20.07.2014 Views

On the first passage time of a simple random walk on a tree 1 ...

On the first passage time of a simple random walk on a tree 1 ...

On the first passage time of a simple random walk on a tree 1 ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>On</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>first</str<strong>on</strong>g> <str<strong>on</strong>g>passage</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

a <str<strong>on</strong>g>simple</str<strong>on</strong>g> <str<strong>on</strong>g>random</str<strong>on</strong>g> <str<strong>on</strong>g>walk</str<strong>on</strong>g> <strong>on</strong> a <strong>tree</strong><br />

R. B. Bapat 1<br />

Indian Statistical Institute<br />

New Delhi, 110016, India<br />

e-mail: rbb@isid.ac.in<br />

Abstract: We c<strong>on</strong>sider a <str<strong>on</strong>g>simple</str<strong>on</strong>g> <str<strong>on</strong>g>random</str<strong>on</strong>g> <str<strong>on</strong>g>walk</str<strong>on</strong>g> <strong>on</strong> a <strong>tree</strong>. Exact expressi<strong>on</strong>s<br />

are obtained for <str<strong>on</strong>g>the</str<strong>on</strong>g> expectati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> variance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>first</str<strong>on</strong>g> <str<strong>on</strong>g>passage</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g>,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>reby recovering <str<strong>on</strong>g>the</str<strong>on</strong>g> known result that <str<strong>on</strong>g>the</str<strong>on</strong>g>se are integers. A relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> mean <str<strong>on</strong>g>first</str<strong>on</strong>g> <str<strong>on</strong>g>passage</str<strong>on</strong>g> matrix with <str<strong>on</strong>g>the</str<strong>on</strong>g> distance matrix is established and used<br />

to derive a formula for <str<strong>on</strong>g>the</str<strong>on</strong>g> inverse <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mean <str<strong>on</strong>g>first</str<strong>on</strong>g> <str<strong>on</strong>g>passage</str<strong>on</strong>g> matrix.<br />

Keywords: <str<strong>on</strong>g>random</str<strong>on</strong>g> <str<strong>on</strong>g>walk</str<strong>on</strong>g>; <strong>tree</strong>; mean <str<strong>on</strong>g>first</str<strong>on</strong>g> <str<strong>on</strong>g>passage</str<strong>on</strong>g> matrix; distance matrix;<br />

Laplacian matrix<br />

1 Introducti<strong>on</strong> and Preliminaries<br />

Let G be a graph with vertex set V = {1, 2, . . . , n}, edge set E, with |E| = m.<br />

We assume G to be <str<strong>on</strong>g>simple</str<strong>on</strong>g>, i.e., with no loops or parallel edges. We also assume<br />

G to be c<strong>on</strong>nected.<br />

The adjacency matrix A <str<strong>on</strong>g>of</str<strong>on</strong>g> G is <str<strong>on</strong>g>the</str<strong>on</strong>g> n × n matrix defined as follows. The<br />

(i, j)-element a ij <str<strong>on</strong>g>of</str<strong>on</strong>g> A equals 1 if i and j are adjacent, and 0 o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise. Let<br />

δ i be <str<strong>on</strong>g>the</str<strong>on</strong>g> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> vertex i, i = 1, . . . , n. Let ∆ = diag(δ 1 , . . . , δ n ). Recall<br />

that <str<strong>on</strong>g>the</str<strong>on</strong>g> Laplacian matrix L <str<strong>on</strong>g>of</str<strong>on</strong>g> G is defined to be L = ∆ − A.<br />

We c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>simple</str<strong>on</strong>g> <str<strong>on</strong>g>random</str<strong>on</strong>g> <str<strong>on</strong>g>walk</str<strong>on</strong>g> <strong>on</strong> G in which <str<strong>on</strong>g>the</str<strong>on</strong>g> particle at vertex<br />

i in <str<strong>on</strong>g>the</str<strong>on</strong>g> present <str<strong>on</strong>g>time</str<strong>on</strong>g> period, moves to <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> its neighbors j with probability<br />

1/d i . Thus if K is <str<strong>on</strong>g>the</str<strong>on</strong>g> transiti<strong>on</strong> matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>ding Markov chain,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>n K = ∆ −1 A. Thus I − K = ∆ −1 L.<br />

