16.07.2014 Views

Parabolic implosion - from discontinuity to renormalization

Parabolic implosion - from discontinuity to renormalization

Parabolic implosion - from discontinuity to renormalization

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Parabolic</strong> <strong>implosion</strong><br />

<strong>from</strong> <strong>discontinuity</strong> <strong>to</strong> <strong>renormalization</strong><br />

Mitsuhiro Shishikura<br />

Congrès à la mémoire d'Adrien Douady<br />

Institut Henri Poincaré, Paris, May 26-30, 2008<br />

Discontinuity of Julia sets<br />

“Periodicity’ in parameter space


Plan<br />

Bifurcation of parabolic periodic points -- parabolic <strong>implosion</strong><br />

(saddle-node, intermittent chaos, periodic pts that bifurcate)<br />

Local change of dynamics (“egg beater”) => Global effects<br />

Main example: f 0 (z) =z + z 2 (∼ z 2 + 1 4<br />

) and its perturbation<br />

Discontinuity of Julia sets<br />

Richness of bifurcated Julia sets<br />

when perturbed <strong>to</strong> “wild direction’’<br />

“Periodicity’’ in parameter space<br />

Tools by Douady-Hubbard:<br />

Fa<strong>to</strong>u coordinates, Ecalle-Voronin cylinders, horn map, phase<br />

<strong>Parabolic</strong>/Near-parabolic <strong>renormalization</strong>:<br />

study of irrationally indifferent periodic points


Basic definitions<br />

f<br />

polynomial (or just holomorphic mapping for local problems)<br />

fixed point<br />

f(z 0 )=z 0 multiplier λ = f ′ (z 0 )<br />

attracting<br />

|λ| < 1<br />

indifferent<br />

|λ| =1<br />

parabolic<br />

α ∈ Q<br />

λ = e 2πiα<br />

irrationally indifferent<br />

α ∈ R Q<br />

repelling<br />

|λ| > 1<br />

filled-in Julia set<br />

K f = {z ∈ C : {f n (z)} ∞ n=0<br />

is bounded}<br />

Julia set<br />

(chaotic part)<br />

J f = ∂K f = closure of {repelling periodic points}<br />

We consider the bifurcation of a parabolic<br />

fixed point and its global effect.


Tame and Wild directions<br />

f ε (z) =z + z 2 + ... + ε<br />

0 is parabolic for f 0<br />

with λ 0 =1<br />

Tame direction<br />

safe side<br />

Wild direction<br />

rich side<br />

narrow chance <strong>to</strong> be rich<br />

Continuous change<br />

when restricted <strong>to</strong> tame direction<br />

for example, f(z) =e 2πiα z + ...<br />

α ∈ R


Egg beater or Douady-Hubbard’s get-rich-quick scheme<br />

<br />

f 0<br />

<br />

perturbed in<strong>to</strong> wild direction<br />

<br />

Orbits <strong>from</strong> the left tend <strong>to</strong><br />

the fixed point<br />

Imagine that a point in the box on the right<br />

is: escaping point<br />

(inverse image of) repelling periodic point<br />

inverse image of critical point


Theorem (discontinity of Julia sets)<br />

Let f ε (z) =z + z 2 + ε. Then<br />

int K(f 0 )={z : f n → 0 uniformly in a neighborhood of z}<br />

(parabolic basin).<br />

Let {ε n } be a sequence such that ε n → 0 and { √ π<br />

εn<br />

} converges<br />

modulo Z, i.e. for some integers k n ∈ Z,<br />

( ) π<br />

√ − k n = −β<br />

εn<br />

lim<br />

n→∞<br />

(for example, ε n =<br />

Then<br />

π2<br />

(n−β)<br />

). 2<br />

J(f 0 ) J(< f 0 ,g β >) ⊂ lim inf<br />

n→∞ J(f ε n<br />

)<br />

⊂ lim sup<br />

n→∞<br />

K(f εn ) ⊂ K(< f 0 ,g β >) K(f 0 )<br />

where g β = lim n→∞ f k n<br />

ε n<br />

in int K(f 0 ), and<br />

= “two genera<strong>to</strong>r dynamics” generated by f 0 and g β .


