20.07.2014 Views

LT1057/LT1058 Dual and Quad, JFET Input ... - SP-Elektroniikka

LT1057/LT1058 Dual and Quad, JFET Input ... - SP-Elektroniikka

LT1057/LT1058 Dual and Quad, JFET Input ... - SP-Elektroniikka

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>LT1057</strong>/<strong>LT1058</strong><br />

<strong>Dual</strong> <strong>and</strong> <strong>Quad</strong>, <strong>JFET</strong> <strong>Input</strong><br />

Precision High Speed Op Amps<br />

FEATURES<br />

■ 14V/µs Slew Rate: 10V/µs Min<br />

■ 5MHz Gain-B<strong>and</strong>width Product<br />

■ Fast Settling Time: 1.3µs to 0.02%<br />

■ 150µV Offset Voltage (<strong>LT1057</strong>): 450µV Max<br />

■ 180µV Offset Voltage (<strong>LT1058</strong>): 600µV Max<br />

■ 2µV/°C V OS Drift: 7µV/°C Max<br />

■ 50pA Bias Current at 70°C<br />

■ Low Voltage Noise:<br />

13nV/√Hz at 1kHz<br />

26nV/√Hz at 10Hz<br />

APPLICATIO S<br />

U<br />

■<br />

■<br />

■<br />

■<br />

■<br />

■<br />

■<br />

Precision, High Speed Instrumentation<br />

Fast, Precision Sample-<strong>and</strong>-Hold<br />

Logarithmic Amplifiers<br />

D/A Output Amplifiers<br />

Photodiode Amplifiers<br />

Voltage-to-Frequency Converters<br />

Frequency-to-Voltage Converters<br />

DESCRIPTIO<br />

U<br />

The LT ® 1057 is a matched <strong>JFET</strong> input dual op amp in the<br />

industry st<strong>and</strong>ard 8-pin configuration, featuring a<br />

combination of outst<strong>and</strong>ing high speed <strong>and</strong> precision<br />

specifications. It replaces all the popular bipolar <strong>and</strong> <strong>JFET</strong><br />

input dual op amps. In particular, the <strong>LT1057</strong> upgrades the<br />

performance of systems using the LF412A <strong>and</strong> OP-215<br />

<strong>JFET</strong> input duals.<br />

The <strong>LT1058</strong> is the lowest offset quad <strong>JFET</strong> input<br />

operational amplifier in the st<strong>and</strong>ard 14-pin configuration.<br />

It offers significant accuracy improvement over presently<br />

available <strong>JFET</strong> input quad operational amplifiers. The<br />

<strong>LT1058</strong> can replace four single precision <strong>JFET</strong> input op<br />

amps, while saving board space, power dissipation <strong>and</strong><br />

cost.<br />

Both the <strong>LT1057</strong> <strong>and</strong> <strong>LT1058</strong> are available in the plastic<br />

PDIP package <strong>and</strong> the surface mount SO package.<br />

, LTC <strong>and</strong> LT are registered trademarks of Linear Technology Corporation.<br />

TYPICAL APPLICATIO<br />

U<br />

Current Output, High Speed, High <strong>Input</strong> Impedance<br />

Instrumentation Amplifier<br />

Distribution of Offset Voltage<br />

(All Packages, <strong>LT1057</strong> <strong>and</strong> <strong>LT1058</strong>)<br />

3<br />

V2<br />

2<br />

13<br />

12<br />

V1<br />

+<br />

1/4<br />

<strong>LT1058</strong><br />

–<br />

–<br />

1/4<br />

<strong>LT1058</strong><br />

+<br />

1<br />

14<br />

7.5k<br />

4.7k 7.5k<br />

6<br />

–<br />

R<br />

1/4 7<br />

X<br />

9.1k <strong>LT1058</strong><br />

5<br />

500Ω*<br />

4.7k<br />

7.5k<br />

+<br />

6.8k<br />

1k**<br />

8<br />

1/4<br />

<strong>LT1058</strong><br />

I OUT =<br />

2(V1 – V2)<br />

R X<br />

+<br />

–<br />

10<br />

9<br />

I OUT<br />

PERCENT OF UNITS<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

–1.0<br />

V S = ±15V<br />

T A = 25°C<br />

<strong>LT1057</strong>: 610 OP AMPS<br />

<strong>LT1058</strong>: 520 OP AMPS<br />

1130 OP AMPS<br />

TESTED<br />

–0.6 –0.2 0 0.2 0.6 1.0<br />

INPUT OFFSET VOLTAGE (mV)<br />

<strong>LT1057</strong>/1058 • TA02<br />

*GAIN ADJUST<br />

**COMMON MODE REJECTION ADJUST<br />

BANDWIDTH ≈ 2MHz<br />

<strong>LT1057</strong>/1058 • TA01<br />

10578fa<br />

1


+<br />

–<br />

<strong>LT1057</strong>/<strong>LT1058</strong><br />

ABSOLUTE AXI U RATI GS<br />

W W W<br />

Supply Voltage ...................................................... ± 20V<br />

Differential <strong>Input</strong> Voltage ....................................... ± 40V<br />

<strong>Input</strong> Voltage ......................................................... ± 20V<br />

Output Short-Circuit Duration .......................... Indefinite<br />

Storage Temperature Range ................. – 65°C to 150°C<br />

Lead Temperature (Soldering, 10 sec).................. 300°C<br />

U<br />

(Note 1)<br />

Operating Temperature Range<br />

<strong>LT1057</strong>AM/<strong>LT1057</strong>M/<br />

<strong>LT1058</strong>AM/<strong>LT1058</strong>M (OBSOLETE)...– 55°C to 125°C<br />

<strong>LT1057</strong>AC/<strong>LT1057</strong>C/<strong>LT1057</strong>S<br />

<strong>LT1058</strong>AC/<strong>LT1058</strong>C/<strong>LT1058</strong>S ................ 0°C to 70°C<br />

<strong>LT1057</strong>I ...................................... –40°C ≤ T A ≤ 85°C<br />

