16.07.2014 Views

THE WEIL-´ETALE FUNDAMENTAL GROUP OF A NUMBER FIELD I

THE WEIL-´ETALE FUNDAMENTAL GROUP OF A NUMBER FIELD I

THE WEIL-´ETALE FUNDAMENTAL GROUP OF A NUMBER FIELD I

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

130 B. Morin<br />

Proof. The hypercohomology spectral sequence<br />

H i ( ¯X et ,H j (τ ≤2 Rγ ∗ Z)) ⇒ H i+j ( ¯X et ,τ ≤2 Rγ ∗ Z)<br />

first gives H 0 ( ¯X 0 ,τ ≤2 Rγ ∗ Z) = Z and H 1 ( ¯X et ,τ ≤2 Rγ ∗ Z) = 0. On the other hand we have<br />

for any n ≤ 2. In particular, we have<br />

H n ( ¯X et ,τ ≤2 Rγ ∗ Z) = H n ( ¯X et ,Rγ ∗ Z) = H n ( ¯X L , Z)<br />

H 2 ( ¯X et ,τ ≤2 Rγ ∗ Z) = H 2 ( ¯X L , Z) = Pic 1 ( ¯X) D .<br />

Therefore, the spectral sequence above yields an exact sequence<br />

0 → Cl(F ) D<br />

→ Pic 1 ( ¯X) D → Hom(O ∗ F , Q) → Hom(O∗ F , Q/Z) → H3 ( ¯X L ,τ ≤2 Rγ ∗ Z) → 0.<br />

Here the maps Cl(F ) D → Pic 1 ( ¯X) D → Hom(<strong>OF</strong> ∗ , Q) are explicitly given. The first is<br />

induced by the morphism from the Weil-étale fundamental group to the étale fundamental<br />

group<br />

π 1 ( ¯X L ) ab −→ π 1 ( ¯X et ) ab<br />

given by Property (3), and the second is induced by the canonical morphism P 2 γ ∗ Z →<br />

R 2 (γ ∗ )Z (the map from a presheaf to its associated sheaf). It follows that the cokernel of<br />

the map<br />

Pic 1 ( ¯X) D → Hom(O ∗ F , Q)<br />

is<br />

We obtain an exact sequence<br />

Hom(O ∗ F , Q)/Hom(O∗ F , Z) ≃ Hom(O∗ F /μ F , Q/Z).<br />

0 → Hom(O ∗ F /μ F , Q/Z) → Hom(O ∗ F , Q/Z) → H3 ( ¯X et ,τ ≤2 Rγ ∗ Z) → 0. (31)<br />

Let us denote by α : Hom(<strong>OF</strong> ∗ /μ F , Q/Z) → Hom(<strong>OF</strong> ∗ , Q/Z) the first map of the exact<br />

sequence (31). We need to show that α is the canonical map. There is a decomposition<br />

Hom(O ∗ F , Q/Z) = Hom(O∗ F /μ F , Q/Z) × μ D F<br />

and the composition (where p is the projection)<br />

p ◦ α : Hom(O ∗ F /μ F , Q/Z) → Hom(O ∗ F , Q/Z) → μD F<br />

must be 0 since Hom(<strong>OF</strong> ∗ /μ F , Q/Z) is divisible and μ D F<br />

is contained in the subgroup<br />

finite. It follows that the image of α<br />

hence α induces an injective morphism<br />

Hom(O ∗ F /μ F , Q/Z) ⊂ Hom(O ∗ F , Q/Z)<br />

˜α : Hom(O ∗ F /μ F , Q/Z)↩→ Hom(O ∗ F /μ F , Q/Z).<br />

Since those two groups are both finite sums of Q/Z,thismap˜α needstobeanisomorphism.<br />

Indeed, the n-torsion subgroups are both finite of the same cardinality for any n, hence an

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!