Pick a point w in the box on the right<br />

which is escaping.<br />

If a point z in the box on the left<br />

arrives at this point, i.e. f k n<br />

ε n<br />

(z) =w,<br />

then z ∈ int K(f 0 ) K(f εn ).<br />

Hence int K(f 0 ) lim sup<br />

n→∞<br />

K(f εn ) ≠ ∅.<br />

Pick a point w in the box on the right<br />

which is an inverse image of a repelling<br />

periodic point.<br />

If a point z in the box on the left<br />

arrives at this point, i.e. f k n<br />

ε n<br />

(z) =w,<br />

then z ∈ J(f εn ) J(f 0 ).<br />

Hence lim inf<br />

n→∞ J(f ε n<br />

) J(f 0 ) ≠ ∅.<br />

The behavior of the critical point changes periodically. (“phase parameter”)<br />

=⇒ the “periodicity” in the parameter space ( π √ ε<br />

modulo Z matters).


Tools <strong>to</strong> analyze Egg beater dynamics<br />

Difficulty: effects of perturbation on unboundedly high iterates of the map<br />

Work in Fa<strong>to</strong>u coordinates, which conjugate f <strong>to</strong> T : z ↦→ z +1<br />

Take a croissant-shaped fundamental strip, which is bounded<br />

by a curve l and its image f(l).<br />

Glue l and f(l) by f <strong>to</strong> obtain a Riemann surface which is<br />

isomorphic <strong>to</strong> C/Z.<br />

Lift of the map <strong>to</strong> C/Z is a Fa<strong>to</strong>u coordinate.<br />

f<br />

This part of dynamics is represented by<br />

a horn map E f which is<br />

– partially defined, non-linear<br />

– continuous under perturbation.<br />

Φ∞ attr<br />

T Φ(w) rep<br />

= w C/Z + 1 CΦ attr Φ rep C/Z C<br />

This part of dynamics is represented by<br />

an identification between attracting and<br />

repelling Fa<strong>to</strong>u coordinates which is<br />

– an isomorphism<br />

– sensitive wrt perturbation.


α z + . . .<br />

e 2πiα z + λ . f(z) f. = 0 .<br />

e e q z a 2 z + . . . a<br />

Fa<strong>to</strong>u coordinates ,<br />

i ∈ N a<br />

and Horn<br />

i ≥ N<br />

T (w) T (w) 2πi = qe = w 2πiα λ z = + 1O(z a<br />

w + 1 1 2 ) 2 ≠ 0<br />

α ∈ C {0} small<br />

Φand Φ<br />

| arg α|<br />

map<br />

a i ∈ N attr a attr Φ< i ≥ N rep π Φ rep C/Z C/Z mod CZ C E<br />

= e 2πiα z + O(z 2 4<br />

f0<br />

α z + O(z 2 )<br />

)<br />

e 2πiα 0 (z) z + a 2 z 2 + . . .<br />

F 0 (w) = w + 1 + o(1) w = − c f 0 (z) z + holomorphic f(z) O(z f ′ (0) 2 = ) = αe near 2πiα ∈e 2πiα R0 z , + Q<br />

f (0) = 0 f ′ 0<br />

α. (z) . . small holomorphic 0 (0) = near λ 0 f 0 (0) = 0 f 0 ′(0) = w<br />

near 0 near mod Z E<br />

λ = e 2πi ∞ p T (w) F 0 (w) w = 1w Φ1 + o(1) attr Φ w = rep C/Z − c λ<br />

) iα = , fα 0<br />

e(z) 2πiα small =<br />

,<br />

λz<br />

α+ asmall<br />

2 z 2 + . . . f 0 (z) = λz + a 2 z 2 + . . .<br />

f0<br />

w Cnear 0 near ∞ T<br />

e f<br />

q λ = mod 1 Za 2 ≠E0<br />

0 R 0 f 0 R 0 f<br />

2πiα , αf(z) αsmall<br />

∈= a<br />

C e {0} small and | arg α| < π i 2πiα ∈ Nz +<br />

a i O(z<br />

≥ N 2 )<br />

f0<br />

f f 0 R 0 f 0 R 0 f 0 (z) = z + O(z 2 0 (z) = e 2πi p q z + a 2 z 2 + . . . f<br />

C {0} small and | arg α| < π 0 (z) = e 2πi p q z + a 2 z 2 + . . .<br />

} small and | arg α| < π 4<br />

)<br />

{0} small f αf(z) ′ F 0<br />

(0) ∈and R= e | 2πiα (w) = w + 1 2πiα arg4α| z + < f. 0<br />

. π + o(1) w = − c near 0 near ∞ T (w) = w + 1 Φ attr<br />

Q , α small . 4<br />

z<br />

f R 0 f 0 R 0 f 0 (z) = z + O(z 2 0 (z) = z + a 2 z 2 + mod . . . Z Ef 0 (z) = z + a 2 z 2 f0<br />