1 The support <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> JC Bose Fellowship, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Science and Technology, Government<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> India, is gratefully acknowledged.<br />

1


Let σ = 1 ∑ ni=1<br />

δ<br />

2 i , and let π = 1<br />

2σ<br />

⎡ ⎤<br />

δ 1<br />

⎢<br />

⎣ . ⎥<br />

⎦<br />

δ n<br />

. We denote <str<strong>on</strong>g>the</str<strong>on</strong>g> transpose <str<strong>on</strong>g>of</str<strong>on</strong>g> π by<br />

π t . Then π t K = π t , that is, π is <str<strong>on</strong>g>the</str<strong>on</strong>g> stati<strong>on</strong>ary vector <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Markov chain.<br />

Note that π t ∆ −1 L = 0.<br />

We denote <str<strong>on</strong>g>the</str<strong>on</strong>g> vector <str<strong>on</strong>g>of</str<strong>on</strong>g> all <strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> appropriate size by 1. Recall that<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> fundamental matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chain is given by ([7],p.75)<br />

We now prove a preliminary result.<br />

Lemma 1 (I − K)Z = I − 1π t .<br />

Z = (I − K + 1π t ) −1 = (∆ −1 L + 1π t ) −1 .<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>: From (I − K + 1π t )Z = I, we get (I − K)Z + 1π t Z = I, and hence<br />

(I − K)Z = I − 1π t Z. (1)<br />

Also, π t = π t K implies π t (I − K + 1π t ) = π t and hence π t Z = π t . Substituting<br />

this in (1), <str<strong>on</strong>g>the</str<strong>on</strong>g> result is proved.<br />

We denote <str<strong>on</strong>g>the</str<strong>on</strong>g> Moore-Penrose inverse <str<strong>on</strong>g>of</str<strong>on</strong>g> L by L + . Thus L + is <str<strong>on</strong>g>the</str<strong>on</strong>g> unique<br />

matrix satisfying <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s that LL + L = L, L + LL + = L + and LL + =<br />

L + L. We refer to [3] for basic properties <str<strong>on</strong>g>of</str<strong>on</strong>g> generalized inverses. We remark<br />

that since L is symmetric, <str<strong>on</strong>g>the</str<strong>on</strong>g> Moore-Penrose inverse <str<strong>on</strong>g>of</str<strong>on</strong>g> L is also <str<strong>on</strong>g>the</str<strong>on</strong>g> Drazin,<br />

or <str<strong>on</strong>g>the</str<strong>on</strong>g> group, inverse <str<strong>on</strong>g>of</str<strong>on</strong>g> L. As usual, <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> all <strong>on</strong>es, <str<strong>on</strong>g>of</str<strong>on</strong>g> appropriate size,<br />

is denoted J.<br />

Lemma 2 Z = L + ∆(I − 1π t ) + 1 n JZ.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>: Using Lemma 1 we have<br />

LZ = (∆ − A)Z = ∆(I − K)Z = ∆(I − 1π t ).<br />

Hence L + LZ = L + ∆(I − 1π t ). It is well-known that L + L = I − 1 n J and<br />

hence from <str<strong>on</strong>g>the</str<strong>on</strong>g> previous statement we get<br />

(I − 1 n J)Z = L+ ∆(I − 1π t ).<br />

Rearranging <str<strong>on</strong>g>the</str<strong>on</strong>g> terms, <str<strong>on</strong>g>the</str<strong>on</strong>g> result follows.<br />

2


2 Variance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>first</str<strong>on</strong>g> <str<strong>on</strong>g>passage</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g><br />

We introduce more notati<strong>on</strong>. Let Z d denote <str<strong>on</strong>g>the</str<strong>on</strong>g> diag<strong>on</strong>al matrix with z 11 , . . . , z nn<br />

al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> diag<strong>on</strong>al.<br />

([7],p.79)<br />

Recall that <str<strong>on</strong>g>the</str<strong>on</strong>g> mean <str<strong>on</strong>g>first</str<strong>on</strong>g> <str<strong>on</strong>g>passage</str<strong>on</strong>g> matrix is given by<br />

