br />

0008<br />

lg<br />

+<br />

Landing gear <strong>for</strong> a second stage vehicle. Includes nose and main gear, gear bays, and attachment.<br />

Space Shuttle<br />

Comparison<br />

56%<br />

M land – Landed mass <strong>of</strong> vehicle<br />

Georgia Institute <strong>of</strong> Technology 5-6


5.0 Landing Gear<br />

Reference: 5<br />

Derived from: Aircraft.<br />

Options: Different gear styles.<br />

M = K<br />

maingear<br />

cb<br />

K<br />

tpg<br />

0.25 0. 973<br />

( M N ) L<br />

land<br />

land<br />

mg<br />

Space Shuttle<br />

Comparison<br />

-44%<br />

M =<br />

nosegear<br />

0.29 0.5 0. 525<br />

( M N ) L N<br />

land<br />

land<br />

ng<br />

ngw<br />

K cb<br />

K tpg<br />

= 2.25 – <strong>for</strong> cross beam (F-111)<br />

= 1.0 – all other gear<br />

= 0.826 – <strong>for</strong> tripod gear (A-7)<br />

= 1.0 – all other gear<br />

N land = (number <strong>of</strong> gear)*1.5 – ultimate landing load factor<br />

L ng – Length <strong>of</strong> nose landing gear<br />

L mg – Length <strong>of</strong> main landing gear<br />

N ngw – Total number <strong>of</strong> wheels on nose gear<br />

Georgia Institute <strong>of</strong> Technology 5-7


5.0 Landing Gear<br />

Reference: 6<br />

Derived from: Space Shuttle and aircraft.<br />

Options: None.<br />

M =<br />

maingear<br />

1.0861<br />

0.00927M<br />

land<br />

Space Shuttle<br />

Comparison<br />

8%<br />

M =<br />

nosegear<br />

1.0861<br />

0.001514M<br />

land<br />

For shuttle technology.<br />

M land – Landed mass <strong>of</strong> vehicle<br />

Georgia Institute <strong>of</strong> Technology 5-8


5.0 Landing Gear<br />

Reference: 7<br />

Derived from: Aircraft.<br />

Options: Wing location.<br />

Used M land instead <strong>of</strong> M glow <strong>for</strong> comparison to Shuttle.<br />

lg<br />

lg<br />

4<br />

2<br />

[ K + K M<br />

]<br />

3 / + K M K M<br />

3/<br />

M = K<br />

+<br />

Torenbeek method<br />

a<br />

b<br />

glow<br />

c<br />

glow<br />

d<br />

glow<br />

For USAF airplanes, coefficients <strong>for</strong> other civil planes with retractable gear.<br />

Space Shuttle<br />

Comparison<br />

37%<br />

K lg<br />

K a<br />

K b<br />

K c<br />

K d<br />

= 1.0 – low wing planes<br />

= 1.08 – high wing planes<br />

= 40.0 – main, 20.0 – nose<br />

= 0.16 – main, 0.10 – nose<br />

= 0.019 – main, 0.00 – nose<br />

= 1.5e-5 – nose, 2.0e-6 – nose<br />

M glow – Gross lift<strong>of</strong>f mass<br />

M land – Landed mass <strong>of</strong> vehicle<br />

Used M glow <strong>for</strong> comparison to Shuttle. Use <strong>of</strong> M land produced very low gear weight.<br />

10%<br />

M glow<br />

0.84<br />

⎛ ⎞<br />

M<br />

lg<br />

= 62.61<br />

⎜<br />

1000<br />

⎟ General Dynamics method<br />

⎝ ⎠<br />

For USAF airplanes, fighter/attack aircraft.<br />

M glow – Gross lift<strong>of</strong>f mass<br />

M land – Landed mass <strong>of</strong> vehicle<br />

Georgia Institute <strong>of</strong> Technology 5-9


5.0 Landing Gear<br />

Used M glow <strong>for</strong> comparison to Shuttle. Use <strong>of</strong> M land produced very low gear weight.<br />

-17%<br />

M glow<br />

0.66<br />

⎛ ⎞<br />

M<br />

lg<br />

= 129.1<br />

⎜<br />

1000<br />

⎟ Torenbeek method<br />

⎝ ⎠<br />

For USN airplanes, fighter/attack aircraft.<br />

M glow – Gross lift<strong>of</strong>f mass<br />

M land – Landed mass <strong>of</strong> vehicle<br />

Georgia Institute <strong>of</strong> Technology 5-10


5.0 Landing Gear<br />

Reference: 8<br />

Derived from: Aircraft.<br />

Options: Skid or wheel gear.<br />

Method A<br />

Space Shuttle<br />

Comparison<br />

-2%<br />

M<br />

lg<br />

= 096<br />

0.9<br />

0.<br />

M<br />

land<br />

K1<br />

K 1<br />

= 0.6 – <strong>for</strong> skid gear<br />

= 1.0 – <strong>for</strong> wheeled gear ?<br />

M land – Landed mass <strong>of</strong> vehicle<br />

Method B<br />

M<br />

M<br />

0.75 0.14<br />

0.44<br />

[ 0.001M<br />

( 173N<br />

K + 35.2L<br />

K )]( 1 0.06K<br />

)<br />

maingear<br />

=<br />

land mgw 1<br />

mg 2<br />

+<br />

Skid gear – K 1 = 0.21, K 2 = 0.52, K 3 = 0.27 ; wheeled gear – K 1 = K 2 = K 3 = 1.0<br />

0.75<br />

0.44<br />

[ 0.001M<br />

( 18.9K<br />

+ 9.48L<br />

K )]( 1 0.08K<br />

)<br />

nosegear<br />

=<br />

land 1<br />

ng 2<br />

+<br />

Skid gear – K 1 = 1.59, K 2 = 1.77, K 3 = 0.063 ; wheeled gear – K 1 = K 2 = K 3 = 1.0<br />

3<br />

3<br />

-41%<br />

M land – Landed mass <strong>of</strong> vehicle<br />

Georgia Institute <strong>of</strong> Technology 5-11


5.0 Landing Gear<br />

Reference: 9<br />

Derived from: Aircraft.<br />

Options: <strong>Development</strong> risk, number <strong>of</strong> wheels.<br />

For this reference use M glow even <strong>for</strong> vertical take-<strong>of</strong>f vehicles. This was used <strong>for</strong> Shuttle comparison since using M land<br />

produces very low weight gear.<br />

For comparison to Shuttle, TRF=1.0 <strong>for</strong> both main and nose gear.<br />

Space Shuttle<br />

Comparison<br />

5%<br />

M =<br />

M<br />

M<br />

0.14<br />

main _ running _ gear<br />

9.61M<br />

glow0.<br />

001N<br />

mgw<br />

main<br />

main<br />

N mgw – rule <strong>of</strong> thumb = M glow /50,000<br />

0.44<br />

_ gear _ struct<br />

= ( 3.1M<br />

land<br />

0. 001Lmg<br />

)TRF<br />

⎛<br />

M<br />

main _ gear _ struct ⎞<br />

=<br />

⎜ M<br />

+<br />

⎟<br />

_ gear _ control<br />

0 . 18<br />

main _ running _ gear<br />

⎝<br />

TRF ⎠<br />

TRF = 0.85 – low development risk<br />

= 0.80 – moderate to high development risk<br />

= 0.70 – very high development risk<br />

M = 1.25M<br />

M<br />

M<br />

nose _ running _ gear<br />

nose<br />

glow<br />

0.001<br />

0.44<br />

_ gear _ struct=<br />

( 0.5M<br />

land<br />

0. 001Lng<br />

)TRF<br />

nose _ gear _ control<br />

3<br />

TRF<br />

⎛<br />

M<br />

nose _ gear _ struct ⎞<br />

= 0 .<br />

⎜ M<br />

+<br />

⎟<br />

nose _ running _ gear<br />

⎝<br />

TRF ⎠<br />

= 0.80 – advanced materials, all risk levels<br />

Georgia Institute <strong>of</strong> Technology 5-12


5.0 Landing Gear<br />

L mg – Length <strong>of</strong> main landing gear<br />

L ng – Length <strong>of</strong> nose landing gear<br />

M glow – Gross lift<strong>of</strong>f mass<br />

M land – Landed mass <strong>of</strong> vehicle<br />

N mgw – Total number <strong>of</strong> wheels on main gear<br />

Georgia Institute <strong>of</strong> Technology 5-13


5.0 Landing Gear<br />

Reference: 10c<br />

Derived from: Aircraft from General Dynamics Study.<br />

Options: TPS technology.<br />

M<br />

nose<br />

_ gear<br />

= 0.0033995M<br />

+ 402<br />

Space Shuttle<br />

Comparison<br />

19%<br />

M<br />

main<br />

_ gear<br />

= 0.02366M<br />

+ 1161<br />

The mass, M, in these equations can be either the landing mass or the GLOW depending on whether the vehicle<br />

is vertical or horizontal take-<strong>of</strong>f.<br />

Georgia Institute <strong>of</strong> Technology 5-14


6.0 Main Propulsion<br />

6.0 Main Propulsion<br />

A mixer – is the cross sectional area <strong>of</strong> the mixer.<br />

F ullage – Ullage fraction (typically ~4 to 5%)<br />

Isp – Specific impulse <strong>of</strong> engines<br />

Isp sl – Specific impulse <strong>of</strong> engine at sea level<br />

m& − Total propellant mass flow rate (lbm/s)<br />

M glow – Gross lift<strong>of</strong>f mass<br />

N eng – Number <strong>of</strong> main engines on stage<br />

P c – Pressure <strong>of</strong> main engine combustion chamber<br />

P tank – Pressure <strong>of</strong> propellant tanks<br />

R aox – ascent oxidizer fraction<br />

R eng – engine thrust to weight at vacuum conditions, installed<br />

R v_lo – Vehicle thrust to weight at lift<strong>of</strong>f<br />

S body – Plan<strong>for</strong>m area <strong>of</strong> vehicle body<br />

T sls – Total stage thrust at sea level static conditions<br />

T vac – Vacuum thrust per main engine<br />

V f – Total fuel volume<br />

V ox – Total oxidizer volume<br />

V prop_tot – total volume <strong>of</strong> propellant carried.<br />

ε i – Expansion ratio <strong>of</strong> nozzle <strong>of</strong> engine number i<br />

S body<br />

L<br />

b body<br />

Georgia Institute <strong>of</strong> Technology 6-1


6.0 Main Propulsion<br />

Reference: 1<br />

Derived from: Aircraft and Space Shuttle.<br />

Options: Propellant type, and chamber pressure.<br />

M<br />

main _<br />

⎡<br />

prop<br />

= ⎢K<br />

ph<br />

+ K<br />

n<br />

( ε<br />

1<br />

−1)<br />

+ K<br />

⎢<br />

⎣<br />

Rocket engine prediction only.<br />

ne<br />

0.5<br />

( ε − ε ) ( ε −1)<br />

2<br />

P<br />

c<br />

1<br />

+ K<br />

na<br />

2<br />

( mP & )<br />

c<br />

0.5<br />

+ K<br />

pf<br />

+ K<br />

ga<br />

I<br />

sp<br />

N<br />

⎥ ⎥ ⎤<br />

⎦<br />

eng<br />

m&<br />

Space Shuttle<br />

Comparison<br />

-15%<br />

Power head constants<br />

K ph = 5.34 – LOX/LH2, Pc = 3000psi<br />

= 5.18 – dual fuel engine, Pc = 3000psi<br />

= 2.48 – LOX/hydrocarbon staged combustion, Pc = 4000psi<br />

= 2.10 – LOX/hydrocarbon LH2 generator, Pc = 4000psi<br />

Nozzle constants<br />

K n = 0.01194 – LOX/LH2<br />

= 0.00727 – LOX/hydrocarbon<br />

= 0.015 – EN 155 (dual fuel)<br />

Nozzle extension constants<br />

K ne = 9.943 – LOX/LH2<br />

= 6.054 – LOX/hydrocarbon<br />

Nozzle extension actuator<br />

K na = 60.54 – LOX/LH2<br />

= 36.86 – LOX/hydrocarbon<br />

Pressurization and feed system constants<br />

Georgia Institute <strong>of</strong> Technology 6-2


6.0 Main Propulsion<br />

K pf = 1.64 – current technology (1978)<br />

= 1.40 – composite/metallic feedlines<br />

Gimbal actuators<br />

K ga = 0.00129 – hydraulic system (assumed due to publish date)<br />

m& − Total propellant mass flow rate (lbm/s)<br />

Isp – Specific impulse <strong>of</strong> engines<br />

N eng – Number <strong>of</strong> main engines on stage<br />

P c – Pressure <strong>of</strong> main engine combustion chamber<br />

ε i – Expansion ratio <strong>of</strong> nozzle <strong>of</strong> engine number i<br />

Georgia Institute <strong>of</strong> Technology 6-3


6.0 Main Propulsion<br />

Reference: 2<br />

Derived <strong>for</strong>: Airbreathing horizontal take<strong>of</strong>f vehicle.<br />

Options: Supercharging or not, supersonic combustion or not.<br />

Rocket based combined cycle engine mass.<br />

Rv<br />

_ lo<br />

M<br />

engines<br />

= M<br />

glow<br />

R<br />

eng _ ui<br />

R eng_ui = Engine uninstalled thrust to weight<br />

= 3 .99m&<br />

+ 114A mixer<br />

no inlet, no supercharging fan<br />

= 4 .04m&<br />

+ 200. 5A mixer<br />

no inlet, with supercharging fan<br />

Space Shuttle<br />

Comparison<br />

N/A<br />

RBCC only<br />

M<br />

press<br />

_<br />

= 1. 616M<br />

feed<br />

glow<br />

R<br />

v _ lo<br />

Isp<br />

sl<br />

M<br />

( 0.05V<br />

+ 0.075V<br />

)( − TRF )<br />

purge _ syst<br />

=<br />

f<br />

ox<br />

1 <strong>for</strong> purging lines and tanks with He<br />

A mixer – is the cross sectional area <strong>of</strong> the mixer.<br />

Isp sl – Specific impulse <strong>of</strong> engine at sea level<br />

M glow – Gross lift<strong>of</strong>f mass<br />

R v_lo – Vehicle thrust to weight at lift<strong>of</strong>f<br />

TRF = 0.6 – AMLS (from Lepsch)<br />

V f – Total fuel volume<br />

V ox – Total oxidizer volume<br />

Georgia Institute <strong>of</strong> Technology 6-4


6.0 Main Propulsion<br />

Reference: 3<br />

Derived from: Dr. Talay, LaRC, rocket based.<br />

Options: None.<br />

main _ prop<br />

=<br />

( 0.<br />

vac<br />

) N<br />

eng<br />

M 0205T<br />

Equation <strong>for</strong> rocket engines<br />

Space Shuttle<br />

Comparison<br />

-7%<br />

N eng – Number <strong>of</strong> main engines on stage<br />

T vac – Vacuum thrust per main engine<br />

Georgia Institute <strong>of</strong> Technology 6-5


6.0 Main Propulsion<br />

Reference: 4a<br />

Derived from: Airbreathing booster.<br />

Options: Airbreathing engine type.<br />

M<br />

engines<br />

Rv<br />

_ lo<br />

= M<br />

glow<br />

For airbreathing booster vehicle using composite propulsion<br />

R<br />

eng _ ui<br />

Space Shuttle<br />

Comparison<br />

N/A<br />

RBCC only<br />

R eng_ui – uninstalled engine thrust to weight<br />

= 160 – Air augmented rocket<br />

= 31.40 – Ejector ramjet, max internal pressure <strong>of</strong> 150 psia<br />

