24.07.2014 Views

AGN Feedback in High Redshift Radio Galaxies - SRON

AGN Feedback in High Redshift Radio Galaxies - SRON

AGN Feedback in High Redshift Radio Galaxies - SRON

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>AGN</strong> <strong>Feedback</strong> <strong>in</strong><br />

<strong>High</strong> <strong>Redshift</strong> <strong>Radio</strong> <strong>Galaxies</strong><br />

\<br />

Carlos De Breuck<br />

European Southern Observatory, Garch<strong>in</strong>g<br />

Collaborators<br />

Nicole Nesvadba (IAS), M. D. Lehnert (Observatoire de Paris), P. Best (ROE)<br />

Friday 23 July 2010


<strong>AGN</strong> and stellar emission <strong>in</strong> radio galaxies<br />

Data from XMM, HST, Keck,<br />

VLT, Subaru, Spitzer, JCMT and<br />

10 radio telescopes.<br />

4C23.56 @ z=2.5<br />

νFν<br />

Friday 23 July 2010


<strong>AGN</strong> and stellar emission <strong>in</strong> radio galaxies<br />

Data from XMM, HST, Keck,<br />

VLT, Subaru, Spitzer, JCMT and<br />

10 radio telescopes.<br />

4C23.56 @ z=2.5<br />

Emission mechanisms:<br />

•Hot accreat<strong>in</strong>g gas (X-ray)<br />

•Stellar photospheres (optical)<br />

•Scattered <strong>AGN</strong> (P=15%, UV)<br />

•Nebular cont<strong>in</strong>uum (optical+UV)<br />

•Emission l<strong>in</strong>es (UV,optical, mm)<br />

•Hot + cold dust (mid+far-IR)<br />

•Synchrotron core,lobes (radio)<br />

νFν<br />

Friday 23 July 2010


<strong>Radio</strong> galaxies have massive hosts<br />

across cosmic time...<br />

12.0<br />

Log(M stellar [M O •])<br />

11.5<br />

11.0<br />

10.5<br />

1 2 3 4 5 6<br />

<strong>Redshift</strong><br />

Advantage of type II <strong>AGN</strong>:<br />

host galaxy is not dom<strong>in</strong>ated by <strong>AGN</strong><br />

Friday 23 July 2010


... but also high SFR, especially at z>3<br />

<br />

<br />

<br />

S 850µm SFR <strong>in</strong>crease with redshift at least until z~4.<br />

L FIR<br />

~ 10 13 L Sun<br />

SFR ~ 1500 M Sun<br />

/yr.<br />

Needs Herschel to better isolate <strong>AGN</strong> from stellar far-IR.<br />

log L850µm<br />

S850µm<br />

Friday 23 July 2010<br />

log L 3GHz<br />

<strong>Redshift</strong><br />

Archibald+ 2001, Reuland+ 2004


Why radio galaxies are ideal laboratories<br />

to study <strong>AGN</strong> feedback<br />

They have already<br />

accumulated most of their<br />

stellar mass, but are still<br />

form<strong>in</strong>g stars at z>3.<br />

Needs a strong feedback<br />

process to stop them<br />

grow<strong>in</strong>g for good:<br />

powerful radio source.<br />

Friday 23 July 2010


TXS1113-178<br />

z=2.23<br />

Black hole masses &<br />

Edd<strong>in</strong>gton ratios<br />

• BLR are usually completely<br />

obscured <strong>in</strong> type II <strong>AGN</strong>.<br />

• 20% of z>2 RGs show nuclear<br />

broad-l<strong>in</strong>e regions <strong>in</strong> our IFU data.<br />

• M BH a few 10 9 M Sun<br />

(higher <strong>in</strong>cl<strong>in</strong>ation may half M BH )<br />

•Appears slightly offset<br />

from local M bulge - M BH<br />

relation.<br />

• Bolometric lum<strong>in</strong>osity at<br />

few % Edd<strong>in</strong>gton, lower<br />

than other populations<br />

with similar M BH<br />

near<strong>in</strong>g end of active<br />

growth phase?<br />

Friday 23 July 2010<br />

<strong>Radio</strong> galaxies at z~2<br />

(Nesvadba et al. 2010B, A&A submitted)<br />

z~6 QSOs?<br />

Walter et al. (2004)<br />

z~2 starbursts?<br />

Alexander et al. (2008


Transit<strong>in</strong>g objects from “Quasar” to “<strong>Radio</strong>” mode?<br />