M = 2σ(I − Z + JZ d )∆ −1 . (2)<br />

If we adopt <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>venti<strong>on</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>first</str<strong>on</strong>g> <str<strong>on</strong>g>passage</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> from a vertex to<br />

itself is zero, <str<strong>on</strong>g>the</str<strong>on</strong>g>n let <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting <str<strong>on</strong>g>first</str<strong>on</strong>g> <str<strong>on</strong>g>passage</str<strong>on</strong>g> matrix be denoted ˜M. Thus<br />

˜M = 2σ(−Z + JZ d )∆ −1 is obtained from M by setting its diag<strong>on</strong>al entries<br />

equal to zero.<br />

Let r ij be <str<strong>on</strong>g>the</str<strong>on</strong>g> resistance distance between i and j, and let R = ((r ij )) be<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> resistance matrix. Resistance distance is defined in several equivalent ways<br />

and we will use <str<strong>on</strong>g>the</str<strong>on</strong>g> expressi<strong>on</strong> ([1],[6])<br />

r ij = l + ii + l + jj − 2l + ij. (3)<br />

The following result has been obtained by Tetali[9] (also see [10]) by electrical<br />

network c<strong>on</strong>siderati<strong>on</strong>s. We have given a purely matrix <str<strong>on</strong>g>the</str<strong>on</strong>g>oretic pro<str<strong>on</strong>g>of</str<strong>on</strong>g>.<br />

1 ∑<br />

Theorem 3 ˜m ij = δ ns=1<br />

s (r<br />

2 ij + r js − r is ).<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>: Let e ij be <str<strong>on</strong>g>the</str<strong>on</strong>g> (i, j)-element <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> identity matrix. By Lemma 2, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

(i, j)-element <str<strong>on</strong>g>of</str<strong>on</strong>g> −Z + JZ d is given by<br />

n∑<br />

n∑<br />

− l + isδ s (e sj − π j ) + l + jsδ s (e sj − π j )<br />

s=1<br />

s=1<br />

= −l + ∑ n<br />

ijδ j + π j l + isδ s + l + ∑ n<br />

jjδ j − π j l + jsδ s<br />

s=1<br />

s=1<br />

= (l + jj − l + ∑ n<br />

ij)δ j + π j (l + is − l + js)δ s<br />

s=1<br />

= δ j<br />

n∑<br />

δ s (l + jj − l + ij + l + is − l +<br />

2σ<br />

js)<br />

s=1<br />

= δ j<br />

n∑<br />

δ s (r ij + r js − r is ) × 1 2σ<br />

s=1<br />

2 ,<br />

3


where <str<strong>on</strong>g>the</str<strong>on</strong>g> last equality follows in view <str<strong>on</strong>g>of</str<strong>on</strong>g> (3). Hence <str<strong>on</strong>g>the</str<strong>on</strong>g> (i, j)-element <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜M is<br />

given by 1 2<br />

∑ ns=1<br />

δ s (r ij + r js − r is ), and <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is complete.<br />

We now obtain an expressi<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> variance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>first</str<strong>on</strong>g> <str<strong>on</strong>g>passage</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g>.<br />

We <str<strong>on</strong>g>first</str<strong>on</strong>g> introduce some notati<strong>on</strong>, c<strong>on</strong>tinuing <str<strong>on</strong>g>the</str<strong>on</strong>g> notati<strong>on</strong> introduced earlier.<br />

Let D = 2σ∆ −1 . Let (ZM) d be <str<strong>on</strong>g>the</str<strong>on</strong>g> diag<strong>on</strong>al matrix formed by <str<strong>on</strong>g>the</str<strong>on</strong>g> diag<strong>on</strong>al<br />

elements <str<strong>on</strong>g>of</str<strong>on</strong>g> ZM. Let H = ZM − J(ZM) d and let<br />

W = M(2Z d D − I) + 2H. (4)<br />

We <str<strong>on</strong>g>first</str<strong>on</strong>g> prove a preliminary result which will be useful.<br />

Lemma 4 (π t M) j = 2σz jj<br />

δ j<br />

.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>: Since M = (I − Z + JZ d )∆ −1 (2σ), <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> result follows.<br />