= 29.00 – Ejector scramjet, max internal pressure <strong>of</strong> 100 psia<br />

= 26.45 – Supercharged ejector ramjet, max internal pressure <strong>of</strong> 150 psia<br />

= 24.07 – Supercharged ejector scramjet, max internal pressure <strong>of</strong> 100 psia<br />

= 19.36 – RL, max internal pressure <strong>of</strong> 150 psia<br />

= 16.80 – SL, max internal pressure <strong>of</strong> 100 psia<br />

= 16.21 – RRL, max internal pressure <strong>of</strong> 150 psia<br />

= 13.95 – RSL, max internal pressure <strong>of</strong> 100 psia<br />

= 17.92 – SRL, max internal pressure <strong>of</strong> 150 psia<br />

= 14.80 – SSL, max internal pressure <strong>of</strong> 100 psia<br />

= 15.29 – RSRL, max internal pressure <strong>of</strong> 150 psia<br />

= 12.53 – RSSL, max internal pressure <strong>of</strong> 100 psia<br />

M 0012<br />

eng _ controls<br />

= 0. Tsls<br />

<strong>Mass</strong> <strong>of</strong> engine control system<br />

M 004<br />

fuel _ dist<br />

= 0. Tsls<br />

<strong>Mass</strong> <strong>of</strong> liquid hydrogen distribution, purge, and vent system<br />

M 003<br />

ox _ dist<br />

= 0. Tsls<br />

<strong>Mass</strong> <strong>of</strong> liquid oxygen distribution, purge, and vent system<br />

Georgia Institute <strong>of</strong> Technology 6-6


6.0 Main Propulsion<br />

M glow – Gross lift<strong>of</strong>f mass<br />

R v_lo – Vehicle thrust to weight at lift<strong>of</strong>f<br />

T sls – Total stage thrust at sea level static conditions<br />

Georgia Institute <strong>of</strong> Technology 6-7


6.0 Main Propulsion<br />

Reference: 4b<br />

Derived from: Lifting body rocket upper stage.<br />

Options: None.<br />

M 0 .0146T<br />

N + 300 <strong>Mass</strong> <strong>of</strong> LOX/LH2 engines <strong>for</strong> a second stage vehicle.<br />

engines<br />

=<br />

vac eng<br />

M 00138T<br />

eng _ attach<br />

= 0.<br />

vac<br />

N<br />

eng<br />

<strong>Mass</strong> <strong>of</strong> engine attachment hardware.<br />

Space Shuttle<br />

Comparison<br />

-4%<br />

Uses ET<br />

volume<br />

M 445<br />

prop _ dist<br />

= 0. Sbody<br />

<strong>Mass</strong> <strong>of</strong> propellant distribution system <strong>for</strong> LOX/LH2<br />

M<br />

= V <strong>Mass</strong> <strong>of</strong> pressurization and vent system <strong>for</strong> LOX/LH2<br />

press _ vent<br />

0. 0672<br />

prop _ tot<br />

N eng – Number <strong>of</strong> main engines on stage<br />

S body – Plan<strong>for</strong>m area <strong>of</strong> vehicle body<br />

T vac – Vacuum thrust per main engine<br />

V prop_tot – total volume <strong>of</strong> propellant carried.<br />

Georgia Institute <strong>of</strong> Technology 6-8


6.0 Main Propulsion<br />

Reference: 6<br />

Derived from: Space Shuttle, ET, and Saturn launch vehicles.<br />

Options: Feed system type.<br />

Shuttle comparison uses the LOX/LH2 engines and includes engine install, subsystems, TVC, feed (K feed =2.197), purge<br />

(using volume <strong>of</strong> ET), and pressurization <strong>for</strong> pump fed engines.<br />

Space Shuttle<br />

Comparison<br />

-5%<br />

M<br />

M<br />

M<br />

engines<br />

engines<br />

Tvac<br />

N<br />

eng<br />

=<br />

min +<br />

( 75 : ( 5.11ln( T N ) 4.2<br />

)<br />

vac<br />

eng<br />

For rocket powered vehicles, LOX/LH2<br />

=<br />

min<br />

T<br />

vac<br />

N<br />

eng<br />

( 104.4 : max( 20.3 : 26.04ln( T N ) − 207<br />

)<br />

vac<br />

For rocket powered vehicles using LOX/RP or N2O4/MMH propellants<br />

eng _ install<br />

5. 6<br />

−4<br />

= e T N Engine installation (bolts, connectors, etc…)<br />

vac<br />

eng<br />

eng<br />

M<br />

eng _ subsystem<br />

5. 6<br />

−4<br />

= e T N Engine subsystems.<br />

vac<br />

eng<br />

M = 0. 001185T N Thrust vector control<br />

tvc<br />

vac<br />

eng<br />

( 1 0.04 * if ( crossfeed ,1,0) )<br />

M<br />

feed<br />

= K<br />

feed<br />

m& +<br />

Propellant feed system<br />

K feed – Propellant feed system constant<br />

= 2.197 – Orbiter & ET configuration<br />

= 1.482 – Orbiter without propellant tanks<br />

= 0.715 – ET type tank only<br />

Georgia Institute <strong>of</strong> Technology 6-9


6.0 Main Propulsion<br />

purge<br />

V body<br />

= 2.133 – Upper stage/orbiter with internal tanks<br />

= 1.022 – Booster or monopropellant feed system (upper or lower stage)<br />

M = 0. 053 Purge system<br />

M press<br />

= 0.192m&<br />

Booster or US type configuration, cryo propellants, autogenous system, pump-fed engines<br />

M<br />

press<br />

Fullage<br />

= 50 + 0.192m& + 0.18V<br />

prop _ tot<br />

Storable stage, ambient stored He with heat exchange system.<br />

26<br />

M = K +<br />

press<br />

press<br />

0.01645<br />

( )<br />

( 0.8647 P<br />

1.3012<br />

0.99<br />

) tan ks<br />

P V<br />

tan k<br />

prop _ tot<br />

K press – pressure fed engine system constant<br />

= 0.55 – pressure fed engine, cold N2/GH2<br />

= 0.25 – pressure fed engine, hot N2/GH2<br />

= 0.19 – pressure fed engine, gas generator system<br />

F ullage – Ullage fraction (typically ~4 to 5%)<br />

m& − Total propellant mass flow rate (lbm/s)<br />

N eng – Number <strong>of</strong> main engines on stage<br />

P tank – Pressure <strong>of</strong> propellant tanks<br />

T vac – Vacuum thrust per main engine<br />

V body – Volume <strong>of</strong> vehicle body<br />

V prop_tot – total volume <strong>of</strong> propellant carried.<br />

Georgia Institute <strong>of</strong> Technology 6-10


6.0 Main Propulsion<br />

Reference: 10<br />

Derived from: NASA MSFC 3rd generation launch vehicle <strong>of</strong>fice (mostly airbreathing).<br />

Options: None.<br />

Tvac<br />

N<br />

M<br />

engines<br />

=<br />

R<br />

eng<br />

eng<br />

Space Shuttle<br />

Comparison<br />

-34%<br />

⎛ Tsls<br />

⎞<br />

M<br />

f _ dist<br />

= 6.625<br />

⎜ ( 1−<br />

Raox<br />

)( 1+<br />

0.04* if ( crossfeed,1,0)<br />

)<br />

Isp<br />

⎟<br />

fuel distribution<br />

⎝ sl ⎠<br />

⎛ Tsls<br />

⎞<br />

M<br />

ox _ dist<br />

= 6.625<br />

⎜ ( Raox<br />

)( 1+<br />

0.04* if ( crossfeed,1,0)<br />

)<br />

Isp<br />

⎟<br />

oxidizer distribution<br />

⎝ sl ⎠<br />

⎛ Tsls<br />

⎞<br />

M =<br />

+<br />

⎜<br />

⎟<br />

vppd<br />

0 .001366Tsls<br />

0. 192 Vehicle purge, pressurization, and dump system (source 10a)<br />

⎝ Ispsl<br />

⎠<br />

Isp sl – Specific impulse <strong>of</strong> engine at sea level<br />

N eng – Number <strong>of</strong> main engines on stage<br />

R aox – ascent oxidizer fraction<br />

R eng – engine thrust to weight at vacuum conditions, installed<br />

T vac – Vacuum thrust per main engine<br />

T sls – Total stage thrust at sea level static conditions<br />

Georgia Institute <strong>of</strong> Technology 6-11


7.0 RCS<br />

7.0 RCS<br />

L – Length <strong>of</strong> vehicle<br />

Mdry – Dry mass <strong>of</strong> vehicle<br />

M entry – Entry mass <strong>of</strong> vehicle<br />

M insert – Insertion mass, sometimes called burnout mass<br />

Mland – Landed mass <strong>of</strong> vehicle<br />

M pl – <strong>Mass</strong> <strong>of</strong> payload<br />

M rcs_propellants – Total mass <strong>of</strong> all RCS propellants<br />

M resid – <strong>Mass</strong> <strong>of</strong> residual propellants<br />

N vt – Number <strong>of</strong> vernier thrusters<br />

P rcs_press – Pressure <strong>of</strong> rcs pressurization system tanks<br />

P rcs_tank − Pressure <strong>of</strong> RCS tank<br />

R vt – Vernier thruster thrust to weight<br />

T req – Required thrust from vernier thrusters <strong>for</strong> RCS system<br />

T req_p – Required thrust <strong>for</strong> primary thrusters<br />

V rcs_f – Volume <strong>of</strong> RCS fuel<br />

V rcs_ox – Volume <strong>of</strong> RCS oxidizer<br />

V rcs_press – Volume <strong>of</strong> He required as pressurant<br />

V rcs_tanks – Volume <strong>of</strong> all RCS tanks<br />

S body<br />

L<br />

b body<br />

Georgia Institute <strong>of</strong> Technology 7-1


7.0 RCS<br />

Reference: 1<br />

Derived from: Aircraft and Space Shuttle.<br />

Options: Storable or cryogenic propellants.<br />

M<br />

rcs<br />

=<br />

K<br />

rcs<br />

M<br />

entry<br />

L<br />

Space Shuttle<br />

Comparison<br />

10%<br />

K rcs<br />

= 1.36e-4 – based on shuttle storable system<br />

= 1.51e-4 – based on advanced cryogenic system<br />

M entry – Entry mass <strong>of</strong> vehicle<br />

Georgia Institute <strong>of</strong> Technology 7-2


7.0 RCS<br />

Reference: 2<br />

Derived <strong>for</strong>: Airbreathing horizontal take<strong>of</strong>f vehicle.<br />

Options: None.<br />

For shuttle comparison the larger thrusters (both front and rear) were considered primary, and the smaller were vernier.<br />

The actual thrust was used instead <strong>of</strong> the estimating equation provided.<br />

Space Shuttle<br />

Comparison<br />

-68%<br />

Forward RCS<br />

Treq<br />

M<br />

rcs _ vt<br />

= N<br />

vt<br />

Rvt<br />

Pressure fed LOX/LH2 from Rockwell IHOT study and AMLS<br />

⎡ M entry<br />

L50 ⎤<br />

T req – Required thrust from vernier thrusters = ⎢<br />

⎥<br />

⎣147141(143)<br />

⎦<br />

N vt = 15 – (3 in each direction plus <strong>for</strong>ward) <strong>for</strong> <strong>for</strong>ward RCS<br />

M<br />

M<br />

M<br />

rcs _ tan k<br />

0. 01295<br />

= P V Al 2219, yield at 140% Prcs_tank, 1.75 NOF, 5% ullage<br />

rcs _ tan k<br />

rcs _ tan k<br />

rcs _ press<br />

.0143Prcs<br />

_ pressVrcs<br />

_ press<br />

(1 − TRF ) + 0. 671<br />

( V V )<br />

= 0 + Pressurization system<br />

rcs _ ox<br />

rcs _ f<br />

Ti 6/4 tank, 3000psia, He, yield at 400% Prcs_press, 1.25 NOF, 400 R storage temp.<br />

rcs _ install<br />

0. 74<br />

= M Installation hardware, lines, manifolds, etc…<br />

rcs _ vt<br />

Aft RCS<br />

M<br />

T<br />

req<br />

rcs _ vt<br />

= N<br />

vt<br />

+<br />

Rvt<br />

N<br />

primary<br />

T<br />

R<br />

req _ p<br />

primary<br />

Georgia Institute <strong>of</strong> Technology 7-3


7.0 RCS<br />

LOX/LH2 from Rockwell IHOT study and AMLS<br />

T req – Required thrust <strong>for</strong> vernier thrusters =<br />

⎡ M entry<br />

L50 ⎤<br />

⎢<br />

⎥<br />

⎣147141(143)<br />

⎦<br />

T req_p – Required thrust <strong>for</strong> primary thrusters =<br />

N vt = 12 <strong>for</strong> aft RCS<br />

⎡ M entry<br />

L870 ⎤<br />

⎢<br />

⎥<br />

⎣147141(143)<br />

⎦<br />

Propellant tanks, pressurization system, and lines & manifolds use the same equations as <strong>for</strong> the <strong>for</strong>ward RCS<br />

list above.<br />

M entry – Entry mass <strong>of</strong> vehicle<br />

N primary – number <strong>of</strong> primary thrusters, recommended = 10<br />

N vt – number <strong>of</strong> verier thrusters<br />

P rcs_press – Pressure <strong>of</strong> rcs pressurization system tanks, typically = 3000 psia <strong>for</strong> He<br />

P rcs_tank − Pressure <strong>of</strong> RCS tank = 195 – <strong>for</strong> both LOX and LH2 tanks<br />

R primary – thrust to weight <strong>of</strong> primary thrusters = 39.5<br />

R vt – thrust to weight <strong>of</strong> vernier thrusters = 9.4<br />

T req_p – required thrust <strong>for</strong> primary thrusters<br />

T req – Required thrust <strong>for</strong> RCS system<br />

TRF – Techology reduction factor = 0.0 <strong>for</strong> baseline, = 0.25 – <strong>for</strong> composite wound tanks<br />

V rcs_ox – Volume <strong>of</strong> RCS oxidizer<br />

V rcs_f – Volume <strong>of</strong> RCS fuel<br />

V rcs_press – Volume <strong>of</strong> He required as pressurant= 0.24(V rcs_ox + V rcs_f )<br />