•Calculate L k<strong>in</strong> us<strong>in</strong>g Willott et al 1999 () and Bîrzan et al 2008 (∆) relations.<br />

•Transition from “Quasar” to “<strong>Radio</strong>” mode marks the end of the phase of<br />

active growth.<br />

•Cfr. m<strong>in</strong>iquasars: transition from radiatively efficient to <strong>in</strong>efficient<br />

accretion at few % Edd<strong>in</strong>gton.<br />

follow<strong>in</strong>g Merloni & He<strong>in</strong>z (2008)<br />

Nearby<br />

<strong>Radio</strong> galaxies<br />

Friday 23 July 2010<br />

Nesvadba et al. (2010b)


“ The Cocoon model ”<br />

Fairly good (basic) understand<strong>in</strong>g of how jets may work<br />

radio jet<br />

mechanical<br />

power<br />

<strong>in</strong>flates<br />

“cocoon”<br />

hot overpressurized<br />

gas,<br />

X-ray<br />

accelerates<br />

embedded cold/<br />

warm clouds<br />

molecular, atomic,<br />

T~10-10 4 K<br />

????<br />

In agreement with hydro<br />

models of radio jets<br />

(e.g. Sutherland & Bicknell 2007,<br />

Krause 2007)<br />

MRC0156-252<br />

z = 2.0<br />

strongest <strong>in</strong>teractions w/<br />

young radio sources<br />

(e.g., Holt et al. 2008)<br />

dissipation times of gas<br />

k<strong>in</strong>etic energy ~ jet lifetime<br />

(Nesvadba et al. 2010a)<br />

Gaibler et al. (2008)<br />

Friday 23 July 2010


Ionised gas halos with sizes similar to radio jets<br />

(~50 radio galaxies at z~1.5-3.5 with NIR-IFU data<br />

200<br />

[1027 W Hz-1)<br />

1P(500 MHz)<br />

0<br />

~ SINFONI resolution<br />

Full jet <strong>in</strong> SINFONI FOV<br />

~50 kpc<br />

<strong>Radio</strong> size [kpc]<br />

Imag<strong>in</strong>g spectroscopy with<br />

SINFONI / VLT<br />

Morphologies of the<br />

warm ionized gas<br />

([OIII]5007, H, ...)<br />

~50 kpc<br />

always: D(gas) < D(radio)<br />

350<br />

Friday 23 July 2010


Are these really outflows?<br />

•La<strong>in</strong>g-Garr<strong>in</strong>gton effect: most depolarised radio lobe is<br />

reced<strong>in</strong>g as it passer through longer l<strong>in</strong>e-of sight.<br />

•Consistently <strong>in</strong>dicate bipolar outflows with velocity offsets<br />