π t M = π t (I − Z + JZ d )∆ −1 (2σ)<br />

Theorem 5 For i, j = 1, 2, . . . , n;<br />

h ij = 1 2<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>: First observe that<br />

By Lemma 2,<br />

= π t JZ d ∆ −1 (2σ) since π t (I − Z) = 0<br />

= JZ d ∆ −1 (2σ) since π t J = 1,<br />

n∑<br />

n∑<br />

k=1 s=1<br />

δ k δ s<br />

2σ m kj(r jk + r is − r ik − r js ).<br />

n∑<br />

h ij = (z ik − z jk )m kj . (5)<br />

k=1<br />

z ik = l + ik δ k − (L + ∆1π t ) ik + 1 n∑<br />

z sk (6)<br />

n<br />

s=1<br />

and<br />

z jk = l + jk δ k − (L + ∆1π t ) jk + 1 n∑<br />

z sk . (7)<br />

n<br />

s=1<br />

4


It follows from (6) and (7) that<br />

Now<br />

Similarly,<br />

z ik − z jk = δ k (l + ik − l+ jk ) − (L+ ∆1π t ) ik + (L + ∆1π t ) jk . (8)<br />

⎛ ⎡<br />

(L + ∆1π t ) ik = ⎜<br />

⎝ L+ ⎢<br />

⎣<br />

⎤<br />

δ 1<br />

. ⎥<br />

δ n<br />

⎞<br />

⎦ [δ 1, · · · , δ n ] 1<br />

⎟<br />

2σ ⎠<br />

(L + ∆1π t ) jk == 1<br />

2σ<br />

It follows from (9) and (10) that<br />

(L + ∆1π t ) jk − (L + ∆1π t ) ik = δ k<br />

2σ<br />

From (8) and (11) it follows that<br />

ik<br />

= 1<br />

2σ<br />

n∑<br />

l + isδ s δ k . (9)<br />

s=1<br />

n∑<br />

l + jsδ s δ k . (10)<br />

s=1<br />

n∑<br />

δ s (l + js − l + is). (11)<br />

s=1<br />

n∑<br />

n∑ ∑ n δ s<br />

(z ik − z jk )m kj = δ k<br />

k=1<br />

k=1 s=1<br />

2σ (l+ ik − l+ jk − l+ is + l + js)m kj . (12)<br />

The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is complete if we use (5),(12),(3) and simplify <str<strong>on</strong>g>the</str<strong>on</strong>g> expressi<strong>on</strong>s.<br />

Note that by [7], p.82-83, <str<strong>on</strong>g>the</str<strong>on</strong>g> variance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>first</str<strong>on</strong>g> <str<strong>on</strong>g>passage</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> is given by<br />

w ij − ˜m 2 ij. Thus using <str<strong>on</strong>g>the</str<strong>on</strong>g> expressi<strong>on</strong> for h ij obtained in Theorem 5 and <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

expressi<strong>on</strong> for ˜M obtained in Theorem 3, we get an expressi<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> variance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>first</str<strong>on</strong>g> <str<strong>on</strong>g>passage</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g>.<br />

3 First <str<strong>on</strong>g>passage</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>random</str<strong>on</strong>g> <str<strong>on</strong>g>walk</str<strong>on</strong>g> <strong>on</strong> a<br />

<strong>tree</strong><br />

In <str<strong>on</strong>g>the</str<strong>on</strong>g> remainder <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper we c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> case when <str<strong>on</strong>g>the</str<strong>on</strong>g> graph G is a<br />

<strong>tree</strong> with vertex set V = {1, 2, . . . , n}. The notati<strong>on</strong> introduced earlier remains<br />

valid.<br />

5


We introduce some fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r notati<strong>on</strong>. For vertices i, j, d ij will denote <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

classical distance, that is, <str<strong>on</strong>g>the</str<strong>on</strong>g> length <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> shortest path from i to j. It is wellknown<br />

that when <str<strong>on</strong>g>the</str<strong>on</strong>g> graph is a <strong>tree</strong>, d ij = r ij . The resistance matrix R <str<strong>on</strong>g>the</str<strong>on</strong>g>n<br />

becomes <str<strong>on</strong>g>the</str<strong>on</strong>g> distance matrix <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>tree</strong>, which we denote by D. Note that δ s<br />

now reduces to <str<strong>on</strong>g>the</str<strong>on</strong>g> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> vertex s. Let τ i = 2 − δ i , i = 1, . . . , n, and let<br />