4<br />

E f + . . .<br />

)<br />

R Q<br />

f Rf<br />

fRf(z) Rf<br />

= e 2πiβ z<br />

Rf(z)<br />

+ O(z 2 )<br />

λ = e f(z) = e 2πiα z + O(z 2 )<br />

Z<br />

2πi p q<br />

β = − 1 λ = 1 2 ≠ λ = e 2πi p q<br />

Q αa ∈ i ∈C N f {0} a i ≥small N and λ | arg 1 α| a 2 < π 0 R 0 f 0 R 0 f 0 (z) = z + O(z ≠ 2 0)<br />

α<br />

mod Z f Rf Rf(z) 4= e 2πiβ z + O(z 2 ) β = − 1 ≥ N<br />

α mod Z<br />

N f(z) a i = ≥e 2πiα N<br />

f ′ z + . . .<br />

(0) e 2πiα f(z) = e 2πiα z + . . .<br />

f Φ attr (z)<br />

, α small<br />

Φ attr (z)<br />

attr (z)<br />

+ 1 f(z) + o(1) = e<br />

near 0 2πiα z w + = O(z− c Rf Rf(z) = e<br />

a i ≥ N αF ∈ 0 (w) R = Qw + 1 + o(1)<br />

2πiβ z + O(z<br />

w = − c 2 ) β = −<br />

near 0 1<br />

near ∞ 2 )<br />

) = w + 1 + o(1) w T (w) = − c α mod near Z ∞ T (w) = w + 1<br />

near f(z) = 0 e<br />

w 2πiα near z + O(z ∞<br />

+ near 1 0Φ 2 ) T w<br />

mod Z wE (w) = w + 1 Φ attr Φ rep C/Z C<br />

Φ f0 attr (f(z)) attr near<br />

α C {0} small and | arg α| < π Φ∞ rep Φ attr<br />

T (f(z)) C/Z (w) = Cw w<br />

+ attr<br />

1(z) Φ+ attr 1<br />

Φ rep rep (f(<br />

= f 0 w<br />

Z<br />

f ′ (0) + 1<br />

E= + e 2πiα o(1) , α small w = − c = Φ attr (z) + 1 Φ rep (f(z)) = Φ rep (z) + 1 Φ ... (f 0 (z)) = Φ ... (z) + 1<br />