~ 1000 km/s and V~1000 km/s.<br />

Friday 23 July 2010<br />

<strong>High</strong> P = approach<strong>in</strong>g<br />

Low P = reced<strong>in</strong>g<br />

<strong>High</strong> P = approach<strong>in</strong>g<br />

Low P = reced<strong>in</strong>g<br />

Fig.<br />

phol<br />

cont<br />

Top<br />

ogy<br />

fram<br />

map<br />

km s<br />

ogy.<br />

bars<br />

dica<br />

east


Energetics and other constra<strong>in</strong>ts<br />

velocities<br />

Characteristic: blue / redshifted bubbles<br />

<br />

velocity offset 1000 km s -1 (>> rotation)<br />

<br />

L<strong>in</strong>e widths ~ 1000 km s -1<br />

Gas extends along jet axis to R >> R stars<br />

<br />

only extended gas where extended radio sources<br />

<br />

aligned with radio source<br />

M gas,ion<br />

~ 10 10 M sun<br />

~ M gas, mol<br />

<br />

Hα flux, ext<strong>in</strong>ction, electron densities measured<br />

starburst galaxies: M mol<br />

/ M ion<br />

~ 10 2-3<br />

L<strong>in</strong>e widths<br />

FWHM<br />

E k<strong>in</strong>,gas<br />

~ 10 59-60 erg<br />

<br />

~ b<strong>in</strong>d<strong>in</strong>g energy of a massive host galaxy<br />

<br />

0.1 - 0.2 % of the rest-mass energy equivalent of the SMBH<br />

<br />

1-10% of the jet power<br />

T outflow<br />

few x 10 7 yrs ~ <strong>AGN</strong> lifetime<br />

<br />

> characteristic time of a starburst ~ 10 8 yrs<br />

Expected characteristics of <strong>AGN</strong>-driven w<strong>in</strong>ds quench<strong>in</strong>g<br />

<strong>in</strong>tense starbursts <strong>in</strong> massive high-z galaxies<br />

Friday 23 July 2010


How about molecular (CO) gas,<br />

thought to be the ma<strong>in</strong> tracer<br />

of the ISM?<br />

Friday 23 July 2010


Name<br />

CO<br />

transition<br />

z S 850µm<br />

[mJy]<br />

ΔV CO<br />

[km/s]<br />

S CO<br />

ΔV<br />

[Jy km/s]<br />

M(H 2<br />

) [10 10<br />

M Sun<br />

]<br />

MG2037-0011 3-2 1.51 - TBD fa<strong>in</strong>t det. TBD<br />

MRC0156-252 3-2 2.02 - TBD TBD TBD<br />

TN J2254+1857 3-2 2.15 - - offset det. 0.6(offset)<br />

53W002 3-2 2.39


CO is <strong>in</strong> 2 components with M(H 2<br />

)≈3x10 10 M Sun<br />

.<br />

<br />

CO emission <strong>in</strong> 4C41.17 (z=3.8)<br />

Each component co<strong>in</strong>cident with a dark lane <strong>in</strong> Lyα.<br />

Not detected <strong>in</strong> CO(1-0) with VLA n(H 2<br />

) ≥ 10 3 cm -3 .<br />

Friday 23 July 2010<br />

De Breuck+ 2005


CO <strong>in</strong> the halo of USS 0828+193 (z=2.6)<br />

No CO at position of radio core and host galaxy.<br />

8σ detection <strong>in</strong> 2 velocity components SW1/2 detected<br />

80 kpc from radio core, just beyond radio lobe.<br />

No <strong>in</strong>dication for old stars or star-formation <strong>in</strong> SW1/2.<br />

Related to Lyα absorbers <strong>in</strong> the haloes?<br />

Cloud collapse and excitation by the nearby radio jet?<br />

Similar to diffuse CO <strong>in</strong> low z clusters, but ambient<br />

conditions are very different.<br />

N. P. H. Nesvadba Us<strong>in</strong>g theet IRAM al. Plateau de Bure Interferometer (PdBI), we detected<br />

lum<strong>in</strong>ous CO(3–2) l<strong>in</strong>e emission <strong>in</strong> the halo of the z =<br />

2.6 HzRG TXS0828+193, with a lum<strong>in</strong>osity of 2 ×<br />

10 10 K km s −1 pc 2 . Deep photometry from the rest-frame ultraviolet<br />

to mid-<strong>in</strong>frared <strong>in</strong>clud<strong>in</strong>g MIPS 24 µm imag<strong>in</strong>g does not reveal a<br />

counterpart with<strong>in</strong> the 5 arcsec beam, imply<strong>in</strong>g a very small associated<br />