τ = [τ 1 , . . . , τ n ] t . We will use <str<strong>on</strong>g>the</str<strong>on</strong>g> following well-known result (see, for example,<br />

[2]):<br />

Theorem 6 The following asserti<strong>on</strong>s hold:<br />

(i) Dτ = (n − 1)1<br />

(ii) D −1 = − 1 2 L + 1<br />

2(n−1) ττt .<br />

We set α j to be <str<strong>on</strong>g>the</str<strong>on</strong>g> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> distances from <str<strong>on</strong>g>the</str<strong>on</strong>g> vertex j to all <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

vertices. Thus<br />

n∑<br />

α j = d js , j = 1, 2, . . . , n.<br />

s=1<br />

We now show that for a <str<strong>on</strong>g>random</str<strong>on</strong>g> <str<strong>on</strong>g>walk</str<strong>on</strong>g> <strong>on</strong> a <strong>tree</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> mean <str<strong>on</strong>g>first</str<strong>on</strong>g> <str<strong>on</strong>g>passage</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g><br />

is very closely related to <str<strong>on</strong>g>the</str<strong>on</strong>g> distance. The expressi<strong>on</strong> is given in <str<strong>on</strong>g>the</str<strong>on</strong>g> following<br />

result and it appears to be new.<br />

Theorem 7 For i, j = 1, . . . , n;<br />

˜m ij = α j − α i + (n − 1)d ij . (13)<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>: We have<br />

n∑<br />

n∑<br />

n∑ n∑<br />

d js τ s = d js (2 − δ s ) = 2 d js − d js δ s . (14)<br />

s=1<br />

s=1<br />

s=1 s=1<br />

Also, by Theorem 6, (i),<br />

From (14),(15) we have<br />

n∑<br />

d js δ s = n − 1. (15)<br />

s=1<br />

n∑<br />

n∑<br />

d js δ s = 2 d js − (n − 1) = 2α j − (n − 1). (16)<br />

s=1<br />

s=1<br />

6


Using Theorem 3 and (16) we have<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is complete.<br />

˜m ij = 1 n∑<br />

δ s (d ij + d js − d is )<br />

2<br />

s=1<br />

= 1 n∑<br />

n∑<br />

2 (2(n − 1)d ij + d js δ s − d is δ s )<br />

s=1<br />

s=1<br />

= 1 2 (2(n − 1)d ij + 2α j − 2α i )<br />

= α j − α i + (n − 1)d ij ,<br />

We proceed to obtain an expressi<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> variance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>first</str<strong>on</strong>g> <str<strong>on</strong>g>passage</str<strong>on</strong>g><br />

<str<strong>on</strong>g>time</str<strong>on</strong>g> in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mean <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>first</str<strong>on</strong>g> <str<strong>on</strong>g>passage</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> and <str<strong>on</strong>g>the</str<strong>on</strong>g> distance. From <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

expressi<strong>on</strong> it will be clear that <str<strong>on</strong>g>the</str<strong>on</strong>g> variance is an integer, a fact noted in [4,5].<br />

We set θ = 1 t D1.<br />

Lemma 8 (δ t M) j = (n − 1)(4α j + 3) − 2θ.<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>: We have<br />