U U W<br />

PACKAGE/ORDER I FOR ATIO<br />

NC<br />

NC<br />

OUT A<br />

–IN A<br />

+IN A<br />

V –<br />

NC<br />

NC<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

OUTPUT A<br />

–IN A<br />

+IN A<br />

V +<br />

+IN B<br />

–IN B<br />

OUTPUT B<br />

– A<br />

+<br />

TOP VIEW<br />

SW PACKAGE<br />

16-LEAD PLASTIC (WIDE) SO<br />

T JMAX = 150°C, θ JA = 90°C/W<br />

ORDER PART<br />

NUMBER<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

– A<br />

+<br />

+<br />

B –<br />

B<br />

<strong>LT1057</strong>SW<br />

<strong>LT1057</strong>ISW<br />

TOP VIEW<br />

16 NC<br />

15 NC<br />

14 V +<br />

13 OUT B<br />

12 –IN B<br />

11 +IN B<br />

10 NC<br />

9 NC<br />

D<br />

14<br />

13<br />

12<br />

11<br />

10<br />

9<br />

8<br />

N14 PACKAGE<br />

14-LEAD PDIP<br />

T JMAX = 110°C, θ JA = 130°C/W<br />

J14 PACKAGE 14-LEAD CERDIP<br />

T JMAX = 150°C, θ JA = 100°C/W<br />

C<br />

+<br />

–<br />

–<br />

+<br />

OUT A<br />

–IN A<br />

+IN A<br />

V +<br />

+IN B<br />

–IN B<br />

OUT B<br />

NC<br />

OUTPUT D<br />

–IN D<br />

+IN D<br />

V –<br />

+IN C<br />

–IN C<br />

OUTPUT C<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

TOP VIEW<br />

– A<br />

+<br />

+<br />

B –<br />

D<br />

SW PACKAGE<br />

16-LEAD PLASTIC (WIDE) SO<br />

T JMAX =150°C, θ JA =90°C/W<br />

C<br />

ORDER PART<br />

NUMBER<br />

<strong>LT1058</strong>SW<br />

<strong>LT1058</strong>ISW<br />

ORDER PART<br />

NUMBER<br />

<strong>LT1058</strong>ACN<br />

<strong>LT1058</strong>CN<br />

<strong>LT1058</strong>AMJ<br />

<strong>LT1058</strong>MJ<br />

<strong>LT1058</strong>ACJ<br />

<strong>LT1058</strong>CJ<br />

+<br />

–<br />

–<br />

+<br />

16 OUT D<br />

15 –IN D<br />

14 +IN D<br />

13 V –<br />

12 +IN C<br />

11 –IN C<br />

10 OUT C<br />

9 NC<br />

+IN A<br />

V –<br />

+IN B<br />

–IN B<br />

TOP VIEW<br />

V +<br />

8<br />

OUTPUT A 1 7 OUTPUT B<br />

–IN A<br />

1<br />

2<br />

3<br />

4<br />

2<br />

+IN A<br />

A<br />

– +<br />

3 5<br />

4<br />

V – (CASE)<br />

+IN B<br />

–IN B<br />

H PACKAGE 8-LEAD METAL CAN<br />

OBSOLETE PACKAGE<br />

Consider the N8 or S8 Package for Alternate Source<br />

ORDER PART<br />

NUMBER<br />

<strong>LT1057</strong>ACN8<br />

<strong>LT1057</strong>CN8<br />

TOP VIEW<br />

+<br />

B<br />

–<br />

8<br />

7<br />

6<br />

5<br />

S8 PACKAGE<br />

8-LEAD PLASTIC SO<br />

T JMAX = 150°C, θ JA = 200°C/W<br />

6<br />

–IN A<br />

OUT A<br />

V +<br />

OUT B<br />

Please note that the <strong>LT1057</strong>S8/<strong>LT1057</strong>IS8 st<strong>and</strong>ard surface mount pinout<br />

differs from that of the <strong>LT1057</strong> st<strong>and</strong>ard CERDIP/PDIP packages.<br />

<strong>LT1057</strong>ACJ8<br />

<strong>LT1057</strong>CJ8<br />

<strong>LT1057</strong>AMJ8<br />

<strong>LT1057</strong>MJ8<br />

OBSOLETE PACKAGES<br />

Consider the N8, S8 or N14 Package for Alternate Source<br />

Consult LTC Marketing for parts specified with wider operating temperature ranges.<br />

ORDER PART<br />

NUMBER<br />

<strong>LT1057</strong>S8<br />

<strong>LT1057</strong>IS8<br />

S8 PART MARKING<br />

TOP VIEW<br />

1057<br />

1057I<br />

ORDER PART<br />

NUMBER<br />

<strong>LT1057</strong>AMH<br />

<strong>LT1057</strong>MH<br />

<strong>LT1057</strong>ACH<br />

<strong>LT1057</strong>CH<br />

OUTPUT 1<br />

8 V +<br />

–IN A 2 – 7 OUTPUT B<br />

A<br />

+<br />

+IN A 3<br />

6 – IN B<br />

V – B<br />

4<br />

5 + IN B<br />

N8 PACKAGE<br />

8-LEAD PDIP<br />

T JMAX = 100°C, θ JA = 130°C/W<br />

J8 PACKAGE 8-LEAD CERDIP<br />

T JMAX = 150°C, θ JA = 100°C/W<br />

+<br />

–<br />

2<br />

10578fa


<strong>LT1057</strong>/<strong>LT1058</strong><br />

ELECTRICAL CHARACTERISTICS<br />

V S = ± 15V, T A = 25°C, V CM = 0V unless otherwise noted. (Note 2)<br />

<strong>LT1057</strong>AM/<strong>LT1058</strong>AM <strong>LT1057</strong>M/<strong>LT1058</strong>M<br />

<strong>LT1057</strong>AC/<strong>LT1058</strong>AC <strong>LT1057</strong>C/<strong>LT1058</strong>C<br />

SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS<br />

V OS <strong>Input</strong> Offset Voltage <strong>LT1057</strong> 150 450 200 800 µV<br />

<strong>LT1057</strong> (S8 Package) 220 1200 µV<br />

<strong>LT1058</strong> 180 600 250 1000 µV<br />

l OS <strong>Input</strong> Offset Current Fully Warmed Up 3 40 4 50 pA<br />

l B <strong>Input</strong> Bias Current Fully Warmed Up ± 5 ± 50 ± 7 ± 75 pA<br />

<strong>Input</strong> Resistance Differential 10 12 10 12 Ω<br />

Common Mode V CM = – 11V to 8V 10 12 10 12 Ω<br />

Common Mode V CM = 8V to 11V 10 11 10 11 Ω<br />

<strong>Input</strong> Capacitance 4 4 pF<br />

e n <strong>Input</strong> Noise Voltage 0.1Hz to 10Hz, <strong>LT1057</strong> 2.0 2.1 µV P-P<br />

<strong>LT1058</strong> 2.4 2.5 µV P-P<br />

e n <strong>Input</strong> Noise Voltage Density f O = 10Hz 26 28 nV/√Hz<br />

f O = 1kHz (Note 3) 13 22 14 24 nV/√Hz<br />

i n <strong>Input</strong> Noise Current Density f O = 10Hz, 1kHz (Note 4) 1.5 4 1.8 6 fA/√Hz<br />

A VOL Large-Signal Voltage Gain V O = ±10V, R L = 2k 150 350 100 300 V/mV<br />

V O = ±10V, R L = 1k 120 250 80 220 V/mV<br />

<strong>Input</strong> Voltage Range ±10.5 14.3 ±10.5 14.3 V<br />

– 11.5 – 11.5 V<br />

CMRR Common Mode Rejection Ratio <strong>LT1057</strong> 86 100 82 98 dB<br />

<strong>LT1058</strong> 84 98 80 96 dB<br />

PSRR Power Supply Rejection Ratio V S = ±10V to ±18V 88 103 86 102 dB<br />

V OUT Output Voltage Swing R L = 2k ±12 ±13 ±12 ±13 V<br />

SR Slew Rate 10 14 8 13 V/µs<br />

GBW Gain-B<strong>and</strong>width Product f = 1MHz (Note 6) 3.5 5 3 5 MHz<br />

I S Supply Current Per Amplifier 1.6 2.5 1.7 2.8 mA<br />

Channel Separation DC to 5kHz, V IN = ±10V 132 130 dB<br />

(<strong>LT1057</strong>/<strong>LT1058</strong> SW Package Only), V S = ± 15V, T A = 25°C, V CM = 0V unless otherwise noted.<br />

SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS<br />

V OS <strong>Input</strong> Offset Voltage <strong>LT1057</strong> 0.3 2 mV<br />

<strong>LT1058</strong> 0.35 2.5<br />

l OS <strong>Input</strong> Offset Current Fully Warmed Up 5 50 pA<br />

l B <strong>Input</strong> Bias Current Fully Warmed Up ±10 ±100 pA<br />

<strong>Input</strong> Resistance –Differential 0.4 TΩ<br />

–Common-Mode V CM = – 11V to 8V 0.4<br />

V CM = 8V to 11V 0.05<br />

<strong>Input</strong> Capacitance 4 pF<br />

e n <strong>Input</strong> Noise Voltage 0.1Hz to 10Hz <strong>LT1057</strong> 2.1 µV P-P<br />

<strong>LT1058</strong> 2.5<br />

e n <strong>Input</strong> Noise Voltage Density f O = 10Hz 26 nV/√Hz<br />

f O = 1kHz 13<br />

10578fa<br />

3


<strong>LT1057</strong>/<strong>LT1058</strong><br />

ELECTRICAL CHARACTERISTICS<br />

(<strong>LT1057</strong>/<strong>LT1058</strong> SW Package Only), V S = ± 15V, T A = 25°C, V CM = 0V unless otherwise noted.<br />

SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS<br />

i n <strong>Input</strong> Noise Current Density f O = 10Hz, 1kHz 1.8 fA/√Hz<br />

A VOL Large-Signal Voltage Gain V O = ±10V R L = 2k 100 300 V/mV<br />

R L = 1k 50 220<br />

<strong>Input</strong> Voltage Range ±10.5 14.3 V<br />

– 11.5<br />

CMRR Common-Mode Rejection Ratio V CM = ±15V <strong>LT1057</strong> 82 98 dB<br />

<strong>LT1058</strong> 80 98<br />

PSRR Power Supply Rejection Ratio V S = ±10V to ±18V 86 102 dB<br />

V OUT Output Voltage Swing R L = 2k ±12 ±13 V<br />

SR Slew Rate 8 13 V/µs<br />

GBW Gain-B<strong>and</strong>width Product f = 1MHz (Note 6) 3 5 MHz<br />

I S Supply Current Per Amplifier 1.7 2.8 mA<br />

Channel Seperation DC to 5kHz, V IN =±10V 130 dB<br />

The ● denotes the specifications which apply over the temperature range of 0°C ≤ T A ≤ 70°C or -40°C ≤ T A ≤ 85°C (<strong>LT1057</strong>IS8),<br />

otherwise specifications are T A = 25°C. V S = ±15V, V CM = 0V, unless noted.<br />

<strong>LT1057</strong>AC<br />

<strong>LT1057</strong>C<br />

<strong>LT1058</strong>AC<br />

<strong>LT1058</strong>C<br />

SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS<br />

V OS <strong>Input</strong> Offset Voltage <strong>LT1057</strong> ● 250 800 330 1400 µV<br />

<strong>LT1057</strong>IS8 ● 500 2300 µV<br />

<strong>LT1057</strong>S8 ● 400 1900 µV<br />

<strong>LT1058</strong> ● 300 1200 400 1800 µV<br />

Average Temperature <strong>LT1057</strong> H/J8 Package ● 1.8 7 2.3 12 µV/°C<br />

Coefficient of <strong>Input</strong> N8 Package ● 3 10 4 16 µV/°C<br />

(Offset Voltage) <strong>LT1057</strong>S8 (Note 5) ● 4 16 µV/°C<br />

<strong>LT1057</strong>IS8 (Note 5) ● 4.5 16 µV/°C<br />

<strong>LT1058</strong> J Package (Note 5) ● 2.5 10 3 15 µV/°C<br />

N Package (Note 5) ● 4 15 5 22 µV/°C<br />

I OS lnput Offset Current Warmed Up, T A = 70°C 18 150 20 250 pA<br />

<strong>LT1057</strong>IS8 ● 35 600<br />

I B <strong>Input</strong> Bias Current Warmed Up, T A = 70°C ± 50 ± 250 ± 60 ± 350 pA<br />

<strong>LT1057</strong>IS8 ● ± 100 ± 900<br />

A VOL Large-Signal Voltage Gain V O = ± 10V, R L = 2k ● 70 220 50 200 V/mV<br />

CMRR Common Mode Rejection Ratio V CM = ± 10.4V ● 85 98 80 96 dB<br />

PSRR Power Supply Rejection Ratio V S = ± 10V to ± 18V ● 87 102 84 100 dB<br />

V OUT Output Voltage Swing R L = 2k ● ±12 ±12.8 ±12 ±12.8 V<br />

I S Supply Current Per Amplifier ● 2.8 3.2 mA<br />

T A = 70°C 1.4 1.5 mA<br />

4<br />

10578fa


ELECTRICAL CHARACTERISTICS<br />

<strong>LT1057</strong>/<strong>LT1058</strong><br />

(<strong>LT1057</strong>/<strong>LT1058</strong> SW Package Only.) The ● denotes specifications which<br />

apply over the temperature range of V S = ± 15V, V CM = 0V, 0°C ≤ T A ≤ 70°C (<strong>LT1057</strong>SW, <strong>LT1058</strong>SW) or –40°C ≤ T A ≤ 85°C<br />

(<strong>LT1057</strong>ISW, <strong>LT1058</strong>ISW), unless otherwise noted.<br />

SYMBOL PARAMETER CONDITIONS MIN TYP MAX UNITS<br />

V OS <strong>Input</strong> Offset Voltage <strong>LT1057</strong> ● 0.5 2.5 mV<br />

<strong>LT1058</strong>S ● 0.6 3.0<br />

<strong>LT1058</strong>IS ● 0.7 4.0<br />

Average Temperature Coefficient of ● 5 µV/°C<br />

<strong>Input</strong> Offset Voltage<br />

l OS <strong>Input</strong> Offset Current Warmed Up, T A = 70°C 20 250 pA<br />

Warmed Up, T A = 85°C 35 400<br />

l B <strong>Input</strong> Bias Current Warmed Up, T A = 70°C ± 60 ± 400 pA<br />

Warmed Up, T A = 85°C ± 100 ± 700<br />

A VOL Large Signal Volage Gain V O = ± 10V, R L = 2k <strong>LT1057</strong> ● 50 200 mV<br />

<strong>LT1058</strong> ● 40 200<br />

CMRR Common-Mode Rejection Ratio V CM = ± 10.5V <strong>LT1057</strong> ● 80 96 dB<br />

<strong>LT1058</strong> ● 78 96<br />

PSRR Power Supply Rejection Ratio V S = ± 10V to ± 18V <strong>LT1057</strong> ● 84 100 dB<br />

<strong>LT1058</strong> ● 82 100<br />

V OUT Output Voltage Swing R L = 2k ● ± 12 ± 12.8 V<br />

The ● denotes specifications which apply over the temperature range of – 55°C ≤ T A ≤ 125°C, V S = ±15V, V CM = 0V,<br />

unless otherwise noted.<br />

<strong>LT1057</strong>AM<br />

<strong>LT1057</strong>M<br />

<strong>LT1058</strong>AM<br />

<strong>LT1058</strong>M<br />

SYMBOL PARAMETER CONDITIONS MIN TYP MAX MIN TYP MAX UNITS<br />

V OS lnput Offset Voltage <strong>LT1057</strong> ● 300 1100 400 2000 µV<br />

<strong>LT1058</strong> ● 380 1600 550 2500 µV<br />

Average Temperature Coefficient <strong>LT1057</strong> ● 2.0 7 2.5 12 µV/°C<br />

of <strong>Input</strong> Offset Voltage <strong>LT1058</strong> (Note 5) ● 2.5 10 3 15 µV/°C<br />

I OS lnput Offset Current Warmed Up, T A = 125°C 0.15 2 0.2 3 nA<br />

I B <strong>Input</strong> Bias Current Warmed Up, T A = 125°C ± 0.6 ± 4.5 ± 0.7 ± 6 nA<br />

A VOL Large-Signal Voltage Gain V O = ± 10V, R L = 2k ● 40 120 30 110 V/mV<br />

CMRR Common Mode Rejection Ratio V CM = ± 10.4V ● 84 97 80 95 dB<br />

PSRR Power Supply Rejection Ratio V S = ± 10V to ± 17V ● 86 100 83 98 dB<br />

V OUT Output Voltage Swing R L = 2k ● ± 12 ± 12.7 ± 12 ± 12.6 V<br />

I S Supply Current Per Amplifier T A = 125°C 1.25 1.9 1.3 2.2 mA<br />

Note 1: Absolute Maximum Ratings are those values beyond which the life<br />

of a device may be impaired.<br />

Note 2: Typical parameters are defined as the 60% yield of distributions of<br />

individual amplifiers; (i.e., out of 100 <strong>LT1058</strong>s or, 100 <strong>LT1057</strong>s, typically<br />