stellar mass and low star formation rates. These are very unusual<br />

properties for a high-redshift CO emitter, and we discuss possible<br />

scenarios for its nature. Throughout the paper, we adopt a flat<br />

H 0 = 70 km s −1 Mpc −3 concordance cosmology with = 0.7 and<br />

M = 0.3.<br />

Nesvadba+ 2009<br />

2 OBSERVATIONS AND ANCILLARY DATA<br />

e 3. Left- to right-hand panel: HST WCPC2 F606W, Palomar K band, Spitzer IRAC 3.6 µm and MIPS 24 µm photometry of TXS0828+193. Thick blue<br />

urs show the position of the SW1/SW2, th<strong>in</strong> red contours mark radio jets. SW1/SW2 is undetected <strong>in</strong> all bands.<br />

We observed TXS0828+193 with the IRAM PdBI (Guilloteau<br />

Friday 23 July 2010<br />

CO <strong>in</strong> the halo of a HzRG


B3<br />

The occasional positive<br />

NE<br />

feedback:<br />

NE<br />

B1<br />

B2<br />

jet-<strong>in</strong>duced star<br />

NW<br />

formation<br />

1 arcsec<br />

F702W<br />

1 arcsec<br />

• Total mass of stars formed ~10 9 M sun<br />

F569W , mostly negligible.<br />

core<br />

• Increased star formation along the radio jets.<br />

• Strong evidence at low z <strong>in</strong> M<strong>in</strong>kowski’s object (Croft + 2004).<br />

• At z=3.8 <strong>in</strong> 4C41.17 (Dey + 1997, Bicknell + 2000).<br />

• Predicted from hydrodynamic simulations (Fragile + 2004).<br />

702 DEY ET AL.<br />

core<br />

4<br />

6000 6500 7000 7500 8000<br />

20<br />

1 arcsec<br />

2<br />

Lyman !<br />

4C41.17<br />

15<br />

10<br />

FIG. 1.ÈMontage of three HST images taken through the F702W, F569W, and Lya Ðlters. The X band radio images of Carilli et al. (1994) are<br />

superimposed <strong>in</strong> the form of contours.<br />

0<br />

5<br />

-2<br />

NGC1741<br />

0<br />

1200 1300 1400 1500 1600 1700<br />

Friday 23 July 2010<br />

FIG. 3.ÈTotal light spectrum of the central 2A ] 1A of 4C 41.17 compared with the UV spectrum of the B1 star-form<strong>in</strong>g knot<br />

starburst galaxy NGC 1741 from Conti et al. (1996). The ord<strong>in</strong>ate is labeled with the Ñux density scales for 4C 41.17 and NGC 17<br />

Fig. 3.—Zoom of Fig. 2 to show <strong>in</strong> more detail the region surround<strong>in</strong>g MO. axes respectively. The two spectra show many similarities <strong>in</strong> their absorption l<strong>in</strong>e properties, although the emission l<strong>in</strong>e spectrum o<br />

processes related to the <strong>AGN</strong>. The absorption spectrum is also similar to that of the recently discovered population of starburst gala


Summary<br />

• <strong>High</strong> z radio galaxies have massive host galaxies, and are close to<br />

the M BH -M bulge relation need strong feedback process to stop<br />

accretion: powerful radio <strong>AGN</strong>.<br />

• They are on the critical po<strong>in</strong>t between “quasar” and “radio” mode.<br />

• VLT/SINFONI observations of 50 HzRGs show bipolar outflows<br />

aligned with radio source & sizes up to 50 kpc ~ radio source.<br />

• Outflow k<strong>in</strong>etic energies close to the b<strong>in</strong>d<strong>in</strong>g energy of the host.<br />

• Ionised gas mass similar or greater than CO mass.<br />

• We have found a CO component with<strong>in</strong> the halo of a z=2.8 RG,<br />

along the radio jet direction, but without star formation.<br />

• <strong>Feedback</strong> is predom<strong>in</strong>antly negative, though occasional positive<br />

feedback may occur <strong>in</strong> the form of jet-<strong>in</strong>duced star formation.<br />

Friday 23 July 2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!