V rcs_tanks – Volume <strong>of</strong> all RCS tanks<br />

Georgia Institute <strong>of</strong> Technology 7-4


7.0 RCS<br />

Reference: 3<br />

Derived from: Dr. Talay, LaRC, rocket based.<br />

Options: None.<br />

M = 0. 014 Assumes shuttle technology<br />

rcs<br />

M entry<br />

Space Shuttle<br />

Comparison<br />

6%<br />

M entry – Entry mass <strong>of</strong> vehicle<br />

Georgia Institute <strong>of</strong> Technology 7-5


7.0 RCS<br />

Reference: 4b<br />

Derived from: Lifting body rocket upper stage.<br />

Options: None.<br />

M = 0. 0171 <strong>Mass</strong> <strong>of</strong> attitude control system (includes OMS and RCS) <strong>for</strong> second stage.<br />

rcs<br />

M land<br />

Space Shuttle<br />

Comparison<br />

20%<br />

M land – Landed mass <strong>of</strong> vehicle<br />

Georgia Institute <strong>of</strong> Technology 7-6


7.0 RCS<br />

Reference: 6<br />

Derived from: Space Shuttle.<br />

Options: None.<br />

M = 0. 0126 Assumes shuttle technology<br />

rcs<br />

M insert<br />

Space Shuttle<br />

Comparison<br />

8%<br />

M insert – Insertion mass, sometimes called burnout mass<br />

Georgia Institute <strong>of</strong> Technology 7-7


7.0 RCS<br />

Reference: 10<br />

Derived from: NASA MSFC 3rd generation launch vehicle <strong>of</strong>fice (mostly airbreathing).<br />

Options: None.<br />

0.434<br />

⎡<br />

⎤<br />

0.217 ⎛ L ⎞<br />

M<br />

rcs<br />

= 1184⎢( M<br />

dry<br />

+ M<br />

pl<br />

+ M<br />

resid<br />

)/<br />

234948)<br />

⎜ ⎟ ⎥ RCS system <strong>for</strong> airbreathing vehicle<br />

⎢⎣<br />

⎝ 205 ⎠ ⎥⎦<br />

Space Shuttle<br />

Comparison<br />

N/A<br />

L – Length <strong>of</strong> vehicle<br />

M dry – Dry mass <strong>of</strong> vehicle<br />

M pl – <strong>Mass</strong> <strong>of</strong> payload<br />

M resid – <strong>Mass</strong> <strong>of</strong> residual propellants (group 20.0)<br />

Georgia Institute <strong>of</strong> Technology 7-8


7.0 RCS<br />

Reference: 10a<br />

Derived from: Alpha Technologies, rocket based.<br />

Options: TPS technology.<br />

⎛<br />

⎞<br />

⎜ ∑ M<br />

rcs _ propellants<br />

M = 0.008 + 0.0046<br />

⎟<br />

rcs<br />

M<br />

insert<br />

M<br />

insert<br />

RCS system <strong>for</strong> a rocket vehicle<br />

⎝ 6600 ⎠<br />

Space Shuttle<br />

Comparison<br />

13%<br />

M insert – Insertion mass, sometimes called burnout mass<br />

M rcs_propellants – Total mass <strong>of</strong> all RCS propellants<br />

Georgia Institute <strong>of</strong> Technology 7-9


8.0 OMS<br />

8.0 OMS<br />

M entry – Entry mass <strong>of</strong> vehicle<br />

M insert – Insertion mass, sometimes called burnout mass<br />

M oms_prop – <strong>Mass</strong> <strong>of</strong> all OMS propellants<br />

N oms – Number <strong>of</strong> OMS engines<br />

P oms_press – Design pressure <strong>of</strong> OMS pressurization system tanks<br />

P oms_tank – Design pressure <strong>of</strong> OMS propellant tank<br />

R oms – OMS engine thrust to weight<br />

T oms_vac – Vacuum thrust <strong>of</strong> each OMS engine<br />

T req_oms – Required thrust from OMS engines<br />

V oms_f – Volume <strong>of</strong> OMS fuel<br />

V oms_ox – Volume <strong>of</strong> OMS oxidizer<br />

V oms_press – Volume <strong>of</strong> pressurant required<br />

V oms_tank – Volume <strong>of</strong> OMS tank<br />

Georgia Institute <strong>of</strong> Technology 8-1


8.0 OMS<br />

Reference: 1<br />

Derived from: Aircraft and Space Shuttle.<br />

Options: Storable or cryogenic propellants.<br />

M<br />

oms<br />

= K<br />

oms<br />

N<br />

oms<br />

T<br />

oms _ vac<br />

+<br />

K<br />

pps<br />

M<br />

oms _ prop<br />

Space Shuttle<br />

Comparison<br />

-15%<br />

K oms<br />

K pps<br />

– Orbital maneuver system thruster constant<br />

= 0.0863 – based on shuttle storable propellants<br />

= 0.035 – based on advanced cryogenic propellants/engine<br />

– OMS propellant supply system<br />

= 0.119 – <strong>for</strong> storable propellants including pressurization<br />

= 0.152 – <strong>for</strong> cryogenic propellants including pressurization and feed<br />

M oms_prop – <strong>Mass</strong> <strong>of</strong> all OMS propellants<br />

N oms – Number <strong>of</strong> OMS engines<br />

T oms_vac – Vacuum thrust <strong>of</strong> each OMS engine<br />

Georgia Institute <strong>of</strong> Technology 8-2


8.0 OMS<br />

Reference: 2<br />

Derived <strong>for</strong>: Airbreathing horizontal take<strong>of</strong>f vehicle.<br />

Options: None.<br />

M<br />

M<br />

oms _ eng<br />

=<br />

T<br />

req _ oms<br />

R<br />

oms<br />

oms _ tan k<br />

0. 01295<br />

= P V Al 2219, yield at 140% Prcs_tank, 1.75 NOF, 5% ullage<br />

oms _ tan k<br />

oms _ tan k<br />

Space Shuttle<br />

Comparison<br />

106%<br />

Not intended<br />

<strong>for</strong> 7 ksi tank<br />

pressure used<br />

in shuttle<br />

M = .0143P<br />

V (1 − TRF ) + 0.167( V + V ) Pressurization system<br />

M<br />

oms _ press<br />

0<br />

oms _ press oms _ press<br />

oms _ ox oms _ f<br />

Ti 6/4 tank, 3000psia, He, yield at 400% Prcs_press, 1.25 NOF, 400 R storage temp.<br />

oms _ install<br />

0. 74<br />

= M Installation hardware, lines, manifolds, etc…<br />

oms _ eng<br />

R oms – OMS engine thrust to weight = 22 (includes mounts, supports, igniters, etc.)<br />

P oms_press – Design pressure <strong>of</strong> OMS pressurization system tanks, typically = 3000 psia <strong>for</strong> He<br />

P oms_tank – Design pressure <strong>of</strong> OMS propellant tank<br />

TRF – Techology factor = 0.0 <strong>for</strong> baseline, = .25 – <strong>for</strong> composite wound tanks<br />

V oms_f – Volume <strong>of</strong> OMS fuel<br />

V oms_ox – Volume <strong>of</strong> OMS oxidizer<br />

V oms_press – Volume <strong>of</strong> pressurant required (He) = 0.24(V oms_ox + V oms_f )<br />

V oms_tank – Volume <strong>of</strong> OMS tank<br />

T req_oms – Required thrust from OMS engines = M entry /16 (1/16 th g accel/decal)<br />

Georgia Institute <strong>of</strong> Technology 8-3


8.0 OMS<br />

Reference: 3<br />

Derived from: Dr. Talay, LaRC, rocket based.<br />

Options: None.<br />

M = 0. 0146<br />

oms<br />

M entry<br />

Space Shuttle<br />

Comparison<br />

14%<br />

M entry – Entry mass <strong>of</strong> vehicle<br />

Georgia Institute <strong>of</strong> Technology 8-4


8.0 OMS<br />

Reference: 6<br />

Derived from: Space Shuttle.<br />

Options: None.<br />

M = 0. 0121<br />

oms<br />

M insert<br />

Space Shuttle<br />

Comparison<br />

7%<br />

M insert – Insertion mass, sometimes called burnout mass<br />

Georgia Institute <strong>of</strong> Technology 8-5


8.0 OMS<br />

Reference: 10a<br />

Derived from: Alpha Technologies, rocket based.<br />

Options: None.<br />

⎛<br />

⎞<br />

⎜ ∑ M<br />

oms _ prop<br />

M = 0.0045 + 0.0076<br />

⎟<br />

oms<br />

M<br />

insert<br />

M<br />

insert<br />

OMS <strong>for</strong> a rocket vehicle<br />

⎝ 24175 ⎠<br />

Space Shuttle<br />

Comparison<br />

-5%<br />

M insert – Insertion mass, sometimes called burnout mass<br />

M oms_prop – <strong>Mass</strong> <strong>of</strong> all OMS propellants<br />

Georgia Institute <strong>of</strong> Technology 8-6


9.0 Primary Power<br />

9.0 Primary Power<br />

L – Length <strong>of</strong> vehicle<br />

M<br />

apu_prop – mass <strong>of</strong> all APU propellants on board<br />

M<br />

av – <strong>Mass</strong> <strong>of</strong> avionics (group 13.0)<br />

M<br />

glow – Gross lift<strong>of</strong>f mass<br />

M<br />

land – Landed mass <strong>of</strong> vehicle<br />

M<br />

sca – <strong>Mass</strong> <strong>of</strong> surface control & actuators (group 12.0)<br />

N<br />

apu – Number <strong>of</strong> APUs<br />

N<br />

crew – Number <strong>of</strong> crew<br />

N<br />

days – Number <strong>of</strong> days on orbit<br />

N<br />

eng – Number <strong>of</strong> main engines on stage<br />

N<br />

fc – number <strong>of</strong> fuel cells<br />

P<br />

apu – Power required per APU<br />

P<br />

fc – power required per fuel cell<br />

S<br />

bf – Plan<strong>for</strong>m area <strong>of</strong> body flap<br />

S<br />

exp – Exposed wing plan<strong>for</strong>m area<br />

S<br />

tot_cont – Total plan<strong>for</strong>m area <strong>of</strong> all control surfaces<br />

S<br />

vert – Total plan<strong>for</strong>m area <strong>of</strong> vertical tail or wingtip fins<br />

T<br />

vac – Vacuum thrust per main engine<br />

T<br />

vac_gimb – Total vacuum thrust <strong>of</strong> gimbaled engines<br />

S body<br />

L<br />

S exp (Shaded)<br />

b body<br />

Georgia Institute <strong>of</strong> Technology 9-1


9.0 Primary Power<br />

Reference: 1<br />

Derived from: Aircraft and Space Shuttle.<br />

Options: Standard or accumulators.<br />

M + K<br />

pp<br />

= K<br />

pcStot<br />

_ cont<br />

+ K<br />

peTvac<br />

_ gimb<br />

pb<br />

M<br />

av<br />

Space Shuttle<br />

Comparison<br />

-18%<br />

K pc<br />

K pe<br />

K pb<br />

= 0.712 – Standard hydraulic system<br />

= 0.610 – Hydraulic with accumulators <strong>for</strong> peak load<br />

= 0.97e-4 – Engine gimbal power demand<br />

= 0.405 – Battery power demand constant<br />

S tot_cont – Total plan<strong>for</strong>m area <strong>of</strong> all control surfaces<br />

T vac_gimb – Total vacuum thrust <strong>of</strong> gimbaled engines<br />

M av – <strong>Mass</strong> <strong>of</strong> avionics (group 13.0)<br />

Georgia Institute <strong>of</strong> Technology 9-2


9.0 Primary Power<br />

Reference: 2<br />

Derived <strong>for</strong>: Airbreathing horizontal take<strong>of</strong>f vehicle.<br />

Options: None.<br />

M = 396 + 176.9( N + 1) + 0. 05166M<br />

pp<br />

days<br />

Based on NASP technology (Stanley). Assumes fuel cells are 396 lb.<br />

sca<br />

Space Shuttle<br />

Comparison<br />

-36%<br />

M sca – <strong>Mass</strong> <strong>of</strong> surface control & actuators (group 12.0)<br />

N days – Number <strong>of</strong> days on orbit<br />

Georgia Institute <strong>of</strong> Technology 9-3


9.0 Primary Power<br />

Reference: 3<br />

Derived from: Dr. Talay, LaRC, rocket based.<br />

Options: None.<br />

M = 977 + 139.6N<br />

+ 39. 9N<br />

pp<br />

days<br />

days<br />

N<br />

crew<br />

Includes fuel cells, batteries, and associated systems.<br />

Space Shuttle<br />

Comparison<br />

32%<br />

N days – Number <strong>of</strong> days on orbit<br />

N crew – Number <strong>of</strong> crew<br />

Georgia Institute <strong>of</strong> Technology 9-4


9.0 Primary Power<br />

Reference: 4a<br />

Derived from: Airbreathing booster.<br />

Options: None.<br />

M = 1400 + 0. 0017 Primary power <strong>for</strong> airbreathing booster vehicle.<br />

pp<br />

M glow<br />

Entire power system, including conversion and distribution?<br />

Space Shuttle<br />

Comparison<br />

-52%<br />

M glow – Gross lift<strong>of</strong>f mass<br />

Georgia Institute <strong>of</strong> Technology 9-5


9.0 Primary Power<br />

Reference: 4b<br />

Derived from: Lifting body rocket upper stage.<br />

Options: None.<br />

M 10 N + 831 <strong>Mass</strong> <strong>of</strong> auxiliary power unit <strong>for</strong> manned second stage.<br />

apu<br />

=<br />

crew<br />

Space Shuttle<br />

Comparison<br />

-57%<br />

M<br />

elec _ power<br />

= 800 <strong>Mass</strong> <strong>of</strong> other components, 12 people.<br />

N crew – Number <strong>of</strong> crew<br />

Georgia Institute <strong>of</strong> Technology 9-6


9.0 Primary Power<br />

Reference: 6<br />

Derived from: Space Shuttle.<br />

Options: None.<br />

N<br />

days<br />

M<br />

batt<br />

= 216 + 952 * if ( N<br />

crew<br />

> 0,1,0) Battery mass, unmanned missions only<br />

7<br />

Batteries in unmanned or manned?<br />

Space Shuttle<br />

Comparison<br />

-17%<br />

M = 216 Battery mass <strong>for</strong> manned missions<br />

batt<br />

N<br />

crew<br />

M<br />

fuel _ cell<br />

= 3030 Fuel cell mass <strong>for</strong> manned missions only<br />

7<br />

N crew – Number <strong>of</strong> crew<br />

N days – Number <strong>of</strong> days on orbit<br />

Georgia Institute <strong>of</strong> Technology 9-7


9.0 Primary Power<br />

Reference: 10<br />

Derived from: NASA MSFC 3rd generation launch vehicle <strong>of</strong>fice (mostly airbreathing).<br />

Options: None.<br />

M<br />

pp<br />

L N<br />

apu<br />

0.5<br />

⎛ L ⎞ N<br />

apu<br />

= 227 + 18.97Papu<br />

+ ⎜613.8<br />

+ 0.66Papu<br />

⎟ Power system <strong>for</strong> airbreather<br />

205 4<br />

⎝ 205 ⎠ 4<br />

Space Shuttle<br />

Comparison<br />

N/A<br />

L – Length <strong>of</strong> vehicle<br />

N apu – Number <strong>of</strong> APUs<br />

P apu – Power required per APU<br />

Georgia Institute <strong>of</strong> Technology 9-8


9.0 Primary Power<br />

Reference: 10a<br />

Derived from: Alhpa Technologies, rocket based.<br />

Options: None.<br />

The following equations should be summed to get M pp <strong>for</strong> a rocket powered vehicle.<br />