240 op amps, or 120 for the <strong>LT1057</strong>, will be better than the indicated<br />

specification).<br />

Note 3: This parameter is tested on a sample basis only.<br />

Note 4: Current noise is calculated from the formula:<br />

i n = (2ql b ) 1/2<br />

where q = 1.6 • 10 – 19 coulomb. The noise of source resistors up<br />

to1G swamps the contribution of current noise.<br />

Note 5: This parameter is not 100% tested.<br />

Note 6: Gain-b<strong>and</strong>width product is not tested. It is guaranteed by<br />

design <strong>and</strong> by inference from the slew rate measurement.<br />

10578fa<br />

5


<strong>LT1057</strong>/<strong>LT1058</strong><br />

TYPICAL PERFOR A CE CHARACTERISTICS<br />

INPUT BIAS AND OFFSET CURRENT (pA)<br />

1000<br />

300<br />

100<br />

30<br />

10<br />

3<br />

0<br />

<strong>Input</strong> Bias <strong>and</strong> Offset Currents<br />

vs Temperature<br />

V S = ±15V<br />

V CM = 0V<br />

WARMED UP<br />

BIAS CURRENT<br />

UW<br />

OFFSET CURRENT<br />

25 50 75 100 125<br />

AMBIENT TEMPERATURE (°C)<br />

INPUT BIAS CURRENT, T A = 125°C (nA)<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

–0.2<br />

–15<br />

<strong>Input</strong> Bias Current Over<br />

the Common-Mode Range<br />

V S = ±15V<br />

T A = 125°C<br />

T A = 70°C<br />

T A = 25°C<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

–20<br />

–10 –5 0 5 10 15<br />

COMMON MODE INPUT VOLTAGE (V)<br />

0<br />

INPUT BIAS CURRENT, T A = 25°C TO 70°C (pA)<br />

CHANGE IN OFFSET VOLTAGE (µV)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0<br />

