Poincaré Inequalities in Probability and Geometric Analysis

Poincaré Inequalities in Probability and Geometric Analysis Poincaré Inequalities in Probability and Geometric Analysis

math.univ.toulouse.fr
from math.univ.toulouse.fr More from this publisher
16.07.2014 Views

Poincaré Inequalities in Probability and Geometric Analysis M. Ledoux Institut de Mathématiques de Toulouse, France

<strong>Po<strong>in</strong>caré</strong> <strong>Inequalities</strong> <strong>in</strong> <strong>Probability</strong> <strong>and</strong><br />

<strong>Geometric</strong> <strong>Analysis</strong><br />

M. Ledoux<br />

Institut de Mathématiques de Toulouse, France


<strong>Po<strong>in</strong>caré</strong> <strong>in</strong>equalities<br />

<strong>Po<strong>in</strong>caré</strong>-Wirt<strong>in</strong>ger <strong>in</strong>equalities<br />

from the orig<strong>in</strong> to recent developments<br />

<strong>in</strong> probability theory <strong>and</strong> geometric analysis


work of Henri <strong>Po<strong>in</strong>caré</strong><br />

partial differential equations of mathematical physics<br />

Fourier problem for the heat equation<br />

∆U + kU = 0 on Ω ⊂ R 3<br />

∂U<br />

∂n<br />

= 0 on ∂Ω<br />

Ω bounded doma<strong>in</strong> <strong>in</strong> R 3


American Journal of Mathematics 12, 1890<br />

Comptes Rendus de l’Académie des Sciences 1887, 1888


spectral problem<br />

∆u j + k j u j = 0, j ≥ 1<br />

Neumann boundary condition<br />

∂u j<br />

∂n = 0<br />

k j =<br />

∫<br />

Ω u j(−∆u j )dx<br />

∫Ω u2 j dx =<br />

∫<br />

Ω |∇u j| 2 dx<br />

∫Ω u2 j dx (j ≥ 2)<br />

Rayleigh-Ritz ratio<br />

m<strong>in</strong>-max characterization<br />

k 2 ≥ κ(Ω) > 0<br />

k j<br />

→ ∞


<strong>Po<strong>in</strong>caré</strong> <strong>in</strong>equality<br />

Ω bounded open convex (connected) set <strong>in</strong> R n<br />

∫<br />

f : ¯Ω → R smooth<br />

Ω f dx = 0<br />

∫<br />

κ<br />

Ω<br />

f 2 dx ≤<br />

∫<br />

Ω<br />

|∇f | 2 dx<br />

κ = κ(Ω) > 0<br />

explicit lower bound on κ(Ω) (diameter of Ω)


<strong>Po<strong>in</strong>caré</strong>’s proof<br />

∫<br />

Ω<br />

duplication<br />

f 2 dx (<br />

|Ω|<br />

∫Ω<br />

− f<br />

|Ω|) dx 2<br />

= 1 ∫ ∫<br />

∣<br />

∣f (x) − f (y) ∣ 2 dx<br />

2 Ω Ω<br />

|Ω|<br />

dy<br />

|Ω|<br />

f (x) − f (y) =<br />

∫ 1<br />

0<br />

(x − y) · ∇f ( tx + (1 − t)y ) dt<br />

∫<br />

κ<br />

after a suitable change of variables<br />

Ω<br />

f 2 dx ≤<br />

∫<br />

∫<br />

|∇f | 2 dx<br />

Ω<br />

Ω<br />

f dx = 0<br />

κ ≥<br />

c n<br />

D(Ω) 2 D(Ω) diameter (Ω convex)<br />

L. Payne, H. We<strong>in</strong>berger (1960) (optimal) κ = π2<br />

D(Ω) 2


American Journal of Mathematics 12, 1890<br />

Comptes Rendus de l’Académie des Sciences 1887, 1888


cited by J. Mawh<strong>in</strong> (2006)