Space Shuttle<br />

Comparison<br />

93%<br />

M<br />

batt<br />

⎛ N<br />

days ⎞<br />

⎜216 + 952 * ( > 0,1,0)<br />

7<br />

⎟ if N<br />

⎝<br />

⎠<br />

=<br />

crew<br />

M 0.76 143<br />

fuel _ cell<br />

= 51.8N<br />

fc<br />

Pfc<br />

+<br />

apu<br />

( 52. N N )<br />

crew<br />

days<br />

1.0861<br />

1. 15<br />

( T N + 0.55S<br />

+ 3.4S<br />

+ 2.6S<br />

+ 0.000485M<br />

) 0. M<br />

M =<br />

+<br />

0.118 0.00124<br />

vac eng<br />

exp vert<br />

bf<br />

land<br />

318<br />

apu _ prop<br />

M apu_prop – mass <strong>of</strong> all APU propellants on board<br />

M land – Landed mass <strong>of</strong> vehicle<br />

N crew – Number <strong>of</strong> crew<br />

N days – Number <strong>of</strong> days on orbit<br />

N eng – Number <strong>of</strong> main engines on stage<br />

N fc – number <strong>of</strong> fuel cells<br />

P fc – power required per fuel cell<br />

S bf – Plan<strong>for</strong>m area <strong>of</strong> body flap<br />

S exp – Exposed wing plan<strong>for</strong>m area<br />

S vert – Total plan<strong>for</strong>m area <strong>of</strong> vertical tail or wingtip fins<br />

T vac – Vacuum thrust per main engine<br />

Georgia Institute <strong>of</strong> Technology 9-9


10.0 Electrical Conversion & Distribution<br />

10.0 Electrical Conversion & Distribution<br />

S csw<br />

b – Wing span<br />

b body – Maximum width <strong>of</strong> the body<br />

H body – Height <strong>of</strong> body<br />

S body<br />

L – Length <strong>of</strong> vehicle<br />

M dry – Dry mass <strong>of</strong> vehicle<br />

M land – Landed mass <strong>of</strong> vehicle<br />

M sca – <strong>Mass</strong> <strong>of</strong> surface control & actuators (group 12.0)<br />

M pascent – <strong>Mass</strong> <strong>of</strong> ascent propellants<br />

N crew – Number <strong>of</strong> crew<br />

N days – Number <strong>of</strong> days spent on orbit<br />

N gen – Number <strong>of</strong> power sources onboard<br />

L<br />

R kva – System electrical rating = Kvolts * Amps<br />

b<br />

b body<br />

b cthru<br />

Georgia Institute <strong>of</strong> Technology 10-1


10.0 Electrical Conversion & Distribution<br />

Reference: 1<br />

Derived from: Aircraft and Space Shuttle.<br />

Options: Advanced technology or Shuttle technology.<br />

M = K<br />

ecd<br />

ecd<br />

M<br />

land<br />

Space Shuttle<br />

Comparison<br />

-20%<br />

K ecd<br />

= 0.02 – advanced ECD system<br />

= 0.038 – shuttle technology ECD system<br />

M land – Landed mass <strong>of</strong> vehicle<br />

Georgia Institute <strong>of</strong> Technology 10-2


10.0 Electrical Conversion & Distribution<br />

Reference: 2<br />

Derived <strong>for</strong>: Airbreathing horizontal take<strong>of</strong>f vehicle.<br />

Options: None.<br />

M = 1875 + 0.324M<br />

+ K 8.56( L + H + b ) + 0.00043( L + b)<br />

M<br />

ecd<br />

sca<br />

ecd<br />

body<br />

Assumes use <strong>of</strong> electro mechanical actuators <strong>for</strong> control surface actuation.<br />

body<br />

sca<br />

Space Shuttle<br />

Comparison<br />

-65%<br />

K ecd = 0.6 – shape factor <strong>for</strong> RBCC SSTO (low due to proximity <strong>of</strong> payload bay and crew cabin)<br />

b – Wing span<br />

b body – Maximum width <strong>of</strong> the body<br />

H body – height <strong>of</strong> body<br />

L – Length <strong>of</strong> vehicle<br />

M sca – <strong>Mass</strong> <strong>of</strong> surface control & actuators (group 12.0)<br />

Georgia Institute <strong>of</strong> Technology 10-3


10.0 Electrical Conversion & Distribution<br />

Reference: 3<br />

Derived from: Dr. Talay, LaRC, rocket based.<br />

Options: None.<br />

M = 0. 062<br />

ecd<br />

M dry<br />

Space Shuttle<br />

Comparison<br />

-1%<br />

M dry – Dry mass <strong>of</strong> vehicle<br />

Georgia Institute <strong>of</strong> Technology 10-4


10.0 Electrical Conversion & Distribution<br />

Reference: 4b<br />

Derived from: Lifting body rocket upper stage.<br />

Options: None.<br />

See notes under 11.0 (hydraulics) <strong>for</strong> this.<br />

Space Shuttle<br />

Comparison<br />

N/A<br />

Georgia Institute <strong>of</strong> Technology 10-5


10.0 Electrical Conversion & Distribution<br />

Reference: 5<br />

Derived from: Aircraft.<br />

Options: Mission redundancy.<br />

M =<br />

ecd<br />

0.152 0.1 0.1 0.091<br />

172.2K<br />

ecd<br />

Rkva<br />

N<br />

crewL<br />

N<br />

gen<br />

Space Shuttle<br />

Comparison<br />

-91%<br />

K ecd<br />

= 1.45 – If mission completion required after failure<br />

= 1.0 – Otherwise<br />

L – Length <strong>of</strong> vehicle<br />

N crew – Number <strong>of</strong> crew<br />

N gen – Number <strong>of</strong> power sources onboard<br />

R kva – System electrical rating = Kvolts * Amps<br />

Georgia Institute <strong>of</strong> Technology 10-6


10.0 Electrical Conversion & Distribution<br />

Reference: 6<br />

Derived from: Space Shuttle.<br />

Options: None.<br />

M<br />

ecd<br />

M<br />

= 793 + 506<br />

1.6e<br />

pascent<br />

⎛ N<br />

+ 2226⎜<br />

⎜<br />

⎝ 7<br />

days<br />

⎞ ⎛ N<br />

⎟ + 7633⎜<br />

⎟<br />

⎠ ⎝<br />

− 6<br />

7<br />

M pascent – <strong>Mass</strong> <strong>of</strong> ascent propellants<br />

N crew – Number <strong>of</strong> crew<br />

N days – Number <strong>of</strong> days spent on orbit<br />

crew<br />

⎞<br />

⎟<br />

⎠<br />

Space Shuttle<br />

Comparison<br />

2%<br />

Georgia Institute <strong>of</strong> Technology 10-7


10.0 Electrical Conversion & Distribution<br />

Reference: 10<br />

Derived from: NASA MSFC 3rd generation launch vehicle <strong>of</strong>fice (mostly airbreathing).<br />

Options: None.<br />

⎛<br />

L ⎞<br />

M ecd<br />

= 1201⎜<br />

0.90674 + 0.09326 ⎟ For an airbreathing vehicle<br />

⎝<br />

205 ⎠<br />

Space Shuttle<br />

Comparison<br />

N/A<br />

L – Length <strong>of</strong> vehicle<br />

Georgia Institute <strong>of</strong> Technology 10-8


10.0 Electrical Conversion & Distribution<br />

Reference: 10a<br />

Derived from: Alpha Technologies, rocket based.<br />

Options: None.<br />

M = 793 + 3.31L<br />

+ 318N<br />

+ 1096. 4N<br />

For a rocket powered vehicle<br />

ecd<br />

days<br />

crew<br />

Space Shuttle<br />

Comparison<br />

6%<br />

L – Length <strong>of</strong> vehicle<br />

N crew – Number <strong>of</strong> crew<br />

N days – Number <strong>of</strong> days spent on orbit<br />

Georgia Institute <strong>of</strong> Technology 10-9


11.0 Hydraulic Systems<br />

11.0 Hydraulic Systems<br />

b<br />

body – Maximum width <strong>of</strong> the body<br />

b<br />

exp – Span <strong>of</strong> exposed wing (b-b body at wing root)<br />

M<br />

glow – Gross lift<strong>of</strong>f mass<br />

M<br />

land – Landed mass <strong>of</strong> vehicle<br />

N<br />

eng – Number <strong>of</strong> main engines on stage<br />

N<br />

hyd – Number <strong>of</strong> hydraulic functions on the vehicle<br />

q<br />

max – Maximum dynamic pressure during flight (lb/ft 2 )<br />

S<br />

bf – Plan<strong>for</strong>m area <strong>of</strong> body flap<br />

S<br />

body – Plan<strong>for</strong>m area <strong>of</strong> vehicle body<br />

S<br />

ref – Theoretical wing plan<strong>for</strong>m area<br />

S<br />

tot_cont – Total plan<strong>for</strong>m area <strong>of</strong> all control surfaces<br />

S<br />

vert – Total plan<strong>for</strong>m area <strong>of</strong> vertical tail or wingtip fins<br />

T<br />

vac – Vacuum thrust per main engine<br />

T<br />

vac_gimb – Total vacuum thrust <strong>of</strong> gimbaled engines<br />

θ<br />

le – Sweep angle <strong>of</strong> leading edge<br />

S ref (Shaded)<br />

b cthru<br />

S csw<br />

b<br />

C tip<br />

S vert<br />

S body<br />

b vert<br />

b body<br />

C root<br />

L<br />

Georgia Institute <strong>of</strong> Technology 11-1


11.0 Hydraulic Systems<br />

Reference: 1<br />

Derived from: Aircraft and Space Shuttle.<br />

Options: System pressure.<br />

M<br />

hyd<br />

= K<br />

hyd<br />

S<br />

tot _ cont<br />

+<br />

K<br />

e<br />

T<br />

vac _ gimb<br />

Space Shuttle<br />

Comparison<br />

-2%<br />

K hyd<br />

K e<br />

= 2.10 – Shuttle technology base <strong>for</strong> hydraulic system<br />

= 1.23 – For a 5000 psi system<br />

= 3.00e-4 – Shuttle gimbal technology<br />

= 1.68e-4 – For a 5000 psi gimbal system<br />

S tot_cont – Total plan<strong>for</strong>m area <strong>of</strong> all control surfaces<br />

T vac_gimb – Total vacuum thrust <strong>of</strong> gimbaled engines<br />

Georgia Institute <strong>of</strong> Technology 11-2


11.0 Hydraulic Systems<br />

Reference: 4b<br />

Derived from: Lifting body rocket upper stage.<br />

Options: None.<br />

M<br />

M 8<br />

land<br />

hyd<br />

= 15. For a lifting body rocket powered second stage.<br />

Sbody<br />

This was originally listed as support systems, and likely includes electrical conversion and distribution since the<br />

MBS it was included in did not have that as a separate item.<br />

Space Shuttle<br />

Comparison<br />

N/A<br />

M land – Landed mass <strong>of</strong> vehicle<br />

S body – Plan<strong>for</strong>m area <strong>of</strong> vehicle body<br />

Georgia Institute <strong>of</strong> Technology 11-3


11.0 Hydraulic Systems<br />

Reference: 5<br />

Derived from: Aircraft.<br />

Options: Variable or fixed sweep wings.<br />

M =<br />

hyd<br />

0.664<br />

37.23K<br />

vshN<br />

hyd<br />

Space Shuttle<br />

Comparison<br />

-87%<br />

K vsh<br />

= 1.425 – <strong>for</strong> variable sweep wings<br />

= 1.0 – <strong>for</strong> fixed wings<br />

N hyd – Number <strong>of</strong> hydraulic functions on the vehicle<br />

Georgia Institute <strong>of</strong> Technology 11-4


11.0 Hydraulic Systems<br />

Reference: 6<br />

Derived from: Power curve from Sigma (JSC study) adjusted to Space Shuttle.<br />

Options: None.<br />

1.1143<br />

qmax<br />

⎤<br />

( S<br />

ref<br />

+ Svert<br />

+ Sbf<br />

) + 0. Tvac<br />

N<br />

eng<br />

⎡<br />

M<br />

hyd<br />

= 0.426⎢<br />

001785<br />

1000<br />

⎥<br />

⎣<br />

⎦<br />

Space Shuttle<br />

Comparison<br />

714%<br />

N eng – Number <strong>of</strong> main engines on stage<br />

q max – Maximum dynamic pressure during flight (lb/ft 2 )<br />

S bf – Plan<strong>for</strong>m area <strong>of</strong> body flap<br />

S vert – Total plan<strong>for</strong>m area <strong>of</strong> vertical tail or wingtip fins<br />

T vac – Vacuum thrust per main engine<br />

Georgia Institute <strong>of</strong> Technology 11-5


11.0 Hydraulic Systems<br />

Reference: 7<br />

Derived from: Aircraft.<br />

Options: Hydraulic constant.<br />

For the Space Shuttle comparison K hyd = 0.0068<br />

Space Shuttle<br />

Comparison<br />

0%<br />

M = K<br />

hyd<br />

hyd<br />

M<br />

glow<br />

K hyd = 0.005-0.0180<br />

M glow – Gross lift<strong>of</strong>f mass<br />

Georgia Institute <strong>of</strong> Technology 11-6


11.0 Hydraulic Systems<br />

Reference: 10a<br />

Derived from: Alpha Technologies, rocket based.<br />

Options: None.<br />

M<br />

hyd<br />

⎡<br />

= 0.326⎢<br />

⎢<br />

⎣<br />

( q S /1000)<br />

max<br />

ref<br />

1.3125<br />

( b b )<br />

⎛ exp<br />

+<br />

+<br />

⎜ L +<br />

⎝ cos( θle<br />

)<br />

body<br />

⎞<br />

⎟<br />

⎠<br />

1.6125<br />

b body – Maximum width <strong>of</strong> the body<br />

b exp – Span <strong>of</strong> exposed wing (b-b body at wing root)<br />

q max – Maximum dynamic pressure during flight (lb/ft 2 )<br />

S ref – Theoretical wing plan<strong>for</strong>m area<br />

θ le – Sweep angle <strong>of</strong> leading edge<br />

⎤<br />

⎥<br />

⎥<br />

⎦<br />

0.849<br />

For rocket powered vehicles<br />

Space Shuttle<br />

Comparison<br />

455%<br />

Georgia Institute <strong>of</strong> Technology 11-7


12.0 Surface Control & Actuators<br />

12.0 Surface Control & Actuators<br />

M entry – Entry mass <strong>of</strong> vehicle<br />

M glow – Gross lift<strong>of</strong>f mass <strong>of</strong> vehicle<br />

M land – Landed mass <strong>of</strong> vehicle<br />

N crew – Number <strong>of</strong> crew<br />

N cs – Number <strong>of</strong> flight control systems (redundancy)<br />

R elevon – Percent <strong>of</strong> wing that is elevon area<br />

R vert – Percent <strong>of</strong> vertical surfaces that are control surface<br />

S bf – Plan<strong>for</strong>m area <strong>of</strong> body flap<br />

S body – Plan<strong>for</strong>m area <strong>of</strong> the body<br />

S canard – canard plan<strong>for</strong>m area<br />

S csw – Plan<strong>for</strong>m <strong>of</strong> wing mounted control surfaces<br />

S exp – Exposed wing plan<strong>for</strong>m area<br />

S htail – horizontal tail plan<strong>for</strong>m area<br />

S ref – Theoretical wing plan<strong>for</strong>m area<br />

S sb – speed brake plan<strong>for</strong>m area<br />

S tot_cont – Total plan<strong>for</strong>m area <strong>of</strong> all control surfaces<br />