a i ∈ N a i ≥ Nf ′ (0) = near e<br />

(z)) = Φ f0<br />

rep (z) 2πiα , 0α small near ∞ T (w) = w + 1 Φ attr Φ rep C<br />

Φnear rep ∞C/Z T (w) C = w + 1 Φ attr<br />

w Φ rep attr (f(z)) C/Z C= Φ attr (z) 4 + Φ rep (f(z)) = Φ rep (z) + 1<br />

E E f (z) = Φ attr attr Φ(f(z)) = Φ<br />

R −1<br />

f0<br />

f 0 R<br />

rep<br />

att<br />

α ∈ C {0} small and | argα α| ∈< C π<br />

R α ∈ R Q 4<br />

1 0 f 0 R 0 f 0 (z) = z + O(z E 2 {0} small and | arg<br />

f (z) ) = Φ attr ◦ Φ −1<br />

α| < π 0 f 0 (z) = z + E 0 f 0 R<br />

O(z 2 0 f 0 (z) = z + O(z 2 )<br />

)<br />

F 0 (w) = w + 1 + o(1) w = − c f0 (z) = Φ attr ◦ Φ −1<br />

rep χ f χ f (z) = z − 1 Rf = χ f ◦ E f<br />

near40α<br />

near ∞ T (w) = w + 1 Φ<br />

w rep<br />

0f 0 α ∈ R 0 mod<br />

Q<br />

α ∈ R Q<br />

Rf(z) = e f P ◦ ϕ<br />

E −1<br />

1<br />

f = P ◦ ϕ −1<br />

f (z) = Φ attr ◦ Φ<br />

Rf β = − 1 2πiβ f 0 (z) Z= z + O(z 2 )<br />

z +<br />

Rf f = EP O(z 2 )<br />

Rf(z)<br />

β =<br />

=<br />

−<br />

e 12πiβ a<br />

α<br />

mod Z<br />

i ∈ NRf(z) a i ≥ N= e 2πiβ z + O(z 2 ) β = − 1 α<br />

mod Z<br />

α mod z + Z O(z 2 ) β = − 1 f0 ◦ ϕ −1<br />

α mod Z<br />

a<br />

α mod 1<br />

=<br />

f Z<br />

i ∈ N a i ≥ N<br />

f= ΦRf(z) f Q ◦ ϕ −1<br />

attr Φ+ = 1e 2πiβ Φ rep<br />

z + (f(z)) O(z 2 = ) where a i ∈ N<br />

F f Q ◦ ϕ −1 0 (w) w + 1 + o(1) w = F− c Φ rep<br />

β (z) = − 1 0 Rf + α1 mod Φ(f(z)) Z<br />

attr (f(z)) 0 f= Q ◦ 0 Rϕ −1<br />

= Φ 0 f 0 (z) = z + O(z<br />

attr (z) + 1 Φ 2 )<br />

rep 0 (w) = near w + 01 + near o(1) ∞w = T (w) − c = Φ(z) Φ rep + (z) 1 + 1 Φ ... (f 0 (z)) = Φ ... (<br />

0 ∞ (−∞, = w near + 0 1Φnear attr ∞Φ rep T (w) C/Z = = Φ a 1 ±<br />

0 ∞ f (−∞, 1 −1] P ◦ ϕ −1 w + C1 Φ attr<br />

r(f(z)) = rep Φ(z) 1 Φ(f(z)) w −1]<br />

Φ(z) 1<br />

mod Z<br />

attr (z) + 1 Φ rep (f(z)) = Φ rep (z) + w1 Φ(f(z)) = Φ(z) + 1<br />

f0<br />

mod Z E f0<br />

rep(z) (z)) ttr ◦ + Φ= 1<br />

−1<br />

rep Φ attr<br />

fE f0 (z) (z) Rf + = 1 ΦRf(z) attr Φ rep<br />

◦(f(z)) Φ= −1 e 2πiβ rep = z Φ+ rep<br />

O(z (z) 2 + ) 1 β = Φ<br />

a ...<br />

− 1 (f<br />

2 ± α 0 (z)) mod = Z Φ ... (z) + 1<br />

C R Z Q D H R Q C/Z C ∗ D ∗ C C D (−∞, −1]


}<br />

f(z) = e z + O(z )<br />

πi p small and<br />

q z + a 2 z 2 | arg α| α< ∈ π C {0} small and | arg α| <<br />

+<br />

Perturbation<br />

.<br />

f(z) = e 2πiα . .<br />

4<br />

4<br />

z + O(z 2 α ∈f R ′ (0) Q<br />

) = e 2πiα , α small | arg α| < π 4<br />

f ′ (0) = e 2πiα , α small<br />

ff(z) = e 2πiα z + O(z 2 0 <br />

|<br />

R<br />

arg 0 f<br />

α| 0 <<br />

R π 0 f 0 (z))<br />

= z + O(z 2 (wild direction)<br />

)<br />

α ∈ R Q<br />

4<br />

+ a 2 z 2 +<br />

f 0 ′ . . .<br />

(0) = e 2πiα a<br />

, α small i ∈α N∈ Ca i ≥{0} Nf<br />

small and | arg α| < π 4<br />

α ∈ C {0} smallf and ′ (0) Rf | = arg e 2πiα α| Rf(z) , < α π small | arg α| < π<br />