Warm-Up Drift<br />

V S = ± 15V<br />

T A = 25°C<br />

<strong>LT1058</strong> N PACKAGE<br />

<strong>LT1057</strong> N, <strong>LT1058</strong> J PACKAGE<br />

<strong>LT1057</strong> H PACKAGE<br />

<strong>LT1057</strong> J PACKAGE<br />

1 2 3 4 5<br />

TIME AFTER POWER ON (MINUTES)<br />

<strong>LT1057</strong>/1058 • TPC01<br />

<strong>LT1057</strong>/1058 • TPC02<br />

<strong>LT1057</strong>/1058 • TPC03<br />

NUMBER OF UNITS<br />

120<br />

100<br />

80<br />

60<br />

Distribution of Offset Voltage Drift<br />

with Temperature<br />

(H <strong>and</strong> J Package)<br />

V S = ±15V<br />

70<br />

112<br />

<strong>LT1057</strong>H: 102 OP AMPS<br />

<strong>LT1057</strong>J: 130 OP AMPS<br />

<strong>LT1058</strong>J: 136 OP AMPS<br />

368 OP AMPS<br />

96<br />

40<br />

32<br />

24<br />

20<br />

16<br />

2 4 5<br />

4<br />

2 1<br />

0<br />

–12 –9 –6 –3 0 3 6 9 12<br />

OFFSET VOLTAGE DRIFT WITH TEMPERATURE (µV/°C)<br />

<strong>LT1057</strong>/1058 • TPC04<br />

NUMBER OF UNITS<br />

120<br />

100<br />

80<br />

60<br />

Distribution of Offset Voltage Drift<br />

with Temperature<br />

(Plastic N Package)<br />

V S = ±15V<br />

70<br />

60<br />

<strong>LT1057</strong>N: 180 OP AMPS<br />

<strong>LT1058</strong>N: 176 OP AMPS<br />

356 OP AMPS<br />

44<br />

40<br />

31<br />

27<br />

22<br />

20<br />

9<br />

11<br />

4<br />

5 3<br />

0<br />

–12 –9 –6 –3 0 3 6 9 12<br />

OFFSET VOLTAGE DRIFT WITH TEMPERATURE (µV/°C)<br />

65<br />

1 UNIT EACH AT<br />

–19, –16, –13<br />

14, 16µV/°C<br />

<strong>LT1057</strong>/1058 • TPC05<br />

OFFSET VOLTAGE CHANGE (µV)<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

–10<br />

–20<br />

–30<br />

–40<br />

–50<br />

0<br />

Long-Term Drift of<br />

Representative Units<br />

V S = ±15V<br />

T A = 25°C<br />

1 2 3 4 5<br />

TIME (MONTHS)<br />

<strong>LT1057</strong>/1058 • TPC06<br />

RMS VOLTAGE NOISE DENSITY (nV/√Hz)<br />

1000<br />

6<br />

70<br />

50<br />

30<br />

20<br />

Voltage Noise vs Frequency<br />

V S = ±15V<br />

T A = 25°C<br />

1/f CORNER = 28Hz<br />

10<br />

3 10 30 100 300 1000 3000 10000<br />

FREQUENCY (Hz)<br />

<strong>LT1057</strong>/1058 • TPC07<br />

NOISE VOLTAGE (1µV/DIV)<br />

0.1Hz to 10Hz Noise<br />

0<br />

V S = ±15V<br />

T A = 25°C<br />

2 4 6 8 10<br />

TIME (SECONDS)<br />

<strong>LT1057</strong>/1058 • TPC08<br />

VOLTAGE GAIN (V/mV)<br />

1000<br />

300<br />

100<br />

30<br />

Voltage Gain vs Temperature<br />

R L = 2k<br />

R L = 1k<br />

V S = ±15V<br />

V 0 = ±10V<br />

10<br />

–75 –25 25 75 125<br />

TEMPERATURE (°C)<br />

<strong>LT1057</strong>/1058 • TPC09<br />

10578fa


<strong>LT1057</strong>/<strong>LT1058</strong><br />

TYPICAL PERFOR A CE CHARACTERISTICS<br />

UW<br />

5V/DIV<br />

Large-Signal Response<br />

A V = +1<br />

C L = 100pF<br />

0.5µs/DIV<br />

SLEW RATE (V/µs)<br />

30<br />

20<br />

10<br />

Slew Rate, Gain-B<strong>and</strong>width<br />

Product vs Temperature<br />

0<br />

–50<br />

SLEW FALL<br />

GBW<br />

SLEW RISE<br />

V S = ±15V<br />

–25 0 25 50 75 100 125<br />

TEMPERATURE (°C)<br />

10<br />

8<br />

6<br />

4<br />

2<br />

GAIN BANDWIDTH PRODUCT (MHz)<br />

PEAK-TO-PEAK OUTPUT SWING (V)<br />

30<br />

24<br />

18<br />

12<br />

6<br />

Undistorted Output Swing vs<br />

Frequency<br />

0<br />

100k<br />

1M<br />

FREQUENCY (Hz)<br />

V S = ±15V<br />

T A = 25°C<br />

10M<br />

<strong>LT1057</strong>/1058 • TPC10<br />

<strong>LT1057</strong>/1058 • TPC11<br />

Small-Signal Response<br />

Gain, Phase Shift vs Frequency<br />

Capacitive Load H<strong>and</strong>ling<br />

140<br />

120<br />

100<br />

80<br />

70<br />

V S = ±15V<br />

T A = 25°C<br />

20mV/DIV<br />

A V = +1<br />

C L = 100pF<br />

0.2µs/DIV<br />

GAIN (dB)<br />

100<br />

80<br />

60<br />

40<br />

PHASE MARGIN = 58°<br />

GAIN<br />

20<br />

160<br />

V S = ±15V<br />

0 T A = 25°C<br />

C L = 10pF<br />

–20<br />

180<br />

1 10 100 1k 10k 100k 1M 10M 100M<br />

FREQUENCY (Hz)<br />

PHASE<br />

120<br />

140<br />

PHASE SHIFT (DEGREES)<br />

OVERSHOOT (%)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

10<br />

A V = –1<br />

A V = +1<br />

A V = 10<br />

100 1000 10000<br />

CAPACITIVE LOAD (pF)<br />

<strong>LT1057</strong>/1058 • TPC12<br />

<strong>LT1057</strong>/1058 • TPC13<br />

OUTPUT VOLTAGE SWING FROM 0V (V)<br />

10<br />

5<br />

0<br />

–5<br />

–10<br />

0<br />

Settling Time<br />

10mV<br />

10mV<br />

0.5mV<br />

0.5mV<br />

FROM LEFT TO RIGHT:<br />

SETTLING TIME TO 10mV, 5mV, 2mV,<br />

1mV, 0.5mV<br />

1 2<br />

SETTLING TIME (µs)<br />

V S = ±15V<br />

T A = 25°C<br />

3<br />

<strong>LT1057</strong>/1058 • TPC14<br />

CHANNEL SEPARATION (dB)<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

1<br />

Channel Separation vs Frequency<br />

LIMITED BY<br />

THERMAL<br />

INTERACTION<br />

AT DC = 132dB<br />

R S = 1k<br />

LIMITED BY<br />

PIN-TO-PIN<br />

CAPACITANCE<br />

V S = ±15V<br />

T A = 25°C<br />

V IN = 20V P-P TO 5kHz<br />

R L = 2k<br />

10 100 1k 10k<br />

FREQUENCY (Hz)<br />

R S = 10Ω<br />

100k<br />

<strong>LT1057</strong>/1058 • TPC15<br />

1M<br />

OUTPUT IMPEDANCE (Ω)<br />

100<br />

10<br />

1<br />

0.1<br />

1k<br />

Output Impedance vs Frequency<br />

V S = ±15V<br />

T A = 25°C<br />

A V = 100<br />

A V = 10<br />

A V = 1<br />

10k 100k 10M<br />

FREQUENCY (Hz)<br />

<strong>LT1057</strong>/1058 • TPC16<br />

10578fa<br />

7


<strong>LT1057</strong>/<strong>LT1058</strong><br />

TYPICAL PERFOR A CE CHARACTERISTICS<br />

UW<br />

CMRR (dB)<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Common Mode Rejection Ratio<br />

vs Frequency<br />

0<br />

10<br />

100 1k 10k 100k<br />

FREQUENCY (Hz)<br />

V S = ±15V<br />

T A = 25°C<br />

1M<br />

<strong>LT1057</strong>/1058 • TPC17<br />

10M<br />

COMMON MODE RANGE (V)<br />

15<br />

14<br />

13<br />

12<br />

11<br />

±10<br />

–11<br />

–12<br />

–13<br />

Common Mode Range<br />

vs Temperature<br />

–14<br />

V S = ±15V<br />

–15<br />

–50 0 50<br />

TEMPERATURE (°C)<br />

100<br />

<strong>LT1057</strong>/1058 • TPC18<br />

CMRR, PSRR (dB)<br />

120<br />

110<br />

100<br />

90<br />

Common Mode <strong>and</strong> Power Supply<br />

Rejections vs Temperature<br />

V S = ±10V TO ±17V FOR PSRR<br />

V S = ±15V, V CM = ±10.5V FOR CMRR<br />

PSRR<br />

CMRR<br />

–25 25 75 125<br />

TEMPERATURE (°C)<br />

<strong>LT1057</strong>/1058 • TPC19<br />

POWER SUPPLY REJECTION RATIO (dB)<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Power Supply Rejection Ratio<br />

vs Frequency<br />

T A = 25°C<br />

NEGATIVE<br />

SUPPLY<br />

POSITIVE<br />

SUPPLY<br />

SUPPLY CURRENT PER AMPLIFIER (mA)<br />

3<br />

2<br />

1<br />

Supply Current<br />

vs Temperature<br />

V S = ±10V<br />

V S = ±15V<br />

SHORT-CIRCUIT CURRENT (mA)<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

–10<br />

–20<br />

–30<br />

–40<br />

Short-Circuit Current vs Time<br />

(One Output Shorted to Ground)<br />

V S = ±15V<br />

T A = –55°C<br />

T A = 25°C<br />

T A = 125°C<br />

T A = 125°C<br />

T A = 25°C<br />

T A = –55°C<br />

0<br />

10<br />

100 1k 10k 100k 1M 10M<br />

FREQUENCY (Hz)<br />

0<br />

–50<br />

–25 0 25 50 75 100 125<br />

TEMPERATURE (°C)<br />

–50<br />

0 1 2<br />

3<br />

TIME FROM OUTPUT SHORT TO GROUND (MINUTES)<br />

<strong>LT1057</strong>/1058 • TPC20<br />

<strong>LT1057</strong>/1058 • TPC21<br />

<strong>LT1057</strong>/1058 • TPC22<br />

APPLICATIO S I FOR ATIO<br />

The <strong>LT1057</strong> may be inserted directly in LF353, LF412,<br />

LF442, TL072, TL082 <strong>and</strong> OP-215 sockets. The <strong>LT1058</strong><br />

plugs into LF347, LF444, TL074 <strong>and</strong> TL084 sockets. Of<br />

course, all st<strong>and</strong>ard dual <strong>and</strong> quad bipolar op amps can<br />

also be replaced by these devices.<br />

High Speed Operation<br />

When the feedback around the op amp is resistive (R F ) a<br />

pole will be created with R F , the source resistance <strong>and</strong><br />

capacitance (R S , C S ), <strong>and</strong> the amplifier input capacitance<br />

(C IN ≈ 4pF). In low closed loop gain configurations <strong>and</strong><br />

8<br />

U W U U<br />

with R S <strong>and</strong> R F in the kilohm range, this pole can create<br />

excess phase shift <strong>and</strong> even oscillation. A small capacitor<br />

(C F ) in parallel with R F eliminates this problem. With<br />

R S (C S + C IN ) = R F C F , the effect of the feedback pole is<br />

completely removed.<br />

R S<br />

C S<br />

–<br />

+<br />

C F<br />

C IN<br />

R F<br />

OUTPUT<br />

<strong>LT1057</strong>/<strong>LT1058</strong> • AI01<br />

10578fa


<strong>LT1057</strong>/<strong>LT1058</strong><br />

APPLICATIO S I FOR ATIO<br />

Settling time is measured in a test circuit which can<br />

be found in the LT1055/LT1056 data sheet <strong>and</strong> in<br />

Application Note 10.<br />

Achieving Picoampere/Microvolt Performance<br />

In order to realize the picoampere/microvolt level accuracy<br />

of the <strong>LT1057</strong>/<strong>LT1058</strong>, proper care must be exercised. For<br />

example, leakage currents in circuitry external to the op<br />

amp can significantly degrade performance. High quality<br />

insulation should be used (e.g., Teflon TM , Kel-F); cleaning<br />

of all insulating surfaces to remove fluxes <strong>and</strong> other<br />

residues will probably be required. Surface coating may be<br />

necessary to provide a moisture barrier in high humidity<br />

environments.<br />

Board leakage can be minimized by encircling the input<br />

circuitry with a guard ring operated at a potential close to<br />

that of the inputs; in inverting configurations, the guard<br />

ring should be tied to ground, in noninverting connections,<br />

to the inverting input. Guarding both sides of the<br />

printed circuit board is required. Bulk leakage reduction<br />

depends on the guard ring width.<br />

The <strong>LT1057</strong>/<strong>LT1058</strong> have the lowest offset voltage of<br />

any dual <strong>and</strong> quad <strong>JFET</strong> input op amps available today.<br />