S vert – Total plan<strong>for</strong>m area <strong>of</strong> vertical tail or wingtip fins<br />

b vert<br />

S body<br />

C root<br />

C tip<br />

S vert<br />

b body<br />

b cthru<br />

S ref (Shaded)<br />

S csw<br />

b<br />

L<br />

S exp (Shaded)<br />

Georgia Institute <strong>of</strong> Technology 12-1


12.0 Surface Control & Actuators<br />

Reference: 1<br />

Derived from: Aircraft and Space Shuttle.<br />

Options: System pressure.<br />

M = K S<br />

_<br />

+ K based on hydraulic system from the Space Shuttle<br />

sca<br />

sca<br />

tot<br />

cont<br />

ms<br />

Space Shuttle<br />

Comparison<br />

-8%<br />

K sca<br />

K ms<br />

= 3.75 – <strong>for</strong> shuttle surface control and actuation technology<br />

= 3.80 – <strong>for</strong> 5000 psi system<br />

= 3.32 – <strong>for</strong> 5000 psi system using advanced materials<br />

= 200 – additional miscellaneous systems<br />

S tot_cont – Total plan<strong>for</strong>m area <strong>of</strong> all control surfaces<br />

Georgia Institute <strong>of</strong> Technology 12-2


12.0 Surface Control & Actuators<br />

Reference: 2<br />

Derived <strong>for</strong>: Airbreathing horizontal take<strong>of</strong>f vehicle.<br />

Options: None.<br />

M = 0 .0163R<br />

M + 0. 00428R<br />

M Assumes EMA technology<br />

sca<br />

elevon<br />

entry<br />

M entry – Entry mass <strong>of</strong> vehicle<br />

vert<br />

entry<br />

Space Shuttle<br />

Comparison<br />

-58%<br />

different<br />

technology<br />

than shuttle<br />

R elevon – Percent <strong>of</strong> wing that is elevon area =<br />

S csw<br />

S exp<br />

R vert – Percent <strong>of</strong> vertical surfaces that are control surface =<br />

S csw – Plan<strong>for</strong>m <strong>of</strong> wing mounted control surfaces<br />

S exp – Exposed wing plan<strong>for</strong>m area<br />

S vert – Total plan<strong>for</strong>m area <strong>of</strong> vertical tail or wingtip fins<br />

S<br />

S<br />

rud<br />

vert<br />

Georgia Institute <strong>of</strong> Technology 12-3


12.0 Surface Control & Actuators<br />

Reference: 3<br />

Derived from: Dr. Talay, LaRC, rocket based.<br />

Options: None.<br />

M = 0. 0048 Assumes EMA technology<br />

sca<br />

M entry<br />

M entry – Entry mass <strong>of</strong> vehicle<br />

Space Shuttle<br />

Comparison<br />

-59%<br />

different<br />

technology<br />

than shuttle<br />

Georgia Institute <strong>of</strong> Technology 12-4


12.0 Surface Control & Actuators<br />

Reference: 4a<br />

Derived from: Airbreathing booster.<br />

Options: None.<br />

M = 640 + 0. 013<br />

sca<br />

M glow<br />

Control and actuation mass <strong>for</strong> airbreathing booster vehicle. May include hydraulics, though source is not clear<br />

on this.<br />

Space Shuttle<br />

Comparison<br />

51%<br />

M glow – Gross lift<strong>of</strong>f mass <strong>of</strong> vehicle<br />

Georgia Institute <strong>of</strong> Technology 12-5


12.0 Surface Control & Actuators<br />

Reference: 4b<br />

Derived from: Lifting body rocket upper stage.<br />

Options: None.<br />

M<br />

M 28<br />

land<br />

sca<br />

= Control system and actuation mass <strong>for</strong> a lifting body upper stage.<br />

Sbody<br />

Space Shuttle<br />

Comparison<br />

-32%<br />

M land – Landed mass <strong>of</strong> vehicle<br />

S body – Plan<strong>for</strong>m area <strong>of</strong> the body<br />

Georgia Institute <strong>of</strong> Technology 12-6


12.0 Surface Control & Actuators<br />

Reference: 5<br />

Derived from: Aircraft.<br />

Options: None.<br />

M =<br />

sca<br />

0.003 0.489 0.484 0.127<br />

36.28M<br />

Stot<br />

_ cont<br />

N<br />

cs<br />

N<br />

crew<br />

Space Shuttle<br />

Comparison<br />

-44%<br />

N cs – Number <strong>of</strong> flight control systems (redundancy)<br />

S tot_cont – Total plan<strong>for</strong>m area <strong>of</strong> all control surfaces<br />

N crew – Number <strong>of</strong> crew<br />

Georgia Institute <strong>of</strong> Technology 12-7


12.0 Surface Control & Actuators<br />

Reference: 6<br />

Derived from: Boeing equation adjusted to Space Shuttle.<br />

Options: None.<br />

M<br />

( S + S + S ) + 3.4S<br />

+ 2.6( S + S ) 70<br />

sca<br />

=<br />

ref htail canard<br />

vert<br />

bf sb<br />

0 .55<br />

+<br />

Space Shuttle<br />

Comparison<br />

29%<br />

S bf – Plan<strong>for</strong>m area <strong>of</strong> body flap<br />

S canard – canard plan<strong>for</strong>m area<br />

S htail – horizontal tail plan<strong>for</strong>m area<br />

S ref – Theoretical wing plan<strong>for</strong>m area<br />

S sb – speed brake plan<strong>for</strong>m area<br />

S vert – Total plan<strong>for</strong>m area <strong>of</strong> vertical tail or wingtip fins<br />

Georgia Institute <strong>of</strong> Technology 12-8


12.0 Surface Control & Actuators<br />

Reference: 7<br />

Derived from: Aircraft.<br />

Options: Control surface configuration.<br />

M<br />

sca<br />

= K<br />

fcf<br />

⎛ M<br />

glow ⎞<br />

⎜<br />

⎝ 1000 ⎟⎟ ⎠<br />

0.581<br />

Space Shuttle<br />

Comparison<br />

-1%<br />

K fcf<br />

= 106 – <strong>for</strong> airplanes with elevon control, and no horizontal tail<br />

= 138 – <strong>for</strong> airplanes with a horizontal tail<br />

= 168 – <strong>for</strong> airplanes with a variable sweep wing<br />

M glow – Gross lift<strong>of</strong>f mass <strong>of</strong> vehicle<br />

Georgia Institute <strong>of</strong> Technology 12-9


12.0 Surface Control & Actuators<br />

Reference: 10a<br />

Derived from: Alpha Technologies, rocket based.<br />

Options: None.<br />

( 0.55Sexp + 30) + ( 3.4S<br />

+ 30) + ( 2.6S<br />

+ 10)<br />

M For rocket powered vehicles<br />

sca<br />

=<br />

vert<br />

bf<br />

wing vert. tail body flap<br />

Space Shuttle<br />

Comparison<br />

4%<br />

S bf – Plan<strong>for</strong>m area <strong>of</strong> body flap<br />

S exp – Exposed wing plan<strong>for</strong>m area<br />

S vert – Total plan<strong>for</strong>m area <strong>of</strong> vertical tail or wingtip fins<br />

Georgia Institute <strong>of</strong> Technology 12-10


13.0 Avionics<br />

13.0 Avionics<br />

A body – surface area <strong>of</strong> vehicle body<br />

M dry – Dry mass <strong>of</strong> vehicle<br />

M glow – Gross lift<strong>of</strong>f mass<br />

N crew – Number <strong>of</strong> crew<br />

N days – Number <strong>of</strong> days spent on orbit<br />

N eng – Number <strong>of</strong> main engines on stage<br />

N pil – number <strong>of</strong> pilots<br />

Georgia Institute <strong>of</strong> Technology 13-1


13.0 Avionics<br />

Reference: 1<br />

Derived from: Aircraft and Space Shuttle.<br />

Options: 1978 or 1990 technology.<br />

M = K<br />

av<br />

av<br />

M<br />

0.125<br />

dry<br />

Space Shuttle<br />

Comparison<br />

-7%<br />

K av = 1350 – <strong>for</strong> current technology (~1978)<br />

= 710 – <strong>for</strong> 1990 technology<br />

M dry – Dry mass <strong>of</strong> vehicle<br />

Georgia Institute <strong>of</strong> Technology 13-2


13.0 Avionics<br />

Reference: 2<br />

Derived <strong>for</strong>: Airbreathing horizontal take<strong>of</strong>f vehicle.<br />

Options: None.<br />

M<br />

av<br />

= 3300<br />

Constant based on NASP technology AMLS SSTO<br />

Space Shuttle<br />

Comparison<br />

-50%<br />

not shuttle<br />

technology<br />

Georgia Institute <strong>of</strong> Technology 13-3


13.0 Avionics<br />

Reference: 3<br />

Derived from: Dr. Talay, LaRC, rocket based.<br />

Options: None.<br />

M<br />

av<br />

= 6564<br />

Constant based on Space Shuttle avionics mass<br />

Space Shuttle<br />

Comparison<br />

0%<br />

Georgia Institute <strong>of</strong> Technology 13-4


13.0 Avionics<br />

Reference: 4a<br />

Derived from: Airbreathing booster.<br />

Options: None.<br />

M<br />

av<br />

= 670 + 440 + 240<br />

Includes 670 lbs <strong>for</strong> instruments, 440 lbs <strong>for</strong> guidance and navigation, and 240 lbs <strong>for</strong> communication. For an<br />

airbreathing booster vehicle.<br />

Space Shuttle<br />

Comparison<br />

-79%<br />

Georgia Institute <strong>of</strong> Technology 13-5


13.0 Avionics<br />

Reference: 4b<br />

Derived from: Lifting body rocket upper stage.<br />

Options: None.<br />

Compared to Space Shuttle avionics mass less instruments and displays.<br />

Space Shuttle<br />

Comparison<br />

-85%<br />

M<br />

av<br />

= 261 + 302<br />

Includes 261 lbs. <strong>for</strong> guidance and navigation, and 302 lbs. <strong>for</strong> communications. No instruments.<br />

Georgia Institute <strong>of</strong> Technology 13-6


13.0 Avionics<br />

Reference: 6<br />

Derived from: Data from EHLLV, Shuttle C studies, and Space Shuttle.<br />

Options: None.<br />

N N<br />

7 7<br />

Includes range safety weight.<br />

days<br />

crew<br />

M<br />

av<br />

= 544 + 1067 + 3027 + 0. 27<br />

A<br />

body<br />

Space Shuttle<br />

Comparison<br />

-2%<br />

A body – surface area <strong>of</strong> vehicle body<br />

N crew – Number <strong>of</strong> crew<br />

N days – Number <strong>of</strong> days spent on orbit<br />

Georgia Institute <strong>of</strong> Technology 13-7


13.0 Avionics<br />

Reference: 7<br />

Derived from: Aircraft.<br />

Options: None.<br />

Compared to only the instruments and displays <strong>for</strong> the space shuttle.<br />

⎡ ⎛ M<br />

glow ⎞⎤<br />

⎡ ⎛ M<br />

glow ⎞⎤<br />

⎛ M<br />

glow ⎞<br />

M<br />

inst<br />

= N<br />

pil ⎢15 + 0.032<br />

⎜ N<br />

eng ⎢5<br />

0.006 ⎥ + 0.15 + 0. 012M<br />

1000<br />

⎟⎥<br />

+ +<br />

⎜<br />

1000<br />

⎟<br />

⎜<br />

1000<br />

⎟<br />

⎢⎣<br />

⎝ ⎠⎥⎦<br />

⎢⎣<br />

⎝ ⎠⎥⎦<br />

⎝ ⎠<br />

<strong>Mass</strong> <strong>for</strong> instruments and displays only.<br />

glow<br />

Space Shuttle<br />

Comparison<br />

23%<br />

only<br />

instruments<br />

and displays<br />

M glow – Gross lift<strong>of</strong>f mass<br />

N eng – Number <strong>of</strong> main engines on stage<br />

N pil – number <strong>of</strong> pilots<br />

Georgia Institute <strong>of</strong> Technology 13-8


13.0 Avionics<br />

Reference: 10a<br />

Derived from: Alpha Technologies, rocket based.<br />

Options: None.<br />

M = 544 + 1067 * if ( N > 0.1,1,0) + 3012 * if ( N > 0,1,0) + 0. 27A<br />

For rocket vehicle<br />

av<br />

days<br />

crew<br />

body<br />

Space Shuttle<br />

Comparison<br />

-2%<br />

A body – surface area <strong>of</strong> vehicle body<br />

N crew – Number <strong>of</strong> crew<br />

N days – Number <strong>of</strong> days spent on orbit<br />

Georgia Institute <strong>of</strong> Technology 13-9


14.0 Environmental Control & Life Support System<br />

14.0 Environmental Control & Life Support System<br />

b<br />

body – Maximum width <strong>of</strong> the body<br />

H<br />

body – Height <strong>of</strong> body<br />

L – Length <strong>of</strong> vehicle<br />

M<br />

av – <strong>Mass</strong> <strong>of</strong> avionics (group 13.0)<br />

M<br />

ecd – <strong>Mass</strong> <strong>of</strong> electronic conversion & distribution (group 10.0)<br />

N<br />

crew – Number <strong>of</strong> crew<br />

N<br />

days – Number <strong>of</strong> days spent on orbit<br />

V<br />

crew – Volume <strong>of</strong> crew cabin<br />

S body<br />

L<br />

b body<br />

Georgia Institute <strong>of</strong> Technology 14-1


14.0 Environmental Control & Life Support System<br />

Reference: 1<br />

Derived from: Aircraft and Space Shuttle.<br />

Options: None.<br />

M = K V + K N N + K<br />

eclss<br />

pv<br />

0.75<br />

crew<br />

os<br />

crew<br />

days<br />

ah<br />

M<br />

av<br />

Space Shuttle<br />

Comparison<br />

5%<br />

K pv = 5.85 – pressurized volume constant<br />

K os = 10.9 – oxygen supply tank constant<br />

K ah = 0.44 – avionics heat load constant<br />

M av – <strong>Mass</strong> <strong>of</strong> avionics (group 13.0)<br />

N crew – Number <strong>of</strong> crew<br />

N days – Number <strong>of</strong> days spent on orbit<br />

V crew – Volume <strong>of</strong> crew cabin<br />

Georgia Institute <strong>of</strong> Technology 14-2


14.0 Environmental Control & Life Support System<br />

Reference: 2<br />

Derived <strong>for</strong>: Airbreathing horizontal take<strong>of</strong>f vehicle.<br />

Options: None.<br />

M<br />

( L + b + H ) + 512 163<br />

eclss<br />

=<br />

htl<br />

body body<br />

141 + 729 + K 6.79<br />

+<br />

Space Shuttle<br />

Comparison<br />

-60%<br />

K htl = 0.6 – Shape factor <strong>for</strong> RBCC SSTO (Payload bay close to crew cabin with radiators in payload bay doors).<br />