<strong>Po<strong>in</strong>caré</strong> <strong>in</strong>equalities<br />

<strong>Po<strong>in</strong>caré</strong>-Wirt<strong>in</strong>ger <strong>in</strong>equalities<br />

from the orig<strong>in</strong> to recent developments<br />

<strong>in</strong> probability theory <strong>and</strong> geometric analysis


Wirt<strong>in</strong>ger <strong>in</strong>equality<br />

f : ¯Ω = [0, 1] → R smooth periodic f (0) = f (1)<br />

4π 2 ∫<br />

[0,1]<br />

f 2 dx ≤<br />

∫<br />

[0,1]<br />

f ′ 2 dx<br />

∫<br />

[0,1]<br />

f dx = 0<br />

f (x) = a 0 + ∑ m≥1<br />

a m cos(2πmx) + b m s<strong>in</strong>(2πkx)<br />

∫<br />

1<br />

f 2 dx = a0 2 + ∑ m<br />

2π [0,1]<br />

m≥1(a 2 + bm)<br />

2<br />

∫<br />

1<br />

∑<br />

f ′ 2 dx = 4π 2 m (am 2 + b<br />

2π<br />

m)<br />

2<br />

[0,1]<br />

m≥1<br />

∫<br />

f dx = 0 = a 0<br />

[0,1]


Wirt<strong>in</strong>ger <strong>in</strong>equality<br />

π 2 ∫<br />

[0,1]<br />

f : ¯Ω = [0, 1] → R<br />

∫<br />

f 2 dx ≤ f ′ 2 dx<br />

[0,1]<br />

smooth<br />

∫<br />

f dx = 0<br />

[0,1]<br />

symmetrization <strong>and</strong> periodization<br />

g(x) =<br />

g : [−1, +1] → R<br />

{<br />

f (x) x ∈ [0, +1],<br />

f (−x) x ∈ [−1, 0]


W. Wirt<strong>in</strong>ger 1865-1945<br />

cited by A. Hurwitz (1904), W. Blaschke (1949)<br />

<strong>in</strong>dependently E. Almansi (1906)<br />

application to the isoperimetric <strong>in</strong>equality <strong>in</strong> the plane


C = (x(t), y(t))<br />

arc length L =<br />

area enclosed by C<br />

simple closed smooth curve <strong>in</strong> the plane<br />

∫ b<br />

a<br />

√<br />

ẋ(t) 2 + ẏ(t) 2 dt<br />

∫<br />

∫ b<br />

A = − y dx = − y(t) ẋ(t)dt<br />

C<br />

a<br />

L 2 − 4πA = 2π<br />

∫ 2π<br />

0<br />

t = 2π L s<br />

∫ 2π<br />

(ẋ + y) 2 [ẏ<br />

dt + 2π<br />

2 − y 2] dt<br />

0<br />

Wirt<strong>in</strong>ger <strong>in</strong>equality<br />

∫ 2π<br />

0<br />

ẏ 2 dt ≥<br />

∫ 2π<br />

0<br />

y 2 dt<br />

L 2 ≥ 4πA<br />

isoperimetric <strong>in</strong>equality <strong>in</strong> the plane


Wirt<strong>in</strong>ger <strong>in</strong>equality<br />

the sphere version<br />

σ uniform (normalized) measure on S n<br />

f : S n → R<br />

smooth enough,<br />

∫<br />

S<br />

f dσ = 0<br />

n<br />

∫<br />

n f 2 dσ ≤<br />

S n<br />

∫<br />

S n |∇f | 2 dσ<br />

expansion <strong>in</strong> spherical harmonics<br />

(not enough to reach isoperimetry)


the Gaussian (Maxwellian) version<br />

dγ(x) =<br />

1<br />

(2π) n/2 e−|x|2 /2 dx<br />

st<strong>and</strong>ard Gaussian probability measure on<br />

R n<br />

f : R n → R smooth enough,<br />

∫<br />

R<br />

f dγ = 0<br />

n<br />

∫ ∫<br />

f 2 dγ ≤<br />

R n |∇f | 2 dγ<br />

R n<br />

expansion <strong>in</strong> Hermite polynomials<br />

J. Nash (1959), H. Chernoff (1981), L. Chen (1982)...


<strong>Po<strong>in</strong>caré</strong> <strong>in</strong>equalities : modern language<br />