However, the offset voltage <strong>and</strong> its drift with time <strong>and</strong><br />

temperature are still not as good as on the best bipolar<br />

amplifiers (because the transconductance of FETs is<br />

considerably lower than that of bipolar transistors).<br />

Conversely, this lower transconductance is the main cause<br />

of the significantly faster speed performance of FET input<br />

op amps.<br />

Teflon is a trademark of DuPont.<br />

U W U U<br />

Offset voltage also changes somewhat with temperature<br />

cycling. The AM grades show a typical 40µV hysteresis<br />

(50µV on the M grades) when cycled over the – 55°C to<br />

125°C temperature range. Temperature cycling from 0°C<br />

to 70°C has a negligible (less than 20µV) hysteresis effect.<br />

The offset voltage <strong>and</strong> drift performance are also affected<br />

by packaging. In the plastic N package, the molding<br />

compound is in direct contact with the chip, exerting<br />

pressure on the surface. While NPN input transistors are<br />

largely unaffected by this pressure, <strong>JFET</strong> device drift is<br />

degraded. Consequently for best drift performance, as<br />

shown in the Typical Performance Characteristics distribution<br />

plots, the J or H packages are recommended.<br />

In applications where speed <strong>and</strong> picoampere bias currents<br />

are not necessary, Linear Technology offers the bipolar<br />

input, pin compatible LT1013 <strong>and</strong> LT1014 dual <strong>and</strong> quad<br />

op amps. These devices have significantly better DC<br />

specifications than any <strong>JFET</strong> input device.<br />

Phase Reversal Protection<br />

Most industry st<strong>and</strong>ard <strong>JFET</strong> input single, dual <strong>and</strong> quad<br />

op amps (e.g., LF156, LF351, LF353, LF411, LF412,<br />

OP-15, OP-16, OP-215, TL084) exhibit phase reversal at<br />

the output when the negative common mode limit at the<br />

input is exceeded (i.e., below – 12V with ± 15V supplies).<br />

The photos below show a ± 16V sine wave input (A), the<br />

response of an LF412A in the unity gain follower mode (B),<br />

<strong>and</strong> the response of the <strong>LT1057</strong>/<strong>LT1058</strong> (C).<br />

The phase reversal of photo (B) can cause lock-up in servo<br />

systems. The <strong>LT1057</strong>/<strong>LT1058</strong> does not phase-reverse<br />

due to a unique phase reversal protection circuit.<br />

(A) ± 16V Sine Wave <strong>Input</strong><br />

(B) LF412A Output<br />

All Photos 5V/Div Vertical Scale, 50µs/Div Horizontal Scale<br />

(C) <strong>LT1057</strong>/<strong>LT1058</strong> Output<br />

10578fa<br />

9


<strong>LT1057</strong>/<strong>LT1058</strong><br />

TYPICAL APPLICATIO S<br />

U<br />

Low Noise, Wideb<strong>and</strong>, Gain = 100 Amplifier with High <strong>Input</strong> Impedance<br />

4.3k<br />

470Ω<br />

–<br />

1/4<br />

<strong>LT1058</strong><br />

+<br />

2.4k 7.5k<br />

500Ω<br />

INPUT<br />

470Ω<br />

–<br />

1/4<br />

<strong>LT1058</strong><br />

+<br />

4.3k<br />

2.4k<br />

–<br />

+<br />

1/4<br />

<strong>LT1058</strong><br />

OUTPUT<br />

4.3k 2.4k<br />

470Ω<br />

–<br />

1/4<br />

<strong>LT1058</strong><br />

+<br />

–3dB BANDWIDTH = 350kHZ<br />

GAIN-BANDWIDTH PRODUCT = 35MHz<br />

WIDEBAND NOISE =<br />

13nV/√Hz<br />

= 7.5nV/√Hz REFERRED TO INPUT<br />

√3<br />

RMS NOISE DC TO FULL BANDWIDTH = 7µV<br />

<strong>LT1057</strong>/1058 • A01<br />

Wideb<strong>and</strong>, High <strong>Input</strong> Impedance, Gain = 1000 Amplifier<br />