This equation is composed <strong>of</strong>:<br />

141 lb – personnel systems<br />

729 lb – equipment cooling system<br />

512 lb – radiators<br />

163 lb – flash evaporators<br />

All masses are based on AMLS SSTO study by Stanley<br />

b body – Maximum width <strong>of</strong> the body<br />

H body – Height <strong>of</strong> body<br />

L – Length <strong>of</strong> vehicle<br />

Georgia Institute <strong>of</strong> Technology 14-3


14.0 Environmental Control & Life Support System<br />

Reference: 3<br />

Derived from: Dr. Talay, LaRC, rocket based.<br />

Options: None.<br />

M = 2652 + 54. 1N<br />

eclss<br />

crew<br />

N<br />

days<br />

Space Shuttle<br />

Comparison<br />

0%<br />

N crew – Number <strong>of</strong> crew<br />

N days – Number <strong>of</strong> days spent on orbit<br />

Georgia Institute <strong>of</strong> Technology 14-4


14.0 Environmental Control & Life Support System<br />

Reference: 4a<br />

Derived from: Airbreathing booster.<br />

Options: None.<br />

M<br />

eclss<br />

= 550<br />

Constant mass <strong>for</strong> environmental control. System is designed <strong>for</strong> a booster, so is <strong>for</strong> short duration and small<br />

crew to pilot the vehicle only.<br />

Space Shuttle<br />

Comparison<br />

N/A<br />

Short duration<br />

only<br />

Georgia Institute <strong>of</strong> Technology 14-5


14.0 Environmental Control & Life Support System<br />

Reference: 4b<br />

Derived from: Lifting body rocket upper stage.<br />

Options: None.<br />

M<br />

eclss<br />

= 464 + 20N crew<br />

<strong>Mass</strong> <strong>of</strong> environmental control system.<br />

Space Shuttle<br />

Comparison<br />

-89%<br />

Maybe add long term facilities<br />

N crew – Number <strong>of</strong> crew<br />

Georgia Institute <strong>of</strong> Technology 14-6


14.0 Environmental Control & Life Support System<br />

Reference: 6<br />

Derived from: Space Shuttle.<br />

Options: None.<br />

Shuttle comparison to the cooling system mass only.<br />

Space Shuttle<br />

Comparison<br />

1%<br />

( N N ) 1. 18<br />

M<br />

cooling<br />

= 32.24<br />

crew days<br />

Cooling system mass only<br />

N crew – Number <strong>of</strong> crew<br />

N days – Number <strong>of</strong> days spent on orbit<br />

Georgia Institute <strong>of</strong> Technology 14-7


14.0 Environmental Control & Life Support System<br />

Reference: 10a<br />

Derived from: Alpha Technologies, rocket based.<br />

Options: None.<br />

For rocket powered vehicles.<br />

M 0 .3M<br />

+ 0.15M<br />

+ 1410* if ( N > 0,1,0) + 870* if ( N > 0,1,0) + 15.4 N N + 3<br />

( ) ( ) ( ) [ ( )] 1. 18<br />

eclss<br />

=<br />

av<br />

ecd<br />

crew<br />

crew<br />

crew days<br />

Equipment cooling Crew controls Crew displays Crew Env. Cooling<br />

Space Shuttle<br />

Comparison<br />

53%<br />

For airbreathing vehicles.<br />

3<br />

⎪⎧<br />

⎛ L ⎞ ⎡⎛<br />

L ⎞ ⎤⎪⎫<br />

M eclss<br />

= 1235⎨1<br />

+ 0.27⎜<br />

−1⎟<br />

+ 0.069⎢⎜<br />

⎟ −1⎥⎬<br />

⎪⎩ ⎝ 205 ⎠ ⎢⎣<br />

⎝ 205 ⎠ ⎥⎦<br />

⎪⎭<br />

M av – <strong>Mass</strong> <strong>of</strong> avionics (group 13.0)<br />

N crew – Number <strong>of</strong> crew<br />

N days – Number <strong>of</strong> days spent on orbit<br />

M ecd – <strong>Mass</strong> <strong>of</strong> electronic conversion & distribution (group 10.0)<br />

Georgia Institute <strong>of</strong> Technology 14-8


15.0 Personnel Equipment<br />

15.0 Personnel Equipment<br />

N crew – Number <strong>of</strong> crew<br />

N days – Number <strong>of</strong> days spent on orbit<br />

Georgia Institute <strong>of</strong> Technology 15-1


15.0 Personnel Equipment<br />

Reference: 1<br />

Derived from: Aircraft and Space Shuttle.<br />

Options: Mission duration.<br />

M = K + K<br />

pe<br />

fww<br />

furn<br />

N<br />

crew<br />

Space Shuttle<br />

Comparison<br />

-17%<br />

K fww – food, waste, and water management system: <strong>for</strong> 1 to 4 crew<br />

= 0 – <strong>for</strong> missions less than 24 hours<br />

= 353 – <strong>for</strong> missions greater than 24 hours<br />

K furn – seats and other pilot/crew related items = 167<br />

N crew – Number <strong>of</strong> crew<br />

Georgia Institute <strong>of</strong> Technology 15-2


15.0 Personnel Equipment<br />

Reference: 2<br />

Derived <strong>for</strong>: Airbreathing horizontal take<strong>of</strong>f vehicle.<br />

Options: None.<br />

M = 502 + 150<br />

pe<br />

N crew<br />

Based on NASP technology AMLS (Stanley)<br />

Space Shuttle<br />

Comparison<br />

-15%<br />

N crew – Number <strong>of</strong> crew<br />

Georgia Institute <strong>of</strong> Technology 15-3


15.0 Personnel Equipment<br />

Reference: 3<br />

Derived from: Dr. Talay, LaRC, rocket based.<br />

Options: None.<br />

M = 555 + 164<br />

pe<br />

N crew<br />

Space Shuttle<br />

Comparison<br />

-7%<br />

N crew – Number <strong>of</strong> crew<br />

Georgia Institute <strong>of</strong> Technology 15-4


15.0 Personnel Equipment<br />

Reference: 4b<br />

Derived from: Lifting body rocket upper stage.<br />

Options: None.<br />

M<br />

pe<br />

= 52N crew<br />

<strong>Mass</strong> <strong>of</strong> cabin furnishings.<br />

Space Shuttle<br />

Comparison<br />

-80%<br />

N crew – Number <strong>of</strong> crew<br />

Georgia Institute <strong>of</strong> Technology 15-5


15.0 Personnel Equipment<br />

Reference: 5<br />

Derived from: Aircraft.<br />

Options: None.<br />

Compared only to space shuttle personnel accommodations and furnishings and equipment.<br />

Space Shuttle<br />

Comparison<br />

34%<br />

M = 217. 6<br />

furn<br />

N crew<br />

Furnishings and seats only, no galley or water or waste management<br />

N crew – Number <strong>of</strong> crew<br />

Georgia Institute <strong>of</strong> Technology 15-6


15.0 Personnel Equipment<br />

Reference: 6<br />

Derived from: Space Shuttle.<br />

Options: None.<br />

For space shuttle comparison the mass <strong>of</strong> the personnel group was added to the mass <strong>of</strong> the personnel equipment.<br />

Space Shuttle<br />

Comparison<br />

38%<br />

N<br />

N<br />

days<br />

7<br />

Includes personnel in addition to personnel equipment.<br />

crew<br />

M<br />

pe<br />

= 2444 + 645N<br />

crew<br />

+ 86. 4<br />

N crew – Number <strong>of</strong> crew<br />

N days – Number <strong>of</strong> days spent on orbit<br />

Georgia Institute <strong>of</strong> Technology 15-7


16.0 Dry Weight Margin<br />

16.0 Dry Weight Margin<br />

M dry – Dry mass <strong>of</strong> vehicle<br />

M eng – <strong>Mass</strong> <strong>of</strong> a single main engine<br />

M i – Total mass <strong>of</strong> group i in MBS<br />

N eng – Number <strong>of</strong> main engines on stage<br />

Georgia Institute <strong>of</strong> Technology 16-1


16.0 Dry Weight Margin<br />

Reference: 1<br />

Derived from: Aircraft and Space Shuttle.<br />

Options: None.<br />

M<br />

m arg in<br />

= K<br />

m arg in<br />

K margin = 0.10<br />

( M − N M )<br />

dry<br />

eng<br />

eng<br />

Space Shuttle<br />

Comparison<br />

N/A<br />

M dry – Dry mass <strong>of</strong> vehicle<br />

M eng – <strong>Mass</strong> <strong>of</strong> a single main engine<br />

N eng – Number <strong>of</strong> main engines on stage<br />

Georgia Institute <strong>of</strong> Technology 16-2


16.0 Dry Weight Margin<br />

Reference: 2<br />

Derived <strong>for</strong>: Airbreathing horizontal take<strong>of</strong>f vehicle.<br />

Options: None.<br />

M<br />

m arg in<br />

= K<br />

15.0<br />

∑<br />

m arg in<br />

i=<br />

1.0<br />

M<br />

i<br />

Space Shuttle<br />

Comparison<br />

N/A<br />

K margin – Margin percentage<br />

M i – Total mass <strong>of</strong> group i<br />

Recommends K margin = 10% margin<br />

Georgia Institute <strong>of</strong> Technology 16-3


16.0 Dry Weight Margin<br />

Reference: 3<br />

Derived from: Dr. Talay, LaRC, rocket based.<br />

Options: None.<br />

M<br />

m arg in<br />

= K<br />

15.0<br />

∑<br />

m arg in<br />

i=<br />

1.0<br />

M<br />

i<br />

Space Shuttle<br />

Comparison<br />

N/A<br />

K margin – Margin percentage<br />

M i – Total mass <strong>of</strong> group i<br />

Recommends K margin = 15% margin<br />

Georgia Institute <strong>of</strong> Technology 16-4


16.0 Dry Weight Margin<br />

Reference: 4b<br />

Derived from: Lifting body rocket upper stage.<br />

Options: None.<br />

M<br />

m arg in<br />

= K<br />

15.0<br />

∑<br />

m arg in<br />

i=<br />

1.0<br />

M<br />

i<br />

Space Shuttle<br />

Comparison<br />

N/A<br />

K margin – Margin percentage<br />

M i – Total mass <strong>of</strong> group i<br />

Recommends K margin = 3% margin<br />

Georgia Institute <strong>of</strong> Technology 16-5


16.0 Dry Weight Margin<br />

Reference: 6<br />

Derived from: Data developed by Program <strong>Development</strong> PD24 (80-22).<br />

Options: None.<br />

M<br />

m arg in<br />

= K<br />

15.0<br />

∑<br />

m arg in<br />

i=<br />

1.0<br />

M<br />

i<br />

Space Shuttle<br />

Comparison<br />

N/A<br />

K margin – Margin percentage<br />

M i – Total mass <strong>of</strong> group i<br />

Recommended margin based on development status: K margin =<br />

0% - masses based on existing structures, hardware, engines, which require no modification<br />

5% - masses based on existing structures, hardware, engines, which require some modification<br />

10% - masses based on new designs which use existing type materials and subsystems<br />

15% - masses based on new designs which use existing type materials and subsystems which require limited<br />

development in materials technology<br />

20%-25% - weights based on new designs which require extensive development in materials technology<br />

Georgia Institute <strong>of</strong> Technology 16-6


16.0 Dry Weight Margin<br />

Reference: 10<br />

Derived from: NASA MSFC 3rd generation launch vehicle <strong>of</strong>fice (mostly airbreathing).<br />

Options: None.<br />

M<br />

m arg in<br />

= K<br />

15.0<br />

∑<br />

m arg in<br />

i=<br />

1.0<br />

M<br />

i<br />

Space Shuttle<br />

Comparison<br />

N/A<br />

K margin – Margin percentage<br />

M i – Total mass <strong>of</strong> group i<br />

Recommends K margin = 15% margin<br />

Georgia Institute <strong>of</strong> Technology 16-7


16.0 Dry Weight Margin<br />

Reference: 11<br />

Derived from: Program data from space hardware.<br />

M<br />

m arg in<br />

= K<br />

15.0<br />

∑<br />

m arg in<br />

i=<br />

1.0<br />

M<br />

i<br />

Space Shuttle<br />

Comparison<br />

N/A<br />

K margin – Margin percentage<br />

M i – Total mass <strong>of</strong> group i<br />

Hawkins shows that historically dry weight growth from proposal to first flight is 25.5%.<br />

Georgia Institute <strong>of</strong> Technology 16-8


16.0 Dry Weight Margin<br />

Reference: 12<br />

Derived from: NASA space programs.<br />

Talay shows a 30% historical increase in vehicle weight from first concept documentation to time <strong>of</strong> proposal. The<br />

following chart also shows dry weight growth <strong>for</strong> NASA programs only.<br />

Space Shuttle<br />

Comparison<br />

N/A<br />

Chart showing dry weight growth <strong>of</strong> NASA space vehicle programs from [ref. 12].<br />

Georgia Institute <strong>of</strong> Technology 16-9


17.0 Crew & Gear<br />

17.0 Crew & Gear<br />

N crew – Number <strong>of</strong> crew<br />

N days – Number <strong>of</strong> days spent on orbit<br />

Georgia Institute <strong>of</strong> Technology 17-1


17.0 Crew & Gear<br />

Reference: 1<br />

Derived from: Aircraft and Space Shuttle.<br />

Options: None.<br />

M = 400 + 560<br />

cg<br />

N crew<br />

N crew is limited to between 1 and 4 people.<br />

Space Shuttle<br />

Comparison<br />

18%<br />

N crew – Number <strong>of</strong> crew<br />

Georgia Institute <strong>of</strong> Technology 17-2


17.0 Crew & Gear<br />

Reference: 2 and 3<br />

Derived <strong>for</strong>: Airbreathing horizontal take<strong>of</strong>f vehicle, and from a rocket.<br />

Options: None.<br />

cg<br />

( 311<br />

days<br />

) N<br />

crew<br />

M = 1176 + + 23N<br />

Includes crew consumables (food), personal items, crew, and suits (Talay)<br />

Space Shuttle<br />

Comparison<br />

23%<br />

N crew – Number <strong>of</strong> crew<br />

N days – Number <strong>of</strong> days spent on orbit<br />

Georgia Institute <strong>of</strong> Technology 17-3


17.0 Crew & Gear<br />

Reference: 4a<br />

Derived from: Airbreathing booster.<br />

Options: None.<br />

M<br />

cg<br />

= 650<br />

Constant mass, <strong>for</strong> a small crew to pilot a booster stage.<br />

Space Shuttle<br />

Comparison<br />

N/A<br />

Georgia Institute <strong>of</strong> Technology 17-4


17.0 Crew & Gear<br />

Reference: 4b<br />

Derived from: Lifting body rocket upper stage.<br />

Options: None.<br />

cg<br />

( 220 + 35. ) N<br />

crew<br />

M = 5<br />

Space Shuttle<br />

Comparison<br />

-51%<br />

N crew – Number <strong>of</strong> crew<br />

Georgia Institute <strong>of</strong> Technology 17-5


17.0 Crew & Gear<br />

Reference: 6<br />

Derived from: Space Shuttle.<br />

Options: None.<br />

Equations under group 15.0 includes crew.<br />

Space Shuttle<br />

Comparison<br />

N/A<br />

Georgia Institute <strong>of</strong> Technology 17-6


17.0 Crew & Gear<br />

Reference: 10a<br />

Derived from: Alpha Technologies.<br />

Options: None.<br />

M = 2550 * if ( N > 0,1,0) + 645N<br />

+ 77. 6N<br />

cg<br />

crew<br />

crew<br />

days<br />

Space Shuttle<br />

Comparison<br />

109%<br />

N crew – Number <strong>of</strong> crew<br />

N days – Number <strong>of</strong> days spent on orbit<br />

Georgia Institute <strong>of</strong> Technology 17-7


18.0 Payload Provisions<br />

18.0 Payload Provisions<br />

M pl – <strong>Mass</strong> <strong>of</strong> payload<br />

Georgia Institute <strong>of</strong> Technology 18-1


18.0 Payload Provisions<br />

Reference: 2 and 3<br />

Derived <strong>for</strong>: Airbreathing horizontal take<strong>of</strong>f vehicle, and from a rocket.<br />