(δ t M)j =<br />

n∑<br />

δ k m kj<br />

k=1<br />

=<br />

n∑<br />

2(n − 1)<br />

δ k (α j − α k + (n − 1)d kj ) + δ j by Theorem 7 and (2)<br />

k=1<br />

δ j<br />

=<br />

n∑<br />

2(n − 1)α j − δ k α k + (n − 1)(Dδ) j + 2(n − 1) by (16)<br />

k=1<br />

=<br />

n∑<br />

2(n − 1)(1 + α j ) − δ k α k + (n − 1)(2α j − (n − 1)). (17)<br />

k=1<br />

Note that<br />

n∑<br />

δ k α k =<br />

n∑ ∑ n<br />

δ k d kj<br />

k=1<br />

k=1 j=1<br />

=<br />

n∑<br />

(Dδ) j<br />

j=1<br />

=<br />

n∑<br />

(2α j − (n − 1)) by (16)<br />

j=1<br />

= 2θ − n(n − 1). (18)<br />

7


From (17),(18) we get<br />

(δ t M)j = 2(n − 1)(1 + α j ) − 2θ + n(n − 1) + (n − 1)(2α j − (n − 1))<br />

= (n − 1)(2 + 2α j + n + 2α j − n + 1) − 2θ<br />

= (n − 1)(4α j + 3) − 2θ,<br />

and <str<strong>on</strong>g>the</str<strong>on</strong>g> pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is complete.<br />

We set X = D∆M. In <str<strong>on</strong>g>the</str<strong>on</strong>g> next result we obtain a formula for <str<strong>on</strong>g>the</str<strong>on</strong>g> elements<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> W, defined in (4).<br />

Lemma 9 For i, j = 1, 2, . . . , n; <str<strong>on</strong>g>the</str<strong>on</strong>g> (i, j)-elements <str<strong>on</strong>g>of</str<strong>on</strong>g> W is given by<br />

Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>: Using (16) we have<br />

d ij ((n − 1)(4α j + 3) − 2θ) + x jj − x ij − m ij .<br />

n∑ n∑<br />

δ k δ s m kj (d jk + d is − d ik − d js )<br />

k=1 s=1<br />

=<br />

n∑ n∑<br />

n∑ n∑<br />

δ k δ s m kj d jk + δ k δ s m kj d is<br />

k=1 s=1<br />

k=1 s=1<br />

−<br />

n∑ n∑<br />

n∑ n∑<br />

δ k δ s m kj d ik − δ k δ s m kj d js<br />

k=1 s=1<br />

k=1 s=1<br />

=<br />

n∑<br />

2(n − 1) m kj δ k d jk + (Dδ) i (M t δ) j<br />

k=1<br />

−<br />

n∑<br />

2(n − 1) m kj δ k d ik + (Dδ) i (M t δ) j<br />

k=1<br />

= 2(n − 1)(x jj − x ij ) + (M t δ) j (2α i − 2α j ). (19)<br />

In view <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> definiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> W, and using (19) and Theorem 7, we get<br />

w ij = 2m ij (π t 1<br />

n∑ n∑<br />

M) j +<br />

δ k δ s m kj (d jk + d is − d ik − d js ) − m ij<br />

2(n − 1)<br />

k=1 s=1<br />

=<br />

1<br />

n − 1 m ij(δ t 1<br />

M) j +<br />

2(n − 1) (2(n − 1))(x jj − x ij ) + 2(δ t M) j (α i − α j ) − m ij<br />

=<br />

1<br />

n − 1 m ij(δ t M) j + x jj − x ij + 1<br />

n − 1 (δt M) j (α i − α j ) − m ij<br />

8


=<br />

1<br />

n − 1 (δt M) j (m ij + α i − α j ) + x jj − x ii − m ij<br />

=<br />

1<br />

n − 1 (δt M) j ((n − 1)d ij ) + x jj − x ij − m ij<br />

= (δ t M) j d ij + x jj − x ij − m ij . (20)<br />

The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is complete using (20) and Lemma 8.<br />

The following result is an immediate c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Lemma 9, since <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

variance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>first</str<strong>on</strong>g> <str<strong>on</strong>g>passage</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> from i to j is given by w ij − m 2 ij.<br />

Theorem 10 For a <str<strong>on</strong>g>simple</str<strong>on</strong>g> <str<strong>on</strong>g>random</str<strong>on</strong>g> <str<strong>on</strong>g>walk</str<strong>on</strong>g> <strong>on</strong> a <strong>tree</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> variance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>first</str<strong>on</strong>g><br />