µ probability measure on E<br />

Var µ (f ) =<br />

∫<br />

E<br />

( ∫ 2<br />

f 2 dµ − f dµ)<br />

variance<br />

E<br />

E(f )<br />

energy<br />

E(f ) =<br />

∫<br />

E<br />

f (−Lf )dµ =<br />

∫<br />

E<br />

|∇f | 2 dµ<br />

L operator (Laplace) with <strong>in</strong>variant measure µ<br />

∇ gradient operator


examples<br />

<strong>Po<strong>in</strong>caré</strong>’s sett<strong>in</strong>g : dx uniform on Ω ⊂ R n convex<br />

E(f ) =<br />

∫<br />

Ω<br />

f (−∆f )dx =<br />

∫<br />

Ω<br />

|∇f | 2 dx<br />

( ∂f<br />

∂n = 0 )<br />

L = ∆ Laplace operator on (S n , σ)<br />

E(f ) =<br />

∫<br />

f (−∆f )dσ =<br />

S n ∫<br />

|∇f | 2 dσ<br />

S n<br />

L = ∆ − x · ∇ Ornste<strong>in</strong>-Uhlenbeck operator on (R n , γ)<br />

1<br />

dγ(x) =<br />

(2π) n/2 e−|x|2 dx<br />

∫<br />

∫<br />

E(f ) = f (−Lf )dγ =<br />

R n |∇f | 2 dγ<br />

R n


<strong>Po<strong>in</strong>caré</strong> <strong>in</strong>equality<br />

∫<br />

κ Var µ (f ) ≤ E(f ) = f (−Lf )dµ =<br />

E<br />

∫<br />

E<br />

|∇f | 2 dµ<br />

for all f : E → R <strong>in</strong> a suitable class<br />

κ<br />

<strong>Po<strong>in</strong>caré</strong> constant<br />

spectral <strong>in</strong>terpretation<br />

λ 1 first non-trivial eigenvalue of L −Lf = λ 1 f<br />

λ 1 ≥ κ<br />

first non-trivial eigenvalue of ∆ on S n : λ 1 = n


convergence to equilibrium<br />

<strong>Po<strong>in</strong>caré</strong> <strong>in</strong>equality<br />

∫<br />

k Var µ (f ) ≤ E(f ) = f (−Lf ) dµ<br />

E<br />

(P t ) t≥0<br />

semigroup with <strong>in</strong>f<strong>in</strong>itesimal generator L<br />

ergodicity t → ∞ P t → µ <strong>in</strong>variant measure<br />

exponential decay<br />

‖P t f ‖ 2<br />

≤ e −κt ‖f ‖ 2<br />

∫E f dµ = 0<br />

(derivative <strong>in</strong> t)


discrete models<br />

Markov cha<strong>in</strong>s, statistical mechanics<br />

r<strong>and</strong>om walks<br />

L = K − Id<br />

K (reversible) Markov kernel on E f<strong>in</strong>ite<br />

µ <strong>in</strong>variant measure<br />

energy<br />

E(f ) =<br />

∫<br />

E<br />

f (−Lf )dµ = 1 2<br />

∑ [ ] 2K(x, f (x) − f (y) y)µ(x)<br />

x,y∈E


P t = e t(K−Id) , t ≥ 0<br />

kernel K t (x, ·) → µ(·) stationary measure<br />

(quantitative) L 2 time to equilibrium τ<br />

<strong>Po<strong>in</strong>caré</strong> constant κ Var µ (f ) ≤ E(f )<br />

τ ∼ 1 κ<br />

P. Diaconis <strong>and</strong> coauthors


<strong>Po<strong>in</strong>caré</strong> <strong>in</strong>equalities <strong>and</strong> geometric bounds<br />