Options: None.<br />

M<br />

payp<br />

= 0.0<br />

<strong>Mass</strong> <strong>of</strong> provisions included in payload mass.<br />

Space Shuttle<br />

Comparison<br />

N/A<br />

Georgia Institute <strong>of</strong> Technology 18-2


18.0 Payload Provisions<br />

Reference: 6<br />

Derived from: Space Shuttle.<br />

Options: None.<br />

M = 0. 025<br />

payp<br />

M pl<br />

Space Shuttle<br />

Comparison<br />

431%<br />

M pl – <strong>Mass</strong> <strong>of</strong> payload<br />

Georgia Institute <strong>of</strong> Technology 18-3


19.0 Cargo (up and down)<br />

19.0 Cargo (up and down)<br />

Reference: All<br />

Fixed value based on mission.<br />

For worst case the payload must be assumed to be returned <strong>for</strong> sizing re-entry and landing loads.<br />

Space Shuttle<br />

Comparison<br />

N/A<br />

Georgia Institute <strong>of</strong> Technology 19-1


20.0 Residual Propellants<br />

20.0 Residual Propellants<br />

M main_usable_prop – Usable main propellant, typically M pascent<br />

M oms/rcs_usable_prop – Usable OMS and RCS system propellants<br />

M pascent – <strong>Mass</strong> <strong>of</strong> ascent propellants (group 27.0)<br />

M tot_fuel – <strong>Mass</strong> <strong>of</strong> all fuel on stage<br />

M tot_ox – <strong>Mass</strong> <strong>of</strong> all oxidizer on stage<br />

V f – Total fuel volume<br />

V ox – Total oxidizer volume<br />

Georgia Institute <strong>of</strong> Technology 20-1


20.0 Residual Propellants<br />

Reference: 1<br />

Derived from: Aircraft and Space Shuttle.<br />

Options: None.<br />

M =<br />

resid<br />

0.79<br />

0.05M<br />

pascent<br />

Includes main propellant tank pressurization gas.<br />

M pascent – <strong>Mass</strong> <strong>of</strong> ascent propellants<br />

Space Shuttle<br />

Comparison<br />

-98%<br />

Orbiter<br />

-15%<br />

ET<br />

Georgia Institute <strong>of</strong> Technology 20-2


20.0 Residual Propellants<br />

Reference: 2 and 3<br />

Derived <strong>for</strong>: Airbreathing horizontal take<strong>of</strong>f vehicle, and from a rocket.<br />

Options: None.<br />

Shuttle comparison only uses equation <strong>for</strong> OMS/RCS residuals.<br />

M<br />

M<br />

oms / rcs _ resid<br />

= 0. 05<br />

M<br />

mainprop _ resid<br />

= 0. 005<br />

oms / rcs _ usable _ prop<br />

M<br />

main _ usable _ prop<br />

Space Shuttle<br />

Comparison<br />

-37%<br />

Orbiter<br />

OMS/RCS<br />

70%<br />

ET<br />

M main_usable_prop – Usable main propellant, typically M pascent<br />

M oms/rcs_usable_prop – Usable OMS and RCS system propellants<br />

M pascent – <strong>Mass</strong> <strong>of</strong> ascent propellants<br />

Georgia Institute <strong>of</strong> Technology 20-3


20.0 Residual Propellants<br />

Reference: 4a<br />

Derived from: Airbreathing booster.<br />

Options: None.<br />

M<br />

ox _ resid<br />

0. 027<br />

= M Residual liquid oxygen <strong>for</strong> an airbreathing booster vehicle<br />

tot _ ox<br />

Space Shuttle<br />

Comparison<br />

816%<br />

ET<br />

M<br />

f _ resid<br />

0. 027<br />

= M Residual liquid hydrogen <strong>for</strong> an airbreathing booster vehicle<br />

tot _ fuel<br />

M tot_fuel – <strong>Mass</strong> <strong>of</strong> all fuel on stage<br />

M tot_ox – <strong>Mass</strong> <strong>of</strong> all oxidizer on stage<br />

Georgia Institute <strong>of</strong> Technology 20-4


20.0 Residual Propellants<br />

Reference: 4b<br />

Derived from: Lifting body rocket upper stage.<br />

Options: None.<br />

M<br />

ox _ resid<br />

0. 005<br />

= M Residual liquid oxygen <strong>for</strong> a rocket second stage<br />

tot _ ox<br />

Space Shuttle<br />

Comparison<br />

195%<br />

ET<br />

M<br />

f _ resid<br />

0. 03<br />

= M Residual liquid hydrogen <strong>for</strong> a rocket second stage<br />

tot _ fuel<br />

M tot_fuel – <strong>Mass</strong> <strong>of</strong> all fuel on stage<br />

M tot_ox – <strong>Mass</strong> <strong>of</strong> all oxidizer on stage<br />

Georgia Institute <strong>of</strong> Technology 20-5


20.0 Residual Propellants<br />

Reference: 10<br />

Derived from: NASA MSFC 3rd generation launch vehicle <strong>of</strong>fice (mostly airbreathing).<br />

Options: None.<br />

Shuttle comparison only uses equation <strong>for</strong> OMS/RCS residuals.<br />

M<br />

M<br />

oms / rcs _ resid<br />

= 0. 05<br />

resid _ ascent _ fuel<br />

= 4<br />

M<br />

oms / rcs _ usable _ prop<br />

( 0.00529V<br />

)<br />

K<br />

f<br />

f _ package<br />

Space Shuttle<br />

Comparison<br />

-37%<br />

Orbiter<br />

18%<br />

ET<br />

M<br />

resid _ ascent _ ox<br />

= 2<br />

K<br />

( 0.11V<br />

)<br />

ox<br />

ox _ package<br />

K f_package – Fuel tank internal packaging efficiency, takes into account baffles, spars, etc..<br />

K ox_package – Oxidizer tank internal packaging efficiency, takes into account baffles, spars, etc..<br />

M oms/rcs_usable_prop – Usable OMS and RCS system propellants<br />

V f – Total fuel volume<br />

V ox – Total oxidizer volume<br />

Georgia Institute <strong>of</strong> Technology 20-6


21.0 OMS/RCS Reserve Propellants<br />

21.0 OMS/RCS Reserve Propellants<br />

g – Gravitational acceleration at the surface <strong>of</strong> the Earth<br />

Isp oms – Specific impulse <strong>of</strong> OMS engines<br />

Isp rcs – Specific impulse <strong>of</strong> RCS engines<br />

M land – Landed mass <strong>of</strong> vehicle<br />

M oms/rcs_usable_prop – Usable OMS and RCS system propellants<br />

M pascent – <strong>Mass</strong> <strong>of</strong> ascent propellants<br />

∆V oms – Total velocity change possible using OMS engines (fps)<br />

∆V rcs – Total velocity change possible using RCS engines (fps)<br />

Georgia Institute <strong>of</strong> Technology 21-1


21.0 OMS/RCS Reserve Propellants<br />

Reference: 1<br />

Derived from: Aircraft and Space Shuttle.<br />

Options: None.<br />

For shuttle comparison maximum ∆V was calculated from the maximum usable propellants available. For OMS ∆V =<br />

700 fps, RCS ∆V = 200 fps.<br />

M<br />

oms / rcs _ res<br />

= M<br />

land<br />

⎡<br />

⎢e<br />

⎢<br />

⎣<br />

⎛ 0.005∆V<br />

⎜<br />

⎝ Ispoms<br />

g<br />

oms<br />

⎞<br />

⎟<br />

⎠<br />

+ e<br />

⎛ 0.005∆V<br />

⎜<br />

⎝ Isprcsg<br />

rcs<br />

⎞<br />

⎟<br />

⎠<br />

⎤<br />

− 2⎥<br />

⎥<br />

⎦<br />

Space Shuttle<br />

Comparison<br />

-94%<br />

OMS/RCS<br />

residual only<br />

g – Gravitational acceleration at the surface <strong>of</strong> the Earth<br />

Isp oms – Specific impulse <strong>of</strong> OMS engines<br />

Isp rcs – Specific impulse <strong>of</strong> RCS engines<br />

M land – Landed mass <strong>of</strong> vehicle<br />

∆V oms – Total velocity change possible using OMS engines (fps)<br />

∆V rcs – Total velocity change possible using RCS engines (fps)<br />

Georgia Institute <strong>of</strong> Technology 21-2


21.0 OMS/RCS Reserve Propellants<br />

Reference: 2 and 3<br />

Derived <strong>for</strong>: Airbreathing horizontal take<strong>of</strong>f vehicle, and from a rocket.<br />

Options: None.<br />

M<br />

oms / rcs _ res<br />

= 0. 1<br />

M<br />

oms / rcs _ usable _ prop<br />

Space Shuttle<br />

Comparison<br />

43%<br />

M oms/rcs_usable_prop – Usable OMS and RCS system propellants<br />

Georgia Institute <strong>of</strong> Technology 21-3


21.0 OMS/RCS Reserve Propellants<br />

Reference: 10<br />

Derived from: NASA MSFC 3rd generation launch vehicle <strong>of</strong>fice (mostly airbreathing).<br />

Options: None.<br />

M 0. 0075M<br />

oms / rcs _ res<br />

=<br />

pascent<br />

M pascent – <strong>Mass</strong> <strong>of</strong> ascent propellants<br />

Space Shuttle<br />

Comparison<br />

-98%<br />

Using ascent<br />

propellant in<br />

shuttle only<br />

595%<br />

Using ascent<br />

propellant in<br />

ET<br />

Georgia Institute <strong>of</strong> Technology 21-4


22.0 RCS Entry Propellants<br />

22.0 RCS Entry Propellants<br />

g – Gravitational acceleration at the surface <strong>of</strong> the Earth<br />

Isp rcs – Specific impulse <strong>of</strong> RCS engines<br />

M entry – Entry mass <strong>of</strong> vehicle<br />

∆V rcs_entry – entry velocity change required<br />

Georgia Institute <strong>of</strong> Technology 22-1


22.0 RCS Entry Propellants<br />

Reference: 1, 2, and 10<br />

Derived from: Physics based.<br />

Options: None.<br />

M<br />

rcs _ entry<br />

= M<br />

entry<br />

⎡<br />

⎢e<br />

⎢<br />

⎣<br />

⎛ ∆Vrcs<br />

⎜<br />

⎝ Isp<br />

_ entry<br />

rcsg<br />

⎞<br />

⎟<br />

⎠<br />

⎤<br />

−1⎥<br />

⎥<br />

⎦<br />

Space Shuttle<br />

Comparison<br />

8%<br />

g – Gravitational acceleration at the surface <strong>of</strong> the Earth<br />

Isp rcs – Specific impulse <strong>of</strong> RCS engines<br />

M entry – Entry mass <strong>of</strong> vehicle<br />

∆V rcs_entry – entry velocity change required (Shuttle = 40 fps)<br />

Georgia Institute <strong>of</strong> Technology 22-2


22.0 RCS Entry Propellants<br />

Reference: 3<br />

Derived from: Dr. Talay, LaRC, rocket based.<br />

Options: None.<br />

M 0. 00336M<br />

rcs _ entry<br />

=<br />

entry<br />

Assumes approximately 40 fps <strong>of</strong> ∆V.<br />

Space Shuttle<br />

Comparison<br />

-16%<br />

M entry – Entry mass <strong>of</strong> vehicle<br />

Georgia Institute <strong>of</strong> Technology 22-3


23.0 OMS/RCS On-Orbit Propellants<br />

23.0 OMS/RCS On-Orbit Propellants<br />

g – Gravitational acceleration at the surface <strong>of</strong> the Earth<br />

Isp oms – Specific impulse <strong>of</strong> OMS engines<br />

Isp rcs – Specific impulse <strong>of</strong> RCS engines<br />

M entry – Entry mass <strong>of</strong> vehicle<br />

M land – Landed mass <strong>of</strong> vehicle<br />

N crew – Number <strong>of</strong> crew<br />

∆V oms – Total velocity change possible using OMS engines (fps)<br />

∆V rcs – Total velocity change possible using RCS engines (fps)<br />

Georgia Institute <strong>of</strong> Technology 23-1


23.0 OMS/RCS On-Orbit Propellants<br />

Reference: 1<br />

Derived from: Physics based.<br />

Options: None.<br />

For shuttle comparison maximum ∆V was calculated from the maximum usable propellants available. For OMS ∆V =<br />

700 fps, RCS ∆V = 200 fps.<br />

M<br />

oms / rcs _ orbit<br />

= M<br />

entry<br />

⎡<br />

⎢e<br />

⎢<br />

⎣<br />

⎛ ∆V<br />

⎜<br />

⎝ Isp<br />

oms<br />

oms<br />

⎞<br />

⎟<br />

g<br />

⎠<br />

+ e<br />

⎛ ∆V<br />

⎜<br />

⎝ Isp<br />

rcs<br />

rcs<br />

⎞<br />

⎟<br />

g<br />

⎠<br />

⎤<br />

− 2⎥<br />

⎥<br />

⎦<br />

Space Shuttle<br />

Comparison<br />

-4%<br />

Using actual<br />

shuttle Isp and<br />

∆V<br />

Isp oms – OMS propulsion specific impulse<br />

= 313s – storable<br />

= 440s – cryogenic<br />

Isp rcs – RCS propulsion specific impulse<br />

= 289s – storable pulsing system<br />

= 398s – cryogenic pulsing system<br />

g – Gravitational acceleration at the surface <strong>of</strong> the Earth<br />

M entry – Entry mass <strong>of</strong> vehicle<br />

∆V oms – Total velocity change possible using OMS engines (fps)<br />

∆V rcs – Total velocity change possible using RCS engines (fps)<br />

Georgia Institute <strong>of</strong> Technology 23-2


23.0 OMS/RCS On-Orbit Propellants<br />

Reference: 2, 3, and 10<br />

Derived <strong>for</strong>: Physics based.<br />

Options: None.<br />

For shuttle comparison maximum ∆V was calculated from the maximum usable propellants available.<br />

For OMS ∆V = 700 fps, RCS ∆V = 200 fps.<br />

M<br />

oms _ orbit<br />

= M<br />

entry<br />

⎡<br />

⎢e<br />

⎢<br />

⎣<br />

⎛ ∆V<br />

⎜<br />

⎝ Isp<br />

oms<br />

oms<br />

⎞<br />

⎟<br />

g<br />

⎠<br />

⎤<br />

−1⎥<br />

⎥<br />

⎦<br />

Space Shuttle<br />

Comparison<br />

-4%<br />

Using actual<br />

shuttle Isp and<br />

∆V<br />

M<br />

rcs _ orbit<br />

= M<br />

entry<br />

⎡<br />

⎢e<br />

⎢<br />

⎣<br />

⎛ ∆Vrcs<br />

⎞<br />

⎜<br />

⎟<br />

⎝ Isprcs<br />

g ⎠<br />

⎤<br />

−1⎥<br />

⎥<br />

⎦<br />

∆V rcs – Typically 15 fps <strong>for</strong> front RCS, and 35 fps <strong>for</strong> aft RCS<br />