4.7k<br />

1k<br />

4.7k<br />

1k<br />

INPUT<br />

–<br />

1/4<br />

<strong>LT1058</strong><br />

+<br />

+<br />

–<br />

1/4<br />

<strong>LT1058</strong><br />

–<br />

+<br />

1/4<br />

<strong>LT1058</strong><br />

+<br />

–<br />

1/4<br />

<strong>LT1058</strong><br />

OUTPUT<br />

4.7k<br />

4.7k<br />

1k<br />

1k<br />

–3dB BANDWIDTH = 400kHz<br />

GAIN-BANDWIDTH PRODUCT = 400MHz<br />

WIDEBAND NOISE = 13nV/√Hz REFERRED TO INPUT<br />

100Ω<br />

<strong>LT1057</strong>/1058 • A02<br />

Low Distortion, Crystal Stabilized Oscillator<br />

130Ω<br />

COMMON MODE<br />

SUPPRESSION<br />

–<br />

1/2<br />

<strong>LT1057</strong><br />

+<br />

15pF<br />

CRYSTAL<br />

20kHz<br />

NT CUT<br />

100k<br />

100Ω<br />

#327<br />

LAMP<br />

–<br />

1/2<br />

<strong>LT1057</strong><br />

+<br />

0.01µF<br />

OSCILLATOR<br />

1V RMS OUT<br />

20kHz<br />

0.005%<br />

DISTORTION<br />

<strong>LT1057</strong>/1058 • A03<br />

10<br />

10578fa


<strong>LT1057</strong>/<strong>LT1058</strong><br />

TYPICAL APPLICATIO S<br />

U<br />

Fast, Precision Bridge Amplifier<br />

–<br />

+<br />

1/2<br />

<strong>LT1057</strong><br />

330pF<br />

10k<br />

10k<br />

1k<br />

INPUT<br />

–<br />

330pF<br />

R<br />

1/2<br />

LOAD<br />

<strong>LT1057</strong> LT1010 LT1010<br />

+<br />

SLEW RATE = 14V/µs<br />

OUTPUT CURRENT TO LOAD = 150mA<br />

LOAD CAPACITANCE: UP TO 1µF<br />

<strong>LT1057</strong>/1058 • A04<br />

Analog Divider<br />

80.6k*<br />

20k<br />

1µF<br />

LTC1043<br />

B INPUT 7 8<br />

12<br />

11<br />

–5V<br />

1k<br />

LT1004<br />

1.2V<br />

+<br />

1µF<br />

6<br />

LTC1043<br />

2<br />

5<br />

0.001<br />

POLYSTYRENE<br />

–<br />

+<br />

5V<br />

1/2<br />

<strong>LT1057</strong><br />

–5V<br />

OUTPUT =<br />

A<br />

B<br />

13 14<br />

1µF<br />

16<br />

A INPUT<br />

75k*<br />

–<br />

+<br />

1/2<br />

<strong>LT1057</strong><br />

30pF<br />

22k<br />

330k<br />

* 1% FILM<br />

2N2907<br />

–5V<br />

1µF<br />

<strong>LT1057</strong>/1058 • A05<br />

10578fa<br />

11


<strong>LT1057</strong>/<strong>LT1058</strong><br />

TYPICAL APPLICATIO S<br />

U<br />

1k<br />

LTC1043<br />

–5V<br />

6 2<br />

5<br />

Bipolar <strong>Input</strong> (AC) V/F Converter<br />

LT1004<br />

2.5V<br />

0.1µF<br />

16<br />

INPUT<br />

±1V<br />

36.5k*<br />

10k<br />

18 3 15<br />

0.01<br />

POLYSTYRENE<br />

–<br />

+<br />

5V<br />

1/4<br />

<strong>LT1058</strong><br />

–5V<br />

1µF<br />

2N3906<br />

1M*<br />

1M*<br />

+<br />

–<br />

1/4<br />

<strong>LT1058</strong><br />

1M* 1M*<br />

10k<br />

10k<br />

–<br />

+<br />

22k<br />

1/4<br />

<strong>LT1058</strong><br />

150pF<br />

DATA<br />

OUTPUT<br />

0kHz TO 1kHz<br />

–<br />

+<br />

1/4<br />

<strong>LT1058</strong><br />

SIGN<br />

BIT<br />

0.1µF<br />

*1% FILM<br />

MATCH 1M RESISTORS TO 0.05%<br />

<strong>LT1057</strong>/1058 • A06<br />

12-Bit A/D Converter<br />

10k<br />

INTEGRATOR<br />

FLIP-FLOP<br />

15V<br />

0.001µF<br />

–<br />

+<br />

1/4<br />

<strong>LT1058</strong><br />

CLOCK<br />

10k<br />

2k<br />

B OUT<br />

E IN<br />

100k*<br />

0.01µF<br />

–<br />

+<br />

–15V<br />

5V<br />

1/4<br />

<strong>LT1058</strong><br />

6.8k<br />

–5V<br />

10k<br />

180pF<br />

2N3906<br />

2<br />

14<br />

5<br />

1<br />

74C74<br />

6<br />

68pF<br />

4<br />

7<br />

3<br />

10k<br />

15V<br />

10k<br />

10k<br />

10k<br />

+<br />

1/4<br />

<strong>LT1058</strong><br />

–<br />

OUTPUT<br />

GATE<br />

A OUT<br />

4 16<br />

LTC1043<br />

CURRENT<br />

SWITCH<br />

15<br />

18<br />

–15V<br />

820Ω LEVEL<br />

SHIFT<br />

17 3<br />

–15V<br />

2N4393<br />

A<br />

DATA OUTPUT = OUT<br />

B OUT<br />

*VISHAY S-102 RESISTOR 95k*<br />

1/4<br />

<strong>LT1058</strong><br />

10k<br />

+<br />

–<br />

OUT<br />

LT1021 IN<br />

10V<br />

GND<br />

1k<br />

NC<br />

–15V<br />

<strong>LT1057</strong>/1058 • A07<br />

12<br />

10578fa


<strong>LT1057</strong>/<strong>LT1058</strong><br />

TYPICAL APPLICATIO S<br />

U<br />

Instrumentation Amplifier with Shield Driver<br />

3<br />

2<br />

+<br />

1/4<br />

<strong>LT1058</strong><br />

–<br />

1<br />

1k<br />

R F<br />

9.1k<br />

10k<br />

INPUT<br />

+<br />

–<br />

GUARD<br />

GUARD<br />

8<br />

1/4<br />

<strong>LT1058</strong><br />

+<br />

–<br />

10<br />

9<br />

R G<br />

1k<br />

R G<br />

1k<br />

5<br />

6<br />

+<br />

–<br />

15V<br />

4<br />

1/4<br />

<strong>LT1058</strong><br />

11<br />

–15V<br />

7<br />

OUTPUT<br />

13<br />

12<br />

–<br />

1/4<br />

<strong>LT1058</strong><br />

+<br />

14<br />

R F<br />

9.1k<br />

1k<br />

10k<br />

GAIN = 10(1+R F /R G ) ≈ 100<br />

I B = 5pA<br />

R IN = 10 12 Ω<br />

BW = 350kHz<br />

<strong>LT1057</strong>/1058 • A08<br />

100dB Range Logarithmic Photodiode Amplifier<br />

15V<br />

LT1021-10V<br />

IN<br />

750k*<br />

500pF<br />

50k*<br />

–<br />

1/2<br />

I <strong>LT1057</strong><br />

P<br />

+<br />

–<br />

OUT<br />

10k*<br />

10k*<br />

6 Q4<br />

5<br />

4<br />

2k<br />

2k<br />

–<br />

LM301A<br />

+<br />

11<br />

0.033µF<br />

Q5<br />

10<br />

12<br />

3k<br />

2<br />

+<br />

1M<br />

1M<br />

FULL-SCALE<br />

TRIM<br />

1/2<br />

<strong>LT1057</strong><br />

1<br />

3<br />

Q2<br />

0.01µF<br />

50k<br />

DARK<br />

TRIM<br />

E OUT<br />

33Ω<br />

15<br />

14<br />

Q1<br />

= HP-5082-4204 PIN PHOTODIODE.<br />

Q1–Q5 = CA3096.<br />

CONNECT SUBSTRATE OF CA3096<br />

ARRAY TO Q4’s EMITTER.<br />

*1% RESISTOR<br />

100dB RANGE LOGARITHMIC PHOTODIODE AMPLIFIER<br />

13<br />

7<br />

Q3<br />

9<br />

15V<br />

8<br />

LIGHT (900µM)<br />

1MW<br />

100µW<br />

10µW<br />

1µW<br />

100nW<br />

10nW<br />

RE<strong>SP</strong>ONSE DATA<br />

DIODE CURRENT<br />

350µA<br />

35µA<br />

3.5µA<br />

350nA<br />

35nA<br />

3.5nA<br />

CIRCUIT OUTPUT<br />

10.0V<br />

7.85V<br />

5.70V<br />

3.55V<br />

1.40V<br />

–0.75V<br />

<strong>LT1057</strong>/1058 • A09<br />

10578fa<br />

13


<strong>LT1057</strong>/<strong>LT1058</strong><br />

PACKAGE DESCRIPTIO<br />

U<br />

H Package<br />

8-Lead TO-5 Metal Can (.200 Inch PCD)<br />

(Reference LTC DWG # 05-08-1320)<br />

45°TYP<br />

.028 – .034<br />

(0.711 – 0.864)<br />

.110 – .160<br />

(2.794 – 4.064)<br />

INSULATING<br />

STANDOFF<br />

.027 – .045<br />

(0.686 – 1.143)<br />

PIN 1<br />

.200<br />

(5.080)<br />

TYP<br />

SEATING<br />

PLANE<br />

.010 – .045*<br />

(0.254 – 1.143)<br />

.335 – .370<br />

(8.509 – 9.398)<br />

DIA<br />

.305 – .335<br />

(7.747 – 8.509)<br />

.040<br />

(1.016)<br />

MAX<br />

.050<br />

(1.270)<br />

MAX<br />

.165 – .185<br />

(4.191 – 4.699)<br />

.016 – .021**<br />

(0.406 – 0.533)<br />

GAUGE<br />