the modern era : Lichnerowicz’s bound (1958)<br />

(M, g)<br />

compact Riemannian manifold<br />

µ normalized Riemannian volume element<br />

Bochner’s formula<br />

∆ Laplace-Beltrami operator on M<br />

1<br />

2 ∆( |∇f | 2 ) − ∇f · ∇(∆f ) = ∣ ∣Hess(f ) ∣ ∣ 2 + Ric(∇f , ∇f )<br />

f : M → R<br />

smooth<br />

Ric<br />

Ricci curvature


1<br />

2 ∆( |∇f | 2 ) − ∇f · ∇(∆f ) = ∣ ∣Hess(f ) ∣ ∣ 2 + Ric(∇f , ∇f )<br />

assume Ric ≥ ρ > 0 uniformly on M<br />

1<br />

2 ∆( |∇f | 2 ) − ∇f · ∇(∆f ) ≥ 1 n (∆f )2 + ρ |∇f | 2<br />

<strong>in</strong>tegrate with respect to volume element µ<br />

∫<br />

M<br />

<strong>in</strong>tegration by parts<br />

∫<br />

u(−∆v)dµ = ∇u · ∇v dµ<br />

∫<br />

)<br />

M(∆f 2 dµ ≥ 1 ∫<br />

n<br />

M<br />

M<br />

∫<br />

(∆f ) 2 dµ + ρ<br />

M<br />

|∇f | 2 dµ


(<br />

1 − 1 ) ∫ ∫<br />

∫<br />

(∆f ) 2 dµ ≥ ρ |∇f | 2 dµ = ρ f (−∆f )dµ<br />

n M<br />

M<br />

M<br />

λ 1 ≥<br />

f eigenfunction with eigenvalue λ 1<br />

−∆f = λ 1 f<br />

(<br />

1 − 1 ) ∫<br />

∫<br />

λ 2 1 f 2 dµ ≥ ρλ 1 f 2 dµ<br />

n M<br />

M<br />

ρ n<br />

n − 1<br />

Lichnerowicz’s lower bound<br />

<strong>Po<strong>in</strong>caré</strong> constant κ = λ 1 ≥ ρ n<br />

n − 1<br />

optimal on S n ρ = n − 1 λ 1 = n (Wirt<strong>in</strong>ger)


(M, g) (compact) Riemannian manifold<br />

λ 1 ≥ K(n, ρ, D)<br />

dimension n Ric ≥ ρ ∈ R diameter D<br />

P. Li (1979), J. Zhong, H. Yang (1984)<br />

(M, g) Riemannian manifold non-negative Ricci curvature<br />

λ 1 ≥ π2<br />

D 2<br />

extremal : torus


from the sphere to Gauss space<br />

L = ∆ Laplace operator on (S n , σ)<br />

E(f ) =<br />

∫<br />

f (−∆f )dσ =<br />

S n ∫<br />

|∇f | 2 dσ<br />

S n<br />

n Var σ (f ) ≤ E(f )<br />

L = ∆ − x · ∇ Ornste<strong>in</strong>-Uhlenbeck operator on (R n , γ)<br />

E(f ) =<br />

dγ(x) =<br />

∫<br />

1<br />

(2π) n/2 e−|x|2 /2 dx<br />

R n f (−Lf )dγ =<br />

∫<br />

Var γ (f ) ≤ E(f )<br />

R n |∇f | 2 dγ


the <strong>Po<strong>in</strong>caré</strong> lemma<br />

π n,k : R n+1 → R k<br />

σ n uniform (normalized) on S n ( √ n )<br />

if<br />

A ⊂ R k<br />

(<br />

σ n π −1<br />

n,k (A) ∩ Sn ( √ )<br />

n )


