14.07.2014 Views

Colloidal Nanocrystals: Synthesis, Properties, Applications ...

Colloidal Nanocrystals: Synthesis, Properties, Applications ...

Colloidal Nanocrystals: Synthesis, Properties, Applications ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Colloidal</strong> <strong>Nanocrystals</strong>:<br />

<strong>Synthesis</strong>, <strong>Properties</strong>, <strong>Applications</strong>, Perspectives<br />

Liberato Manna<br />

NNL-INFM, Lecce (Italy)<br />

University of California, Berkeley (USA)<br />

Center for Nanoscience at LMU, Munich (Germany)<br />

1


Outline<br />

•<strong>Colloidal</strong> nanocrystals: synthesis, scaling laws and optical properties<br />

• Growth kinetics: spherical nanocrystals<br />

•Shape control : CdSe nanorods (synthesis, optical properties, self-assembly)<br />

•Shape + phase control: CdTe tetrapods (synthesis, optical properties)<br />

•Shape + phase + composition control: nanojunctions, inorganic dendrimers,<br />

coupled dots<br />

• <strong>Applications</strong> and Perspectives: nanoelectronics, optoelectronics,<br />

photovoltaics, biology<br />

2


P =O<br />

P= O<br />

3<br />

“Physical” and “chemical” approaches to nanostructures<br />

Electrically defined nanostructures lithographically defined nanostructures<br />