PLANE<br />

.500 – .750<br />

(12.700 – 19.050)<br />

REFERENCE<br />

PLANE<br />

* LEAD DIAMETER IS UNCONTROLLED BETWEEN THE REFERENCE PLANE<br />

AND THE SEATING PLANE<br />

.016 – .024<br />

** FOR SOLDER DIP LEAD FINISH, LEAD DIAMETER IS<br />

(0.406 – 0.610)<br />

H8(TO-5) 0.200 PCD 0801<br />

J8 Package<br />

8-Lead CERDIP (Narrow .300 Inch, Hermetic)<br />

(Reference LTC DWG # 05-08-1110)<br />

.300 BSC<br />

(7.62 BSC)<br />

CORNER LEADS OPTION<br />

(4 PLCS)<br />

.200<br />

(5.080)<br />

MAX<br />

.005<br />

(0.127)<br />

MIN<br />

.405<br />

(10.287)<br />

MAX<br />

8 7 6 5<br />

.008 – .018<br />

(0.203 – 0.457)<br />

0° – 15°<br />

NOTE: LEAD DIMENSIONS APPLY TO SOLDER<br />

DIP/PLATE OR TIN PLATE LEADS<br />

.045 – .068<br />

(1.143 – 1.650)<br />

FULL LEAD<br />

OPTION<br />

.023 – .045<br />

(0.584 – 1.143)<br />

HALF LEAD<br />

OPTION<br />

.045 – .065<br />

(1.143 – 1.651)<br />

.014 – .026<br />

(0.360 – 0.660)<br />

.015 – .060<br />

(0.381 – 1.524)<br />

.100<br />

(2.54)<br />

BSC<br />

.125<br />

3.175<br />

MIN<br />

.025<br />

(0.635)<br />

RAD TYP<br />

1 2 3 4<br />

.220 – .310<br />

(5.588 – 7.874)<br />

J8 0801<br />

J Package<br />

14-Lead CERDIP (Narrow .300 Inch, Hermetic)<br />

(Reference LTC DWG # 05-08-1110)<br />

.300 BSC<br />

(7.62 BSC)<br />

.015 – .060<br />

(0.381 – 1.524)<br />

.200<br />

(5.080)<br />

MAX<br />

.005<br />

(0.127)<br />

MIN<br />

.785<br />

(19.939)<br />

MAX<br />

14 13 12 11 10 9 8<br />

.008 – .018<br />

(0.203 – 0.457)<br />

NOTE: LEAD DIMENSIONS APPLY<br />

TO SOLDER DIP/PLATE OR TIN<br />

PLATE LEADS<br />

0° – 15°<br />

.045 – .065<br />

(1.143 – 1.651)<br />

.014 – .026<br />

(0.360 – 0.660)<br />

.100<br />

(2.54)<br />

BSC<br />

.025<br />

(0.635)<br />

.125<br />

RAD TYP<br />

(3.175)<br />

MIN<br />

J14 0801<br />

1 2 3 4 5 6 7<br />

.220 – .310<br />

(5.588 – 7.874)<br />

OBSOLETE PACKAGES<br />

14<br />

10578fa


<strong>LT1057</strong>/<strong>LT1058</strong><br />

PACKAGE DESCRIPTIO<br />

U<br />

N8 Package<br />

8-Lead PDIP (Narrow .300 Inch)<br />

(Reference LTC DWG # 05-08-1510)<br />

.400*<br />

(10.160)<br />

MAX<br />

8 7 6 5<br />

.255 ± .015*<br />

(6.477 ± 0.381)<br />

1 2 3 4<br />

.300 – .325<br />

(7.620 – 8.255)<br />

.045 – .065<br />

(1.143 – 1.651)<br />

.130 ± .005<br />

(3.302 ± 0.127)<br />

.008 – .015<br />

(0.203 – 0.381)<br />

.325 +.035<br />

–.015<br />

+0.889<br />

8.255<br />

–0.381<br />

( )<br />

.065<br />

(1.651)<br />

TYP<br />

.100<br />

(2.54)<br />

BSC<br />

NOTE:<br />

INCHES<br />

1. DIMENSIONS ARE<br />

MILLIMETERS<br />

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.<br />

MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)<br />

.120<br />

(3.048)<br />

MIN<br />

.018 ± .003<br />

(0.457 ± 0.076)<br />

.020<br />

(0.508)<br />

MIN<br />

N8 1002<br />

N Package<br />

14-Lead PDIP (Narrow .300 Inch)<br />

(Reference LTC DWG # 05-08-1510)<br />

.770*<br />

(19.558)<br />

MAX<br />

14<br />

13<br />

12<br />

11<br />

10<br />

9<br />

8<br />

.255 ± .015*<br />

(6.477 ± 0.381)<br />

1 2 3 4 5 6 7<br />

.300 – .325<br />

(7.620 – 8.255)<br />

.130 ± .005<br />

(3.302 ± 0.127)<br />

.045 – .065<br />

(1.143 – 1.651)<br />

.008 – .015<br />

(0.203 – 0.381)<br />

.325 +.035<br />

–.015<br />

+0.889<br />

8.255<br />

–0.381<br />

( )<br />

.020<br />

(0.508)<br />

MIN<br />

.120<br />

(3.048)<br />

MIN<br />

.005<br />

(0.125)<br />

MIN<br />

NOTE:<br />

INCHES<br />

1. DIMENSIONS ARE<br />

MILLIMETERS<br />

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.<br />

MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)<br />

.100<br />

(2.54)<br />

BSC<br />

Information furnished by Linear Technology Corporation is believed to be accurate <strong>and</strong> reliable.<br />

However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation<br />

that the interconnection of its circuits as described herein will not infringe on existing patent rights.<br />

.065<br />

(1.651)<br />

TYP<br />

.018 ± .003<br />

(0.457 ± 0.076)<br />

N14 1002<br />

10578fa<br />

15


<strong>LT1057</strong>/<strong>LT1058</strong><br />

PACKAGE DESCRIPTIO<br />

N<br />

U<br />

S8 Package<br />

8-Lead Plastic Small Outline (Narrow .150 Inch)<br />

(Reference LTC DWG # 05-08-1610)<br />

.050 BSC<br />

.045 ±.005<br />

.189 – .197<br />

(4.801 – 5.004)<br />

NOTE 3<br />

8 7 6 5<br />

.245<br />

MIN<br />

1 2 3 N/2<br />

.160 ±.005<br />

.228 – .244<br />

(5.791 – 6.197)<br />

N<br />

N/2<br />

.150 – .157<br />

(3.810 – 3.988)<br />

NOTE 3<br />

.030 ±.005<br />

TYP<br />

RECOMMENDED SOLDER PAD LAYOUT<br />

1<br />

2 3 4<br />

.008 – .010<br />

(0.203 – 0.254)<br />

.010 – .020<br />

(0.254 – 0.508) × 45° 0°– 8° TYP<br />

.053 – .069<br />

(1.346 – 1.752)<br />

.004 – .010<br />

(0.101 – 0.254)<br />

.016 – .050<br />

.014 – .019<br />

(0.406 – 1.270)<br />

(0.355 – 0.483)<br />

NOTE:<br />

INCHES<br />

TYP<br />

1. DIMENSIONS IN<br />

(MILLIMETERS)<br />

2. DRAWING NOT TO SCALE<br />

3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.<br />

MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)<br />

.050<br />

(1.270)<br />

BSC<br />

SO8 0502<br />

SW Package<br />

16-Lead Plastic Small Outline (Wide .300 Inch)<br />

(Reference LTC DWG # 05-08-1620)<br />

.030 ±.005<br />

TYP<br />

N<br />

.050 BSC .045 ±.005<br />

.398 – .413<br />

(10.109 – 10.490)<br />

NOTE 4<br />

16 15 14 13 12 11 10 9<br />

N<br />

.420<br />

MIN<br />

.325 ±.005<br />

NOTE 3<br />

.394 – .419<br />

(10.007 – 10.643)<br />

1 2 3 N/2<br />

N/2<br />

RECOMMENDED SOLDER PAD LAYOUT<br />

1<br />

2 3 4 5 6 7 8<br />

.005<br />

(0.127)<br />

RAD MIN<br />

.291 – .299<br />

(7.391 – 7.595)<br />

NOTE 4<br />

.010 – .029<br />

× 45°<br />

(0.254 – 0.737)<br />

0° – 8° TYP<br />

.093 – .104<br />

(2.362 – 2.642)<br />

.037 – .045<br />

(0.940 – 1.143)<br />

16<br />

.050<br />

.009 – .013<br />

(1.270)<br />

(0.229 – 0.330) NOTE 3<br />

BSC<br />

.014 – .019<br />

.016 – .050<br />

(0.356 – 0.482)<br />

(0.406 – 1.270)<br />

TYP<br />

NOTE:<br />

INCHES<br />

1. DIMENSIONS IN<br />

(MILLIMETERS)<br />

2. DRAWING NOT TO SCALE<br />

3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.<br />

THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS<br />

4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.<br />

MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)<br />

Linear Technology Corporation<br />

1630 McCarthy Blvd., Milpitas, CA 95035-7417<br />

(408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com<br />

.004 – .012<br />

(0.102 – 0.305)<br />

S16 (WIDE) 0502<br />

10578fa<br />

LW/TP 1102 1K REV A • PRINTED IN USA<br />

© LINEAR TECHNOLOGY CORPORATION 1989

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!