(<br />

σ n π −1<br />

n,k (A) ∩ Sn ( √ )<br />

n )<br />

→ γ(A)<br />

n → ∞


the <strong>Po<strong>in</strong>caré</strong> lemma<br />

π n,k : R n+1 → R k<br />

σ n uniform (normalized) on S n ( √ n )<br />

if<br />

A ⊂ R k<br />

(<br />

σ n π −1<br />

n,k (A) ∩ Sn ( √ )<br />

n )<br />

→ γ(A)<br />

dγ(x) = e −|x|2 /2<br />

dx<br />

(2π) k/2


cited by H. P. McKean (1973), M. Kac...


the <strong>Po<strong>in</strong>caré</strong> lemma<br />

π n,k : R n+1 → R k<br />

σ n uniform (normalized) on S n ( √ n )<br />

if<br />

A ⊂ R k<br />

(<br />

σ n π −1<br />

n,k (A) ∩ Sn ( √ )<br />

n )<br />

→ γ(A)<br />

dγ(x) = e −|x|2 /2<br />

dx<br />

(2π) k/2<br />

seem<strong>in</strong>gly not due to H. <strong>Po<strong>in</strong>caré</strong> (1912)<br />

F. Mehler (1866), L. Boltzmann (1868),<br />

J. Maxwell (1878), E. Borel (1906)


Bochner’s formula<br />

1<br />

2 ∆( |∇f | 2 ) − ∇f · ∇(∆f ) = ∣ ∣Hess(f ) ∣ ∣ 2 + Ric(∇f , ∇f )<br />

Ric S n = n − 1<br />

Ric S n (r) = n − 1<br />

r 2<br />

r ∼ √ n<br />

Ric ∼ 1


Ornste<strong>in</strong>-Uhlenbeck operator on<br />

R k<br />

L = ∆ − x · ∇<br />

<strong>in</strong>variant measure dγ(x) = e −|x|2 /2 dx<br />

(2π) k/2<br />

Bochner’s formula for<br />

L<br />

1<br />

2 L( |∇f | 2) − ∇f · ∇(Lf ) = ∣ ∣Hess(f ) ∣ ∣ 2 + |∇f | 2<br />

constant Ricci curvature (= 1) <strong>in</strong>f<strong>in</strong>ite dimension (n = ∞)<br />