4<br />

= e 2πiβ z + O(z 2 ) 4 β = − 1 ≥ N<br />

a i ∈ N a i ≥ N<br />

α ∈ C {0} small and | arg<br />

α ∈<br />

α|<br />

R<br />

<<br />

π α<br />

λ = 1 a 2 ≠ 0<br />

F 0 (w) = w + Q1 + o(1) w = − c near 0 near ∞<br />

α ∈ R Q α ∈ C<br />

4<br />

{0} small and w| arg α| < π 4<br />

+ iα 1 + o(1) w = −F c 0 (w) near = mod w 0+ 1 Znear + Φo(1)<br />

attr E∞ f0 (f(z)) w ET (w) f = −Φ = c attr w (z) + near 1+ 10 Φ attr<br />

Φnear rep (f(z)) Φ∞ rep<br />

= T C/Z (w) Φ rep = (<br />

z + . . .<br />

z<br />

z<br />

a i ∈ N a i ≥ N<br />

f 0<br />

Eα f<br />

mod Z E<br />

∈ R Q<br />

f0 E<br />

α f<br />

a i ∈ N a i ≥ ∈ R Q<br />

f N E iα z + O(z 2 f0 (z) = Φ attr ◦ Φ −1<br />

0 R 0 f 0 R 0 f 0 (z) = z rep + O(z 2 )<br />

)<br />

R F 0 (w) = w + 1 + o(1) w = − c 0 f near 0 near<br />

a 0 i<br />

(z) ∈ N= z a+ i F<br />

≥O(z f<br />

N 0 2 ) R 0 f 0 R 0 f<br />

a 0 (z) = z + O(z<br />

i ∈ N a i ≥ N<br />

0 (w) = w + 1 + w<br />

mod<br />

o(1)<br />

Z<br />

w<br />

E<br />

= − c 2 )<br />

near 0 near ∞ T (w) = w<br />

πiα f0<br />

, α small | arg<br />

F 0 (w) = w + 1 + o(1) w = −F c w<br />

mod α| < Z π f Rf<br />

f =<br />

Rf(z)<br />

P ◦ ϕ −1<br />

= e 2πiβ z + O(z 2 ) β<br />

E f0 E f<br />

0 (w) near = w 0 1 + near o(1) ∞ w T = (w)<br />

f 0 wR 0 f 0 R 0 f 0 (z) = z + O(z 2 − = c = − 1<br />

4<br />

α mod Z<br />

Rf(z) = e 2πiβ z + O(z f 2 ) Rfβ = Rf(z) − 1 w + near 1 0Φ att n<br />

) w<br />

0} small modand Z | arg Ef f0 0<br />

α| < R π α f mod = e 2πiβ Q Z z<br />

◦ ϕ −1 + O(z 2 ) β = − 1 α mod Z<br />

Φ<br />

0 4f attr (f(z))<br />

0 R 0 f 0 (z) mod= ZΦ z + attr<br />

O(z E(z) 2 f0<br />

+<br />

) E1 f<br />

Φ rep (f(z)) = Φ rep (z) + 1<br />

= Φ attr (z) + 1 Φ rep<br />

Φ attr (f(z)) (f(z)) = Φ= rep<br />

Φ(z) attr 0<br />

(z) + ∞ 1+ 1Φ (−∞, ... (f Φ rep 0 (z)) −1]<br />

(f(z)) = Φ =<br />

f f Rf Rf(z) = e 2πiβ ... (z) Φ rep + (z) 1 +<br />

z + O(z 2 ) β = − 1 α mo<br />

0 R 0 f 0 R 0 f 0 (z) = z + O(z f 2 0 )<br />

R 0 f 0 R 0 f 0 (z) = z + O(z 2 )<br />

f Rf Rf(z)<br />

E e 2πiβ z + O(z 2 ) β = − 1 f0 (z) = Φ attr ◦ Φ −1<br />

rep χ f χ f (z) =<br />

C R Z Q<br />

f Rf Rf(z) = e 2πiβ z<br />

Φ<br />

+ attr O(z f<br />

(f(z))<br />

2 ) Rf<br />

=<br />

β =<br />

Φ<br />

Rf(z) attr − 1 D H α R mod z − 1 1 Φ ... (f 0 (<br />

Q Z Rf = χ<br />

α<br />

C/Z C ∗<br />

attr ◦ Φ −1<br />

rep χ f χ f<br />

E(z) = z − 1 f0 (z) = Φ attr ◦Rf Φ −1<br />

rep= χ f<br />

χ f ◦ E f<br />

χ f (z) ≃ = z − 1 ˜Rf = χ f ◦ E f<br />

i ≥ N<br />

α<br />

(z) + 1 Φ rep (f(z)) = Φ rep (z) +<br />

α mod = e 2πiβ Z α<br />

z + O(z 2 ) β = − 1 Φ attr (f(z)) =<br />

f =<br />

Φ<br />

P ◦ attr (z)<br />

ϕ −1<br />

first return map<br />

+ 1 Φ rep (f(z)) = Φ rep (z) + 1 Φ ... (f 0 (z)) α<br />

+ 1 + o(1) w = − c z ↦→ e 2πiz z ↦→ exp(2πiz)<br />

+ o(1) (Im z → +∞) E f0 (z) = z + o(1) (Im z → +∞)<br />

near 0E f0 near (z) = ∞Φ attr T ◦(w) Φ −1<br />

rep = w + 1<br />

Φ attr (f(z)) Φw<br />

attr (z) + 1 Φ rep Φ attr (f(z)) = = Φ rep Φ attr (z) (z) + 1+ 1Φ ... Φ(f rep 0 (z)) (f(z)) = Φ = ... Φ(z) rep + (<br />