a1) gates<br />

a2)<br />

metal<br />

GaAs AlGaAs<br />

2DEG<br />

one individual<br />

quantum dot<br />

b) c)<br />

one individual<br />

quantum dot<br />

P=O<br />

O=P<br />

O=P<br />

P=O<br />

O=P<br />

O=P<br />

P=O<br />

P=O<br />

P=O<br />

P=O<br />

P = O<br />

P=O<br />

P= O<br />

P=O<br />

P=O<br />

P=O<br />

P=O<br />

P=O<br />

P=O<br />

GaAs<br />

P =O<br />

P =O<br />

O= P<br />

O=P<br />

O=P<br />

O=P<br />

O= P<br />

P=OO= P<br />

P=O<br />

O=P<br />

O=P<br />

P=O<br />

P=O<br />

P=O<br />

P=O<br />

O=P<br />

O=P<br />

P =O<br />

P=O<br />

InAs<br />

P=O<br />

P=O<br />

P=O<br />

P=O<br />

O=P<br />

O=P<br />

P=OO=P<br />

P=O<br />

P=O<br />

P=O<br />

P=O<br />

O=P<br />

O=P<br />

O=P<br />

GaAs<br />

Self-assembled islands Solution grown nanocrystals<br />

Molecular Beam Epitaxy<br />

of Quantum Structures


<strong>Synthesis</strong> of colloidal nanocrystals<br />

Ar<br />

Ar<br />

thermocouple<br />

Inject<br />

organometallic<br />

precursors<br />

P=OCd<br />

P=O Cd<br />

P Se<br />

P=O<br />

P=O<br />

P=O<br />

P=O<br />

“high T,” 250-350 C<br />

P=OCd<br />

P=O<br />

P=O<br />

P=O<br />

P=O<br />

Heating mantle<br />

350 set<br />

348 cur<br />

temperature<br />

controller<br />

P Se<br />

P=O<br />

P=O<br />

P=O<br />

Mixture of<br />

surfactants<br />

Highly crystalline<br />

Narrow size<br />

distribution<br />

4


Nanocrystal size control:<br />

<strong>Colloidal</strong> nanocrystals of different materials<br />

ZnSe<br />

PbSe<br />

Fe 2 O 3 CoPt 3<br />

5


A wide field view of 7nm diameter surfactant capped CdSe nanocrystals<br />

6


Co nanocrystals-9nm-monolayer<br />

7


Co nanocrystals-9nm-bilayer<br />

8


A comparison of defects<br />

in extended solids and nanocrystals<br />

Nonequilibrium<br />

grain<br />

boundary<br />

Equilibrium<br />

vacancy<br />

•One defect can affect an entire<br />

bulk solid<br />

•On average, nanocrystals contain<br />

no equilibrium defects<br />

•Easier to anneal out nonequilibrium<br />

defects in nanocrystals<br />

9


Some SCALING LAWS for nanocrystal properties<br />

Energy level spacing (band gap) ~1/r^2<br />

Density of states, oscillator strength (~1/V)<br />

Charging energy (~1/r)<br />

Melting temperature (~1/r)<br />

Magnetic relaxation time (~N)<br />

Control of size and shape will be an<br />

important variable<br />

in the design of new materials<br />

% Surface atoms<br />

80<br />

60<br />

40<br />

20<br />

0<br />

CdSe<br />

0 5 10 15 20<br />

Size (nm)<br />

10


Quantum Confinement<br />

• Particle-in-a-box: E ∝ 1 / R 2<br />

Absorbance (a.u.)<br />

25Å<br />

35Å<br />

45Å<br />

CdSe<br />

PL Intensity (a.u.)<br />

energy<br />

p<br />

sp 3 σ *<br />

conduction<br />

band<br />

energy gap<br />

300 500 700<br />

Wavelength (nm)<br />

s<br />

atom<br />

σ<br />

molecule<br />

quantum<br />

dot<br />

bulk solidstate<br />

body<br />

valence<br />

band<br />

number of connected atoms<br />

11


Size Dependent Photoluminescence of Semiconductor <strong>Nanocrystals</strong><br />

Wavelength (nm)<br />

1780 1030 730 560<br />

InAs InP CdSe<br />

460<br />

60Å 46 36 28Å<br />

46Å 40 35 30 46 36 31 24 21Å<br />

0.7 1.2 1.7 2.2 2.7<br />

Photon Energy (eV)<br />

Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P., Science 1998, 281, 2013-2016.<br />

12


Thermodynamics and Kinetics of colloidal nanocrystal growth<br />

∆G<br />

growth<br />

=<br />

( µ − µ ) − k T ln c + γdA<br />

cryst<br />

K<br />

D ⎛ 1 1<br />

Growth rate = dr dt = ⎜ −<br />

∗<br />

r ⎝ r r<br />

sol<br />

r* = critical size, depends on c<br />

B<br />

⎞<br />

⎟<br />

⎠<br />

c is large, r* is small, so small crystals are stable<br />

and they will grow<br />

c is small, r* is large, so small crystals become<br />

unstable and they will dissolve<br />

13


Time dependent nanocrystal growth kinetics<br />

A) Just After Injection<br />

Broadening<br />

zone<br />

Narrowing<br />

zone<br />

You are here<br />

dr<br />

dt<br />

K<br />

⎛ 1<br />

⎜<br />

⎝ r<br />

D<br />

1<br />

=<br />

∗<br />

r<br />

⎞<br />

− ⎟<br />

r ⎠<br />

Growth Rate<br />

+<br />

0<br />

r *<br />

3r * 5r * 7r * 9r *<br />

-<br />

_<br />

Nanocrystal Size<br />

High Monomer Concentration = Small Critical Size r*<br />

r* is small<br />

B) Well After Injection<br />

Broadening<br />

zone<br />

Narrowing<br />

zone<br />

dr<br />

dt<br />

K<br />

⎛ 1<br />

⎜<br />

⎝ r<br />

D<br />

1<br />

= −<br />

∗<br />

r<br />

r<br />

⎞<br />

⎟<br />

⎠<br />

Growth Rate<br />

+<br />

0<br />

-<br />

_<br />

You are here<br />

r * 3r *<br />

5r *<br />

Nanocrystal Size<br />

Low Monomer Concentration = Large Critical Size r*<br />

r* is large<br />

14


Std.Dev (%) Ave. Size (nm)<br />

6 Focusing Defocusing<br />

4<br />

14<br />

6<br />

Manipulation of the growth kinetics: Size Distribution Focusing<br />

Refocusing<br />

injection<br />

Time<br />

injection<br />

15


Epitaxial growth of Stable, Highly Luminescent Core/shell <strong>Nanocrystals</strong><br />