κ = λ 1 ≥<br />

ρ n<br />

n − 1 = 1<br />

<strong>Po<strong>in</strong>caré</strong> <strong>in</strong>equality<br />

∫<br />

Var γ (f ) ≤ |∇f | 2 dγ<br />

R n


D. Bakry, M. Émery theory (1985)<br />

Markov operator L on state space E<br />

µ <strong>in</strong>variant symmetric probability measure<br />

Γ (bil<strong>in</strong>ear) gradient operator<br />

Γ(f , g) = 1 [ ]<br />

2 L(fg) − f Lg − g Lf<br />

f , g : E → R <strong>in</strong> some nice algebra A<br />

L = ∆ on M Riemannian manifold Γ(f , g) = ∇f · ∇g<br />

E(f ) =<br />

∫<br />

E<br />

f (−Lf ) dµ =<br />

∫<br />

E<br />

Γ(f , f )dµ


Γ(f , g) = 1 2<br />

[<br />

L(fg) − f Lg − g Lf<br />

]<br />

Γ 2<br />

operator<br />

Γ 2 (f , g) = 1 [ ]<br />

2 L Γ(f , g) − Γ(f , Lg) − Γ(g, Lf )<br />

Bochner’s formula on M Riemannian manifold, L = ∆<br />

Γ 2 (f , f ) = ∣ ∣ Hess(f )<br />

∣ ∣<br />

2 + Ric(∇f , ∇f )<br />

Ornste<strong>in</strong>-Uhlenbeck operator on<br />

R k<br />

L = ∆ − x · ∇<br />

Γ 2 (f , f ) = ∣ ∣Hess(f ) ∣ ∣ 2 + |∇f | 2<br />

Ric = 1


curvature - dimension condition<br />

Γ 2 (f , f ) ≥ ρ Γ(f , f ) + 1 n (Lf )2 ,<br />

f ∈ A<br />

model spaces<br />

sphere S n uniform measure<br />

ρ = n − 1<br />

dimension n<br />

ρ = 1<br />

R k<br />

Gaussian measure<br />

<strong>in</strong>f<strong>in</strong>ite dimension n = ∞


dynamical (heat flow) proof<br />

of Lichnerowicz’s bound<br />

(P t ) t≥0<br />

Markov semigroup with generator L<br />

f : E → R,<br />

∫<br />

E f dµ = 0<br />

∫<br />

∫<br />

∫<br />

d<br />

(P t f ) 2 dµ = 2 P t f (−LP t f )dµ = 2 Γ(P t f , P t f )dµ<br />

dt E<br />

E<br />

E<br />

very def<strong>in</strong>ition of Γ 2<br />

∫<br />

∫<br />

d<br />

Γ(P t f , P t f )dµ = 2 Γ 2 (P t f , P t f ))dµ<br />

dt E<br />

E


curvature - dimension condition<br />

Γ 2 (f , f ) ≥ ρ Γ(f , f ) + 1 n (Lf )2 ,<br />

f ∈ A<br />

∫<br />

∫<br />

d<br />

Γ(P t f , P t f )dµ = 2 Γ 2 (P t f , P t f ))dµ<br />

dt E<br />

E<br />

ρn<br />

n − 1 Var µ(f ) ≤<br />

differential <strong>in</strong>equality<br />

∫<br />

E<br />

Γ(f , f )dµ = E(f )<br />

<strong>Po<strong>in</strong>caré</strong> <strong>in</strong>equality κ ≥ ρn<br />

n − 1


same heat flow scheme<br />

logarithmic Sobolev <strong>and</strong> Sobolev <strong>in</strong>equalities<br />

ρn ‖f ‖ 2 p − ‖f ‖ 2 2<br />

n − 1 p − 2<br />

≤<br />

∫<br />

E<br />

Γ(f , f )dµ<br />

1 ≤ p ≤ 2n<br />

n − 2<br />

⋄ p = 1 <strong>Po<strong>in</strong>caré</strong> <strong>in</strong>equality<br />

⋄ p = 2 logarithmic Sobolev <strong>in</strong>equality (G. Perelman)<br />

⋄<br />

p = 2n<br />

n−2<br />

sharp Sobolev <strong>in</strong>equality


open problem<br />

Γ 2 (f , f ) ≥ ρ Γ(f , f ) + 1 n (Lf )2 ,<br />

f ∈ A<br />

model space : sphere S n ρ = n − 1<br />

Lévy-Gromov’s isoperimetric comparison theorem<br />

I µ (s) = <strong>in</strong>f { µ + (A); µ(A) = s } , s ∈ (0, 1)<br />

µ + (A) = lim <strong>in</strong>f<br />

ε→0<br />

1[ µ(Aε ) − µ(A) ]<br />

ε<br />

I µ ≥ I S n<br />

D. Bakry, M. L. (1996) <strong>in</strong>f<strong>in</strong>ite dimensional model (n = ∞)


J. Lott - C. Villani, K.-Th. Sturm (2006-09)<br />

synthetic def<strong>in</strong>ition of lower bound on curvature<br />

<strong>in</strong> metric measure space (E, d, µ)<br />

µ θ geodesic jo<strong>in</strong><strong>in</strong>g µ 0 <strong>and</strong> µ 1<br />

H(µ θ | µ) ≤ (1 − θ)H(µ 0 | µ) + θH(µ 1 | µ) − ρ θ(1 − θ)W 2 (µ 0 , µ 1 ) 2<br />

H(ν | µ) =<br />

∫<br />

E<br />

log dν dν, ν


J. Lott - C. Villani, K.-Th. Sturm (2006-09)<br />

synthetic def<strong>in</strong>ition of lower bound on curvature<br />

<strong>in</strong> metric measure space (E, d, µ)<br />

µ θ geodesic jo<strong>in</strong><strong>in</strong>g µ 0 <strong>and</strong> µ 1<br />