<str<strong>on</strong>g>passage</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g> from i to j is given by<br />

d ij ((n − 1)(4α j + 3) − 2θ) + x jj − x ij − m ij (1 + m ij ).<br />

As remarked earlier, it is evident from Theorem 10 (since X and M are<br />

integer matrices) that in case <str<strong>on</strong>g>of</str<strong>on</strong>g> a <str<strong>on</strong>g>simple</str<strong>on</strong>g> <str<strong>on</strong>g>random</str<strong>on</strong>g> <str<strong>on</strong>g>walk</str<strong>on</strong>g> <strong>on</strong> a <strong>tree</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> variances<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>first</str<strong>on</strong>g> <str<strong>on</strong>g>passage</str<strong>on</strong>g> <str<strong>on</strong>g>time</str<strong>on</strong>g>s are all integers. This fact has been proved in [4,5].<br />

4 Inverse <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mean <str<strong>on</strong>g>first</str<strong>on</strong>g> <str<strong>on</strong>g>passage</str<strong>on</strong>g> matrix<br />

In this secti<strong>on</strong> we obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> inverse <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mean <str<strong>on</strong>g>first</str<strong>on</strong>g> <str<strong>on</strong>g>passage</str<strong>on</strong>g> matrix (with<br />

zero diag<strong>on</strong>al entries), denoted earlier as ˜M. It is true that this computati<strong>on</strong><br />

is more <str<strong>on</strong>g>of</str<strong>on</strong>g> ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical interest. We remark that some problems c<strong>on</strong>cerning<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> inverse <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mean <str<strong>on</strong>g>first</str<strong>on</strong>g> <str<strong>on</strong>g>passage</str<strong>on</strong>g> matrix and <str<strong>on</strong>g>the</str<strong>on</strong>g> inverse M-matrix problem<br />

have been recently c<strong>on</strong>sidered in [8].<br />

The next result is a restatement <str<strong>on</strong>g>of</str<strong>on</strong>g> Theorem 3.<br />

Theorem 11<br />

˜M = JD − DJ + (n − 1)D.<br />

Theorem 12 The inverse <str<strong>on</strong>g>of</str<strong>on</strong>g> ˜M is given by<br />

˜M −1 1 (21 − τ)(21 − (2n − 1)τ)t<br />

= − L −<br />

2(n − 1) 2(n − 1)(2θ − (n − 1)(2n − 1)) .<br />

9


Pro<str<strong>on</strong>g>of</str<strong>on</strong>g>: We set K = (n − 1)D + JD = (n − 1)D + 11 t D. Then<br />

˜M = K − DJ = K − D11 t (21)<br />

We <str<strong>on</strong>g>first</str<strong>on</strong>g> obtain an expressi<strong>on</strong> for K −1 . By <str<strong>on</strong>g>the</str<strong>on</strong>g> Sherman-Morris<strong>on</strong> formula<br />

for <str<strong>on</strong>g>the</str<strong>on</strong>g> inverse <str<strong>on</strong>g>of</str<strong>on</strong>g> a rank <strong>on</strong>e perturbed matrix,<br />

By Theorem 6,<br />

K −1 = ((n − 1)D) −1 − ((n − 1)D)−1 11 t D((n − 1)D) −1<br />

. (22)<br />

1 + 1 t D((n − 1)D) −1 1<br />

((n − 1)D) −1 = 1<br />

n − 1 (−1 2 L + 1<br />

2(n − 1) ττt ). (23)<br />

It follows from (23), and <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that τ t 1 = 2, that<br />