CdS<br />

CdSe<br />

e -<br />

h +<br />

0.27eV<br />

0.51eV<br />

Absorbance(a.u.)<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

7x<br />

40x<br />

0.0<br />

1.8<br />

2.2 2.6<br />

3 3.4<br />

Photoluminescence(a.u.)<br />

84%<br />

35%<br />

14%<br />

2%<br />

1%<br />

%QY<br />

Photon Energy (eV)<br />

16


Nanocrystal shape control: CdSe nanorods<br />

TOPO<br />

+<br />

Hexylphosphonic acid<br />

(HPA)<br />

+<br />

Tetradecylphosphonic acid<br />

(TDPA)<br />

Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E., Kadavanich, A. P. Alivisatos,<br />

Nature 2000, 404, 59-61<br />

Manna, L.; Scher, E. C.; Alivisatos, A. P., J. Am. Chem. Soc. 2000, 122, 12700-12706.<br />

17


Monolayer of 4x40 nm CdSe nanorods<br />

18


Nanorod Growth Mechanism<br />

Anisotropic<br />

Growth<br />

(001)<br />

Se<br />

Cd<br />

(001)<br />

Manna, L.; Scher, E. C.; Alivisatos, A. P., J. Am. Chem. Soc. 2000, 122, 12700-12706.<br />

19


XRD of dots and rods<br />

c axis<br />

002 110<br />

sphere<br />

rod<br />

20


Evolution of optical properties in rods<br />

100 nm<br />

1.4<br />

1.4<br />

1.4<br />

1.2<br />

1.2<br />

1.2<br />

1.0<br />

1.0<br />

1.0<br />

AB/PL (AU)<br />

0.8<br />

0.6<br />

AB/PL (AU)<br />

0.8<br />

0.6<br />

AB/PL (AU)<br />

0.8<br />

0.6<br />

0.4<br />

0.4<br />

0.4<br />

0.2<br />

0.2<br />

0.2<br />

0.0<br />

500<br />

550<br />

600<br />

650<br />

700<br />

0.0<br />

500<br />

550<br />

600<br />

650<br />

700<br />

0.0<br />

500<br />

550<br />

600<br />

650<br />

700<br />

Waveleng(nm)<br />

Waveleng(nm)<br />

Waveleng(nm)<br />

Hu, J. T.; Li, L. S.; Yang, W. D.; Manna, L.; Wang, L. W.; Alivisatos, A. P., Science 2001, 292, 2060-2063.<br />

21


Polarized Emission from Single Nanorods<br />

I //<br />

I ⊥<br />

0° 180°<br />

0.8<br />

Beam Splitting crystal<br />

0.6<br />

0.4<br />

Polarization<br />

0.2<br />

0.0<br />

-0.2<br />

-0.4<br />

-0.6<br />

-0.8<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

160<br />

180<br />

Detection Angle<br />

p = (I ⊥ -I // ) / (I ⊥ + I // )<br />

Hu, J.; L.-S. Li,: Yang, W.; Manna, L.; L.-W. Wang; A.P. Alivisatos, Science, 2001, 2060-3<br />

22


3.7x18.5 nm CdSe Rod Monolayer -“Smectic Phase”<br />

23


Self-assembly of CdSe nanorods: Liquid Crystals<br />

Crossed polarizers<br />

Nanorod solution<br />

sealed in a capillary tube<br />

• Nucleation and Growth of Liquid Crystals<br />

20µm<br />

Polarized Microscopy<br />

• Schlieren pattern from CdSe nanorod<br />

Liquid Crystal<br />

20 µm<br />

20µm<br />

L.-S. Li,: J. Walda, L. Manna, A.P. Alivisatos, Nanoletters, 2002 (2), 557-560<br />

24


3.7x18.5nm<br />

TEM of “liquid crystalline phases”<br />

4x40nm<br />

N<br />

e<br />

m<br />

atic<br />

S<br />

50 nm<br />

m<br />

ectic<br />

N<br />

ematic<br />

S<br />

mectic<br />

50 nm<br />

3.7x18.5nm<br />

50 nm<br />

50 nm<br />

4x40nm<br />

25


Spontaneous Assembly of Ribbons of Magnetic Nanorods<br />

Puntes, V. F.; Krishnan, K. M.; Alivisatos, A. P., Science 2001, 291, 2115-2117.<br />