depends Econtinuously f0 (z) = Φ attr ◦on<br />

Φ −1<br />

rep χ f χ f (z) = z − Φ attr Φ rep C/Z<br />

f = Q ◦ ϕ −1<br />

E f0 E f f Rf R 0 f R α f Rf Rf = χ f ◦ E f<br />

e 2πiz Π : C/Z −→ ≃ Π C ∗ Π(z) = e<br />

f 2πiz Π<br />

= P ◦ ϕ −1 : C/Z −→ ≃ C ∗ αR 0 f 0 = Π ◦ E f0 ◦ Π −1<br />

(after a suitable normalization)<br />

−1<br />

−1<br />

−1


morphic near 0 f 0 (0) = 0 f ′ 0 (0) = λ<br />

z + a 2 z 2 + . . .<br />

πi p q z + a 2 z 2 + . . .<br />

+ a 2 z 2 + . . .<br />

λ = 1 a 2 ≠ 0<br />

f 0<br />

Lavaurs map<br />

Lavaurs map<br />

g β (z) =Φ −1<br />

rep (Φ attr(z)+β)<br />

describes how the orbits entering<br />

attracting fundamental strip go out<br />

<strong>from</strong> repelling fundamental strip.<br />

πiα z + . . .<br />

1near Φ attr ∞ T Φ(w) rep = C/Z w + 1 C Φ attr Φ rep C/Z C<br />

πiα , α small<br />

0} small and | arg α| < π 4z ↦→ z + β<br />

or<br />

1<br />

α<br />

mod Z<br />

i ≥ N<br />

∞+ 1 o(1)<br />

rep(z) + T (w) 1+ = 1 w + = Φ(f(z)) 1− c Φ attr<br />

w = ΦΦ(z) rep C/Z + 1 C<br />

E f0<br />

πiα z + O(z 2 )<br />

g β = lim<br />

n→∞ f k n<br />

near 0 near ∞ T (w) = w + 1 Φ attr Φ rep C/Z C<br />

n in int K(f 0)<br />

if f n (z) =e 2πiα n<br />

( z + ...,<br />

1<br />

)<br />

− k n = −β,<br />

lim<br />

n→∞<br />

α n<br />

if f n (z) ( =z + z 2 + ε n ,<br />

π<br />

)<br />

− k n = −β.<br />

lim<br />

n→∞<br />

√<br />

εn


Limit dynamics<br />

f 0 ◦ g β = g β ◦ f 0 = g β+1<br />

in K f0<br />

〈f 0 ,g β 〉 = {f0 n ◦ gm β<br />

: (m = 0 and n ≥ 0) or (m >0 and n ∈ Z)}<br />

(when m>0, each element is defined in an open subset of C)<br />

K(〈f 0 ,g β 〉)=C {z : ∃h = f n 0 ◦ gm β ∈〈f 0,g β 〉,h(z) ∈ C K f0 }<br />

J(〈f 0 ,g β 〉) = closure of {repelling fixed points of h = f n 0 ◦ gm β ∈〈f 0,g β 〉}<br />

J(f 0 ) J(〈f 0 ,g β 〉) ⊂ lim inf<br />

n→∞ J(f n)<br />

⊂ lim sup<br />

n→∞<br />

K(〈f 0 ,g β 〉)=J(〈f 0 ,g β 〉) =⇒<br />

K(f n ) ⊂ K(〈f 0 ,g β 〉) K(f 0 )<br />

lim K(f n) = lim J(f n)=J(〈f 0 ,g β 〉)<br />

n→∞ n→∞<br />

∃h = f n 0 ◦ g m β (∈ 〈f 0 ,g β 〉) has an attracting fixed point<br />

=⇒ lim<br />

n→∞ K(f n)=K(〈f 0 ,g β 〉) and<br />

lim J(f n)=J(〈f 0 ,g β 〉)<br />

n→∞


Further results<br />

Discontinuity of straightening of polynomial-like mappings<br />

(Douady-Hubbard, first published account on parabolic <strong>implosion</strong>)<br />