Using (24),<br />

((n − 1)D) −1 1 =<br />

1<br />

τ. (24)<br />

(n − 1)<br />

2<br />

((n − 1)D) −1 11 t D((n − 1)D) −1 =<br />

=<br />

1<br />

(n − 1) 2 τ1t D((n − 1)D) −1<br />

τ1 t<br />

(n − 1) . (25)<br />

3<br />

Again, using (24) and Theorem 6, (i),<br />

1 + 1 t D((n − 1)D) −1 1 = 1 + 1t Dτ<br />

(n − 1) 2<br />

= 1 + n<br />

n − 1<br />

= 2n − 1<br />

n − 1 . (26)<br />

It follows from (22),(25) and (26) that<br />

Using (27) and 1 t τ = 2, we have<br />

K −1 = 1<br />

τ1 t<br />

n − 1 D−1 −<br />

(n − 1) 2 (2n − 1) . (27)<br />

K −1 D1 = 1<br />

n − 1 − 2θ<br />

(n − 1) 2 (2n − 1) . (28)<br />

10


It follows from (28) that<br />

1 − 1 t K −1 D1 = 1 − n<br />

n − 1 + 2θ<br />

(n − 1) 2 (2n − 1)<br />

2θ − (n − 1)(2n − 1)<br />

= . (29)<br />

(n − 1) 2 (2n − 1)<br />

Using (27),(28), Theorem 6 and 1 t τ = 2, we have<br />

K −1 D11 t K −1<br />

1<br />

= (<br />

n − 1 1 − θτ<br />

1<br />

τ1 t<br />

(n − 1) 2 (2n − 1) )1t (<br />

n − 1 D−1 −<br />

(n − 1) 2 (2n − 1)<br />

1τ<br />

=<br />

(n − 1) 3 ) − 211 t<br />

(n − 1) 2 (2n − 1)<br />

θττ t<br />

−<br />

(n − 1) 2 (2n − 1) + 2θτ1 t<br />

(n − 1) 4 (2n − 1)<br />

By <str<strong>on</strong>g>the</str<strong>on</strong>g> Sherman-Morris<strong>on</strong> formula,<br />

(30)<br />

˜M −1 = K −1 + K−1 D11 t K −1<br />

1 − 1 t K −1 D1 . (31)<br />

The pro<str<strong>on</strong>g>of</str<strong>on</strong>g> is complete if we use <str<strong>on</strong>g>the</str<strong>on</strong>g> expressi<strong>on</strong>s in (27),(29),(30) and simplify<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> formula in (31), using Theorem 6.<br />

References<br />

1. R.B. Bapat, Resistance distance in graphs, Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matics Student, Vol.68,<br />

No.1-4:87-98 (1999)<br />

2. R.B. Bapat, S.J. Kirkland and M. Neumann, <str<strong>on</strong>g>On</str<strong>on</strong>g> distance matrices and<br />

Laplacians, Linear Algebra Appl., 401:193-209 (2005)<br />

3. A. Ben-Israel and T.N.E. Greville, Generalized Inverses. Theory and<br />

Applicati<strong>on</strong>s, Sec<strong>on</strong>d ed., Springer,New York, 2003.<br />

4. H.Chen, The generating functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> hitting <str<strong>on</strong>g>time</str<strong>on</strong>g>s for <str<strong>on</strong>g>random</str<strong>on</strong>g> <str<strong>on</strong>g>walk</str<strong>on</strong>g> <strong>on</strong><br />

<strong>tree</strong>s, Statistics and Probability Letters, 77:1574-1579 (2007)<br />

5. H. Chen and F. Zhang, The expected hitting <str<strong>on</strong>g>time</str<strong>on</strong>g>s for graphs with cutpoints,<br />

Statistics and Probability Letters, 66:9-17 (2004)<br />

11


6. P. Chebotarev and E.Shamis, The matrix-forest <str<strong>on</strong>g>the</str<strong>on</strong>g>orem and measuring<br />

relati<strong>on</strong>s in small social groups, Automatica i Telemekhanica, 9:124-136<br />

(1997)<br />

7. J.G. Kemeny and J.L. Snell, Finite Markov Chains, Van Nostrand, 1960.<br />

8. M. Neumann and N.-S. Sze, <str<strong>on</strong>g>On</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> inverse mean <str<strong>on</strong>g>first</str<strong>on</strong>g> <str<strong>on</strong>g>passage</str<strong>on</strong>g> matrix<br />

problem and <str<strong>on</strong>g>the</str<strong>on</strong>g> inverse M-matrix problem, Linear Algebra Appl., to<br />

appear<br />

9. P. Tetali, Random <str<strong>on</strong>g>walk</str<strong>on</strong>g>s and <str<strong>on</strong>g>the</str<strong>on</strong>g> effective resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> networks, Journal<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Theoretical Probability, Vol. 4, No. 1:101-109 (1991)<br />

10. J.L. Palacios and P. Tetali, A note <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> expected hitting <str<strong>on</strong>g>time</str<strong>on</strong>g>s for birth<br />

and death chains, Statistics and Probability Letters, 30:119-125 (1996)<br />

12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!