∆V oms – Typically 500-800 fps <strong>for</strong> ascent, 50 fps <strong>for</strong> on orbit maneuvers, and 200 fps de-orbit<br />

Isp rcs = 420s – LOX/LH2 pressure fed thrusters based on Rockwell IHOT work, O/F=4.0.<br />

Isp oms = 462s – LOX/LH2 pump fed engines based on Rockwell IHOT work, O/F=6.0.<br />

g – Gravitational acceleration at the surface <strong>of</strong> the Earth<br />

Isp oms – Specific impulse <strong>of</strong> OMS engines<br />

Isp rcs – Specific impulse <strong>of</strong> RCS engines<br />

M entry – Entry mass <strong>of</strong> vehicle<br />

∆V oms – Total velocity change possible using OMS engines (fps)<br />

∆V rcs – Total velocity change possible using RCS engines (fps)<br />

Georgia Institute <strong>of</strong> Technology 23-3


23.0 OMS/RCS On-Orbit Propellants<br />

Reference: 4b<br />

Derived from: Lifting body rocket upper stage.<br />

Options: None.<br />

M 0. 0215M<br />

rcs _ prop<br />

=<br />

land<br />

All RCS propellant, including entry, <strong>for</strong> a rocket powered lifting body second stage.<br />

Space Shuttle<br />

Comparison<br />

-76%<br />

M 30N<br />

apu _ prop<br />

= 543 +<br />

crew<br />

Propellant required <strong>for</strong> APU while on orbit.<br />

M land – Landed mass <strong>of</strong> vehicle<br />

N crew – Number <strong>of</strong> crew<br />

Georgia Institute <strong>of</strong> Technology 23-4


24.0 Cargo Discharged<br />

24.0 Cargo Discharged<br />

Reference: All<br />

Constant value dependent on the mission.<br />

<strong>Mass</strong> <strong>of</strong> payload carried to orbit, and not back to Earth.<br />

Space Shuttle<br />

Comparison<br />

N/A<br />

Georgia Institute <strong>of</strong> Technology 24-1


25.0 Ascent Reserve Propellants<br />

25.0 Ascent Reserve Propellants<br />

g – Gravitational acceleration at the surface <strong>of</strong> the Earth<br />

Isp vac – Vacuum specific impulse <strong>of</strong> main engines<br />

M pascent – <strong>Mass</strong> <strong>of</strong> ascent propellants<br />

∆V ideal – Ideal ∆V <strong>for</strong> ascent<br />

Georgia Institute <strong>of</strong> Technology 25-1


25.0 Ascent Reserve Propellants<br />

Reference: 1<br />

Derived from: Aircraft and Space Shuttle.<br />

Options: None.<br />

Space Shuttle comparison uses ascent propellant in the ET. ∆V is based on Orbiter and ET together (no SRBs).<br />

Space Shuttle<br />

Comparison<br />

64%<br />

M<br />

⎡<br />

⎛ ∆Videal<br />

0.005 ⎞<br />

⎜<br />

⎟<br />

Ispvacg<br />

pascent _ res<br />

= M ⎢ ⎝<br />

⎠<br />

insert<br />

e −1⎥<br />

+<br />

⎤<br />

0.004M<br />

pascent<br />

⎢<br />

⎥<br />

⎣<br />

⎦<br />

∆V ideal – Ideal ∆V <strong>for</strong> ascent = 24,994 fps calculated from maximum usable propellant load on Space Shuttle and<br />

ET combination.<br />

g – Gravitational acceleration at the surface <strong>of</strong> the Earth<br />

Isp vac – Vacuum specific impulse <strong>of</strong> main engines<br />

M pascent – <strong>Mass</strong> <strong>of</strong> ascent propellants<br />

∆V ideal – Ideal ∆V <strong>for</strong> ascent<br />

Georgia Institute <strong>of</strong> Technology 25-2


25.0 Ascent Reserve Propellants<br />

Reference: 2, 3, and 4b<br />

Derived <strong>for</strong>: Airbreathing horizontal take<strong>of</strong>f vehicle, and from a rocket, and lifting body upper stage.<br />

Options: None.<br />

Space Shuttle comparison uses ascent propellant in the ET.<br />

Space Shuttle<br />

Comparison<br />

50%<br />

M 0. 005M<br />

pascent _ res<br />

=<br />

pascent<br />

Main propellant reserves are vented to orbit or transferred <strong>of</strong>f-board be<strong>for</strong>e entry.<br />

M pascent – <strong>Mass</strong> <strong>of</strong> ascent propellants<br />

Georgia Institute <strong>of</strong> Technology 25-3


25.0 Ascent Reserve Propellants<br />

Reference: 10<br />

Derived from: NASA MSFC 3rd generation launch vehicle <strong>of</strong>fice (mostly airbreathing).<br />

Options: None.<br />

Space Shuttle comparison uses ascent propellant in the ET.<br />

Space Shuttle<br />

Comparison<br />

125%<br />

M 0. 0075M<br />

pascent _ res<br />

=<br />

pascent<br />

M pascent – <strong>Mass</strong> <strong>of</strong> ascent propellants<br />

Georgia Institute <strong>of</strong> Technology 25-4


26.0 Inflight Losses & Vents<br />

26.0 Inflight Losses & Vents<br />

M pascent – <strong>Mass</strong> <strong>of</strong> ascent propellants<br />

M entry – Entry mass <strong>of</strong> vehicle<br />

Georgia Institute <strong>of</strong> Technology 26-1


26.0 Inflight Losses & Vents<br />

Reference: 1<br />

Derived from: Aircraft and Space Shuttle.<br />

Options: None.<br />

Shuttle comparison uses ascent propellant in the ET, and compares to losses in the Orbiter.<br />

Space Shuttle<br />

Comparison<br />

83%<br />

M = 0. 0043<br />

plosses<br />

M pascent<br />

M pascent – <strong>Mass</strong> <strong>of</strong> ascent propellants<br />

Georgia Institute <strong>of</strong> Technology 26-2


26.0 Inflight Losses & Vents<br />

Reference: 2, 3, and 10<br />

Derived <strong>for</strong>: Airbreathing horizontal take<strong>of</strong>f vehicle, and from a rocket.<br />

Options: None.<br />

M = 0. 01<br />

plosses<br />

M entry<br />

Includes waste, purge gasses, excess fuel cell reactants, vented and lost propellants.<br />

Space Shuttle<br />

Comparison<br />

-35%<br />

Note: Reference 10 includes this mass after the insertion weight, meaning that it is treated as propellant lost<br />

during ascent.<br />

M entry – Entry mass <strong>of</strong> vehicle<br />

Georgia Institute <strong>of</strong> Technology 26-3


27.0 Ascent Propellants<br />

27.0 Ascent Propellants<br />

M f_ascent – Total ascent fuel<br />

M glow – Gross lift<strong>of</strong>f mass<br />

MR – <strong>Mass</strong> ratio <strong>for</strong> ascent<br />

R f – Fuel ascent propellant fraction: M f_ascent over M p_ascent<br />

Georgia Institute <strong>of</strong> Technology 27-1


27.0 Ascent Propellants<br />

Reference: 2<br />

Derived <strong>for</strong>: Physics based.<br />

Options: None.<br />

2<br />

⎛ 1 ⎞<br />

M<br />

f _ ascent = R<br />

f<br />

M<br />

glow ⎜1<br />

− ⎟ Ascent fuel mass<br />

⎝ MR ⎠<br />

⎛ ⎞<br />

⎜<br />

1<br />

M ⎟<br />

ox _ ascent<br />

= M<br />

f _ ascent<br />

−1<br />

Ascent oxidizer mass<br />

⎝ R<br />

f ⎠<br />

M f_ascent – Total ascent fuel<br />

M glow – Gross lift<strong>of</strong>f mass<br />

MR – <strong>Mass</strong> ratio <strong>for</strong> ascent<br />

R f – Fuel ascent propellant fraction: M f_ascent over M p_ascent<br />

Space Shuttle<br />

Comparison<br />

Georgia Institute <strong>of</strong> Technology 27-2


27.0 Ascent Propellants<br />

Reference: 4b<br />

Derived from: Lifting body rocket upper stage.<br />

Options: None.<br />

Use the same equations as reference 2, but add 60 lbs. <strong>of</strong> total propellant lost during thrust decay.<br />

Space Shuttle<br />

Comparison<br />

4b<br />

Georgia Institute <strong>of</strong> Technology 27-3


27.0 Ascent Propellants<br />

Reference: 10<br />

Derived from: NASA MSFC 3rd generation launch vehicle <strong>of</strong>fice (mostly airbreathing).<br />

Options: None.<br />

M<br />

MR −1<br />

=<br />

MR<br />

pascent<br />

M glow<br />

Space Shuttle<br />

Comparison<br />

10<br />

M glow – Gross lift<strong>of</strong>f mass<br />

MR – <strong>Mass</strong> ratio <strong>for</strong> ascent<br />

Georgia Institute <strong>of</strong> Technology 27-4


28.0 Startup Losses<br />

28.0 Startup Losses<br />

A body – surface area <strong>of</strong> vehicle body<br />

Isp sl – Specific impulse <strong>of</strong> engine at sea level<br />

M gross – Gross vehicle mass on the pad or runway prior to lift<strong>of</strong>f<br />

M pascent – <strong>Mass</strong> <strong>of</strong> ascent propellants<br />

M prop_tot – Total propellant onboard<br />

R v_lo – Vehicle thrust to weight at lift<strong>of</strong>f<br />

T start – Main engine startup time<br />

Georgia Institute <strong>of</strong> Technology 28-1


28.0 Startup Losses<br />

Reference: 1<br />

Derived from: Aircraft and Space Shuttle.<br />

Options: Startup loss factor.<br />

M<br />

start _ loss<br />

=<br />

M<br />

prop _ tot<br />

K<br />

su<br />

K su – startup losses = 0.001 to 0.002<br />

Space Shuttle<br />

Comparison<br />

-22% using<br />

K su =0.002<br />

M prop_tot – Total propellant onboard<br />

Georgia Institute <strong>of</strong> Technology 28-2


28.0 Startup Losses<br />

Reference: 2<br />

Derived <strong>for</strong>: Airbreathing horizontal take<strong>of</strong>f vehicle.<br />

Options: None.<br />

M<br />

Rv<br />

_ lo<br />

M<br />

gross<br />

Ispsl<br />

Assumes a 4 second ramp up <strong>of</strong> engines be<strong>for</strong>e hold down is released.<br />

start _ loss<br />

= 2<br />

Space Shuttle<br />

Comparison<br />

44%<br />

Isp sl – Specific impulse <strong>of</strong> engine at sea level<br />

M gross – Gross vehicle mass on the pad or runway prior to lift<strong>of</strong>f<br />

R v_lo – Vehicle thrust to weight at lift<strong>of</strong>f<br />

Georgia Institute <strong>of</strong> Technology 28-3


28.0 Startup Losses<br />

Reference: 3<br />

Derived from: Dr. Talay, LaRC, rocket based.<br />

Options: None.<br />

M 0. 01M<br />

start _ loss<br />

=<br />

pascent<br />

Space Shuttle<br />

Comparison<br />

291%<br />

M pascent – <strong>Mass</strong> <strong>of</strong> ascent propellants<br />

Georgia Institute <strong>of</strong> Technology 28-4


28.0 Startup Losses<br />

Reference: 4b<br />

Derived from: Lifting body rocket upper stage.<br />

Options: None.<br />

M 00128<br />

start _ loss<br />

= 0. M<br />

pascent<br />

Startup losses.<br />

M = 210 30 Propellant lost during thrust buildup (210 lbs. LOX and 30 lbs. LH2)<br />

buildup _ loss<br />

+<br />

Space Shuttle<br />

Comparison<br />

-44% Using<br />

ET ascent<br />

propellant<br />

M pascent – <strong>Mass</strong> <strong>of</strong> ascent propellants<br />

Georgia Institute <strong>of</strong> Technology 28-5


28.0 Startup Losses<br />

Reference: 10<br />

Derived from: NASA MSFC 3rd generation launch vehicle <strong>of</strong>fice (mostly airbreathing).<br />

Options: None.<br />

M<br />

start<br />

Rv<br />

_ lo<br />

_ loss<br />

= Tstart<br />

M<br />

gross<br />

Losses while starting the engines<br />

Isp<br />

sl<br />

Abody<br />

M<br />

boil<strong>of</strong>f<br />

= K<br />

boil<br />

Boil<strong>of</strong>f while waiting on the pad or runway<br />

21357<br />

Space Shuttle<br />

Comparison<br />

351% Based<br />

on 6s from<br />

ignition to<br />

release<br />

1% at 1.4s<br />

K boil<br />

= 4359 – <strong>for</strong> LH2<br />

= 104 – <strong>for</strong> LOX<br />

A body – surface area <strong>of</strong> vehicle body<br />

Isp sl – Specific impulse <strong>of</strong> engine at sea level<br />

M gross – Gross vehicle mass on the pad or runway prior to lift<strong>of</strong>f<br />

R v_lo – Vehicle thrust to weight at lift<strong>of</strong>f<br />

T start – Main engine startup time<br />

Georgia Institute <strong>of</strong> Technology 28-6


Technology Reduction Factors<br />

Reference: 3<br />

These TRFs represent near term improvements. For example AMLS or NASP.<br />

Near term mass reduction by system. The technology reduction factor (TRF) is listed on the right. The new mass (improved technology)<br />

is found using the following equation:<br />

M new = M original (1-TRF)<br />

1.0 Wing 44%<br />

2.0 Tail 44%<br />

3.0 Body & secondary struct. 38%<br />

Crew cabin 38%<br />

Body flap 44%<br />

Thrust structure 38%<br />

LOX & LH2 tank 0%<br />

4.0 TPS 35%<br />

5.0 Landing gear 9%<br />

6.0 Main Propulsion 15%<br />

7.0 RCS 0%<br />

8.0 OMS 0%<br />

9.0 Primary Power 0%<br />

10.0 ECD 18%<br />

11.0 Hydraulics 0%<br />

12.0 Surface Control (EMA) 0%<br />

13.0 Avionics 50%<br />

14.0 ECLSS 10%<br />

15.0 Personnel Equipment 0%<br />

Georgia Institute <strong>of</strong> Technology<br />

TRF-1


Reference: 6<br />

Derived from data provided by Airframe Team, September 1999.<br />

Technology mass reduction factors by material. The TRF is listed on the left. The new mass (improved technology) is found using the<br />

following equation:<br />

M new = M original (1-TRF)<br />

0% - Structural designs based on current aluminum alloy, ie. Saturn V, original ET<br />

10% - Structural designs based on aluminum lithium alloy, ie new lightweight ET<br />

20% - Wing structural designs based on advanced composites and materials<br />

25% - Propellant tanks structural designs based on advanced composites and materials<br />

30% - Interstages and body structural designs based on advanced composites and materials<br />

Georgia Institute <strong>of</strong> Technology<br />

TRF-2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!