Limit parameter space for z 2 1<br />

+ c around c 0 =1/4 (wrt √ )<br />

c−1/4<br />

versus parameter space of 〈f 0 ,g β 〉 (Lavaurs)<br />

Non-local connectivity of connectedness locus for real/complex cubic<br />

polynomials (Lavaurs)<br />

. . . . .<br />

<strong>Parabolic</strong>/near-parabolic <strong>renormalization</strong><br />

Renormalization for germs holomorphic functions with parabolic or<br />

near-parabolic fixed points (in wild direction)<br />

S. with H. Inou: an invariant class of maps for the <strong>renormalization</strong>.<br />

=> control on irrationally indifferent fixed points when<br />

the continued fraction of the rotation number has large coefficients.<br />

=> Buff-Cheritat’s result on quadratic Julia sets with positive area.


Return map and Renormalization<br />

f<br />

g<br />

Rf<br />

Renormalization<br />

f Rf = first return map f (after rescaling)<br />

If f is infinitely renormalizable, ...<br />

f 0 = f f 1 = Rf 0 f 2 = Rf 1<br />

h 0<br />

g 0 g 1<br />

h 1 h 2<br />

˜g 0 ˜g 1<br />

f Rf<br />

as a “meta dynamical system”<br />

on a space of dynamical systems<br />

Often one expects a hyperbolic<br />

f ↔ (α, f<br />

dynamics 0 ) Rf(z) = e −2πi 1 α R α f 0 (z) R : (α,<br />

f 0 α α ↦→ − 1 α mod Z R 0 R<br />

R 0 contracting? R hyperbolic? (R α contrac<br />

f = P ◦ ϕ −1<br />

˜f 0 = ˜f ˜f1 = R ˜f 0<br />

˜f2 = R ˜f 1<br />

rigidity: weak conj. upgraded <strong>to</strong> nicer one<br />

f = Q ◦ ϕ −1<br />

0 ∞ (−∞, −1]


Near-parabolic Renormalization (cylinder renorm.)<br />

(1) w = − c z<br />

f<br />

(z) = z + O(z 2 )<br />

χ f<br />

mod Z E f0 E f<br />

near 0 near ∞ T (w) = w + 1 Φ attr Φ rep C/Z C<br />

e 2πiβ z + O(z 2 ) β = − 1 Φα mod Z<br />

attr (f(z)) = Φ attr (z) + 1 Φ rep (f(z)) = Φ rep (z) + 1 Φ ..<br />

(z) + 1 Φ rep (f(z)) = Φ rep (z) + 1 Φ ... (f 0 (z)) = Φ ... (z) + 1<br />

E f0 The (z) following = Φ attr ◦text Φ −1<br />

rep is drawn χ f inχwhite.<br />

f (z) = z − 1 α<br />

1<br />

ep χ f χ f (z) E f<br />

= z − 1 Φ˜Rf attr χR f1 = ◦ E239<br />

f<br />

˜Rf Rf = χf ◦ E f ≃<br />

αE f0 (z) = z + o(1) (Im z → +∞)<br />

(Im z → +∞)<br />

Π : C/Z<br />

≃<br />

F 0 (w) = w + 1 + o(1) w = − z<br />

near 0 near ∞ T (<br />

f 0 R 0 f 0 R 0 f 0 (z) = z + O(z 2 )<br />

f Rf Rf(z) = e 2πiβ z + O(z 2 ) β = − 1 α mod Z<br />

first return map<br />

e −2π = 0.00186 . . .<br />

h<br />

−→ 1 =<br />

C ∗ Exp ♯ ◦ E e 2πiα h ◦ ( Exp ♯) −1<br />

Exp ♯ Exp ♯ (z) = e 2πiz Exp ♯ = R<br />

: C/Z −→ ≃ α h<br />

C ∗<br />

Π Π(z) = e 2πiz Π : C/Z ≃<br />

−→ C ∗ R 0 fR 0 = Π ◦ E f0 ◦ Π −1 R 0 f 0 Π ◦ E f0 ◦ −1 0 f 0 = Π ◦ E f0 ◦ Π −1 Rf = Π ◦ ˜Rf ◦ Π −1 = RΠ 0 f◦ 0 χ=<br />