H(µ θ | µ) ≤ (1 − θ)H(µ 0 | µ) + θH(µ 1 | µ) − ρ θ(1 − θ)W 2 (µ 0 , µ 1 ) 2<br />

⋄<br />

⋄<br />

⋄<br />

⋄<br />

generalizes Ricci curvature <strong>in</strong> Riemannian manifolds<br />

ma<strong>in</strong> result : stability by Gromov-Hausdorff limit<br />

analysis on s<strong>in</strong>gular spaces (limits of Riemannian manifolds)<br />

allows for geometric <strong>and</strong> functional <strong>in</strong>equalities


J. Lott, C. Villani (2007)<br />

metric probability measure space (E, d, µ)<br />

under synthetic curvature ρ > 0 dimension n (> 1)<br />

ρ n<br />

n − 1 Var µ(f ) ≤<br />

∫<br />

E<br />

|∇f 2 |dµ<br />

open for<br />

logarithmic Sobolev <strong>and</strong> Sobolev <strong>in</strong>equalities<br />

isoperimetry (Lévy-Gromov)


ack to <strong>Po<strong>in</strong>caré</strong>’s <strong>in</strong>itial context<br />

log-concave measures<br />

dµ = e −V dx probability measure on R n<br />

log-concave : V : R n → R convex<br />

µ uniform normalized on Ω convex body


ack to <strong>Po<strong>in</strong>caré</strong>’s <strong>in</strong>itial context<br />

log-concave measures<br />

dµ = e −V dx probability measure on R n<br />

log-concave : V : R n → R convex<br />

µ uniform normalized on Ω convex body<br />

convex analysis<br />

geometry of convex bodies


log-concave measures<br />

dµ = e −V dx probability measure on R n<br />

log-concave : V : R n → R convex<br />

diffusion operator with <strong>in</strong>variant measure µ<br />

L = ∆ − ∇V · ∇<br />

V quadratic : Gaussian model<br />

Γ 2 (f , f ) = ∥ ∥Hess(f ) ∥ ∥ 2 2<br />

+ Hess(V )(∇f , ∇f )<br />

(strict) convexity Hess(V ) ≥ c > 0 Γ 2 ≥ c<br />

c Var µ (f ) ≤ E(f )


log-concave measures<br />

dµ = e −V dx probability measure on R n<br />

log-concave : V : R n → R convex<br />

diffusion operator with <strong>in</strong>variant measure µ<br />

L = ∆ − ∇V · ∇<br />

V quadratic : Gaussian model<br />

Γ 2 (f , f ) = ∥ ∥Hess(f ) ∥ ∥ 2 2<br />

+ Hess(V )(∇f , ∇f )<br />

convexity Hess(V ) ≥ 0 Γ 2 ≥ 0<br />

<strong>Po<strong>in</strong>caré</strong> <strong>in</strong>equality ?