f ◦ E f<br />

cylinders and Rf defined<br />

R 0 f 0 = Exp ♯ ◦E f0 ◦ (Exp ♯ ) −1 R 0 f 0 = Exp ♯ ◦E f0 ◦ (Exp ♯ ) −1<br />

where β = − 1 when 1 h ′′ (0) ≠ 0 and<br />

(mod Z) or α = α sufficiently (m ∈small<br />

N)<br />

α m − β<br />

f 0<br />

R −→ f1<br />

−1<br />

R −→ f2<br />

Exp ♯ : C/Z ≃ −→ C ∗ ,z↦→ e 2πiz<br />

Rf is conjugate <strong>to</strong> the return map<br />

on red croissant via repelling<br />

Fa<strong>to</strong>u coordinate and Exp ♯<br />

R −→ f3<br />

f = e 2πiα h, h = z + O(z 2 )<br />

f ↔ (α,h)<br />

R −→ . . .<br />

˜Rf = χ f ◦ E<br />

Rf = e −2πi 1 α h 1 , h 1 = z + O(z 2 )<br />

Rf ↔ (− 1 α ,h 1)<br />

R 0 f 0 = Π ◦ E f0 ◦ Π −


Theorem. (H. Inou and S.) There exists a class F 1 of maps<br />

with a parabolic fixed point (non-degenerate) (iv) f ↦→and R 0 f is a“holomorphic.”<br />

unique critical<br />

point and a large number N such that the near-parabolic<br />

<strong>renormalization</strong> R is defined on<br />

univalent = holomorphic and injective<br />

{e 2πiα h : α ∈ R, 0 < |α| ≤ 1 N ,h∈ F 1}<br />

and hyperbolic. In fact, R can be considered as<br />

R :(α,h) ↦→ (− 1 α mod Z, R αh),<br />

(iii) If we write R 0 f = P ◦ ψ −1 , then ψ can be e<br />

Theorem 2 The above statements hold for R α<br />

exists an N such that the above holds for<br />

α = 1<br />

m + β<br />

and α ↦→ − 1 α mod Z is expanding. The “fiber direction” F 1 is<br />

in one <strong>to</strong> one correspondence with the Teichmüller space of<br />

P (z) = z(1 + z) 2 and V , V ′<br />

the punctured disk and the fiber map R α is holomorphic and<br />

uniform contracting with respect <strong>to</strong> the Teichmüller distance.<br />

with m ∈ N, β ∈ C<br />

P (z) = z(1 + z) 2 P (0) = 0, P ′ (0) = 1<br />

critical points: − 1 3<br />

and −1; critical values: P (<br />

Invariant class F 1 is characterized by (partial covering property.<br />

η = 2<br />

4<br />

27 e2πη 4 27 e−2πη<br />

U 4−<br />

U 3+<br />

η = 2 P slit<br />

Dom(f)<br />

cp<br />

0<br />

U 2<br />

U 1<br />

V slightly smaller domain than V ′<br />

b<br />

cv<br />

f<br />

0<br />

c<br />

C slit<br />

f = P ◦ ϕ −1<br />

−1


Applications (work in progress)<br />

Theorem. Let f = e 2πiα h and ˆf = e 2πiα ĥ where h, ĥ ∈ F 1<br />

(or z + z 2 ) and α is of high type (continued fraction coeffs ≥ N).<br />

Then f and ˆf are quasiconformally conjugate on the closure of<br />

the critical orbit. Moreover the conjugacy is C 1+γ -conformal on<br />

the critical orbit with some γ > 0.<br />

Compare with McMullen’s result on bounded type Siegel disks<br />

Theorem. Let f = e 2πiα h where h ∈ F 1 (or z + z 2 ) and<br />

α is of high type (continued fraction coefficientss ≥ N).<br />

Then there exist open sets U n ∋ 0 and integers q n (n =0, 1,...)<br />

such that f q n<br />

is defined on U n and at most 3 <strong>to</strong> 1,<br />

⋂ ∞<br />

n=0 U n contains the critical orbit and consists of arcs (“hairs”)<br />

which are disjoint <strong>from</strong> each other except at 0.<br />

According <strong>to</strong> a discussion with Buff, Chéritat, Oversteegen,<br />

quadratic Julia sets with non-Bruno, high-type rotation number<br />

seem <strong>to</strong> be decomposable.


Merci!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!