Kannan-Lovasz-Sim<strong>in</strong>ovits (1995)<br />

algorithmic approach to the volume of convex bodies<br />

µ uniform normalized on Ω convex body<br />

S. Bobkov (1999)<br />

dµ = e −V dx probability measure on R n<br />

log-concave : V : R n → R convex


<strong>Po<strong>in</strong>caré</strong>’s proof<br />

∫<br />

Ω<br />

duplication<br />

f 2 dx (<br />

|Ω|<br />

∫Ω<br />

− f<br />

|Ω|) dx 2<br />

= 1 ∫ ∫<br />

∣<br />

∣f (x) − f (y) ∣ 2 dx<br />

2 Ω Ω<br />

|Ω|<br />

dy<br />

|Ω|<br />

f (x) − f (y) =<br />

∫ 1<br />

0<br />

(x − y) · ∇f ( tx + (1 − t)y ) dt<br />

after a suitable change of variables<br />

∫<br />

κ f 2 dx ≤<br />

Ω<br />

∫<br />

Ω<br />

|∇f | 2 dx,<br />

∫<br />

Ω<br />

f dx = 0<br />

κ ≥<br />

c n<br />

D(Ω) 2 D(Ω) diameter (Ω convex)<br />

L. Payne, H. We<strong>in</strong>berger (1960) (optimal) κ = π2<br />

D(Ω) 2


Kannan-Lovasz-Sim<strong>in</strong>ovits (1995)<br />

algorithmic approach to the volume of convex bodies<br />

µ uniform normalized on Ω convex body<br />

S. Bobkov (1999)<br />

dµ = e −V dx probability measure on R n<br />

log-concave : V : R n → R convex<br />

∫<br />

1<br />

c ∼<br />

f : R n → R smooth enough<br />

∫<br />

c Var µ (f ) ≤ |∇f | 2 dµ<br />

R n<br />

R n ∣ ∣ x − ∫ R n x dµ ∣ ∣ 2 dµ ≤ D 2 (Ω)<br />

diameter


the Kannan-Lovasz-Sim<strong>in</strong>ovits conjecture (1995)<br />

dµ = e −V dx probability measure on R n<br />

log-concave : V : R n → R convex<br />

isotropic position (after aff<strong>in</strong>e transformation)<br />

∫<br />

∫<br />

x dµ = 0 x i x j dµ = δ ij<br />

R n R n<br />

f : R n → R smooth enough<br />

∫<br />

c Var µ (f ) ≤ |∇f | 2 dµ<br />

R n<br />

c > 0 universal, <strong>in</strong>dependent of n


the Kannan-Lovasz-Sim<strong>in</strong>ovits conjecture (1995)<br />

dµ = e −V dx probability measure on R n<br />

log-concave : V : R n → R convex<br />

isotropic position (after aff<strong>in</strong>e transformation)<br />

∫<br />

∫<br />

x dµ = 0 x i x j dµ = δ ij<br />

R n R n<br />

(<br />

c<br />

sup<br />

|u|=1<br />

f : R n → R<br />

smooth enough<br />

∫ ) −1 ∫<br />

〈u, x〉 2 dµ Var µ (f ) ≤ |∇f | 2 dµ<br />

R n R n<br />

c > 0 universal, <strong>in</strong>dependent of n


the Kannan-Lovasz-Sim<strong>in</strong>ovits conjecture (1995)<br />

dµ = e −V dx probability measure on R n<br />

log-concave : V : R n → R convex<br />

isotropic position (after aff<strong>in</strong>e transformation)<br />

∫<br />

∫<br />

x dµ = 0 x i x j dµ = δ ij<br />

R n R n<br />

f : R n → R smooth enough<br />

∫<br />

c Var µ (f ) ≤ |∇f | 2 dµ<br />

R n<br />

O. Guédon, E. Milman (2011), R. Eldan (2012) : c ∼ n −2/3


the Kannan-Lovasz-Sim<strong>in</strong>ovits conjecture (1995)<br />

geometric (isoperimetric) content<br />

central hyperplane<br />

stronger than the hyperplane (slic<strong>in</strong>g) conjecture<br />

Ω convex body <strong>in</strong> R n , volume 1<br />

does there exists a hyperplane<br />

H ⊂ R n<br />

vol n−1 (Ω ∩ H) ≥ c c > 0 absolute ?<br />

K. Ball (2004), R. Eldan, B. Klartag (2011)


hyperplane (slic<strong>in</strong>g) conjecture<br />

Ω convex body <strong>in</strong> R n , volume 1<br />

does there exists a hyperplane<br />

H ⊂ R n<br />

vol n−1 (Ω ∩ H) ≥ c c > 0 absolute ?<br />

J. Bourga<strong>in</strong> (1991) probabilistic tools<br />

B. Klartag (2006) probabilistic <strong>and</strong> optimal transport tools<br />

c ∼ n −1/4


Thanks to Henri <strong>Po<strong>in</strong>caré</strong> !

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!