26


Core/shell CdSe/CdS/ZnS nanorods<br />

Cores<br />

3.3 x 22.8 nm<br />

Core/shell<br />

4.4 x 24.2 nm<br />

Higher ratio of Cd:Zn in first<br />

few monolayers of shell<br />

CdSe<br />

cores<br />

CdS-rich<br />

shell<br />

ZnS-rich<br />

shell<br />

Core/shell<br />

6.0 x 27.0 nm<br />

Core/shell<br />

7.3 x 29.8 nm<br />

Manna, L.; Scher, E. C.; Li, L.S.; Alivisatos, A. P., J. Am. Chem. Soc. 2002, 124, 7136-7145<br />

27


c axis<br />

X-ray diffraction studies of the<br />

stress and strain in core-shell nanorods<br />

compression<br />

CdSe bulk<br />

CdSe core<br />

3-4 nm<br />

compression<br />

Thin shell<br />

20-40 nm<br />

Med. shell<br />

Thick shell<br />

ZnS bulk<br />

Manna, L.; Scher, E. C.; Li, L.S.; Alivisatos, A. P., J. Am. Chem. Soc. 2002, 124, 7136-7145<br />

28


Nanocrystal phase + shape control: tetrapods<br />

Zinc-blende (ZB)<br />

Wurtzite (WZ)<br />

Manna, L.; Milliron, D., Meisel; A., Scher, E; Alivisatos, A.P. Nature Materials, 2(6), 382-386<br />

29


Controlled growth of CdTe tetrapods<br />

Manna, L.; Milliron, D., Meisel; A., Scher, E; Alivisatos, A.P. Nature Materials, 2(6), 382-386<br />

30


The band gap depends on the arm’s diameter<br />

Manna, L.; Milliron, D., Meisel; A., Scher, E; Alivisatos, A.P. Nature Materials, 2(6), 382-386<br />

31


Nanocrystal phase + shape + composition control<br />

Growing more complex nanostructures<br />

Cd-VI rods and tetrapods<br />

growing facet<br />

growing facet<br />

Nano bar codes<br />

Coupled quantum dots, artificial dipoles, inorganic dendrimers<br />

32


Another example: CdS/PbSe heterostructures<br />

cb<br />

cb<br />

cb<br />

vb<br />

vb<br />

50 nm<br />

PbSe<br />

vb<br />

CdS<br />

PbSe<br />

PbSe<br />

CdS<br />

PbSe<br />

Kudera, S.; Parak, W; Casula, M.; Manna, L in preparation<br />

33


Nanocomposites<br />

•Reinforced polymers<br />

•Wear resistant materials<br />

•Flame retardant materials<br />

•Self-cleaning surfaces<br />

Environmental science<br />

•Degradation of pollutants<br />

•Sensors<br />

Chemical industry<br />

•Catalysis<br />

•Additives<br />

<strong>Colloidal</strong><br />

<strong>Nanocrystals</strong><br />

Biomedical research<br />

•Biological labeling<br />

•Biosensing<br />

•Cancer Research<br />

•Drug Delivery<br />

Optoelectronics<br />

•LEDs<br />

•Photovoltaics<br />

•Lasers<br />

Nano-Electronics<br />

•Single electron devices<br />

•High density storage<br />

•Quantum computing<br />

34


Exploitation of individual nanostructures<br />

100<br />

I (pA)<br />

0<br />

-100<br />

-200<br />

V g = 6.4 V<br />

V g = 6.9 V<br />

V g = 7.4 V<br />

V g = 7.7 V<br />

-60 -40 -20 0 20 40 60<br />

V sd<br />

(mV)<br />

Klein, D. L.; Roth, R.; Lim, A. K. L.; Alivisatos, A. P.; McEuen, P. L., Nature 1997, 389, 699-701.<br />

Park, H.; Park, J.; Lim, A. K. L.; Anderson, E. H.; Alivisatos, A. P.; McEuen, P. L., Nature 2000, 407, 57-60.<br />

35


Perspectives in self-assembly and applications of complex nanocrystals<br />

Self-assembly of nanocrystals<br />

in solution and on substrates<br />

R s<br />

Single tetrapod electronic devices<br />

Au<br />

+ -<br />

Au<br />

Au<br />

Electrostatic trapping of a single<br />

CdTe tetrapod between two<br />

electrodes<br />

R. Krahne, L.Manna, R. Cingolani<br />

36


Semiconductor <strong>Nanocrystals</strong> and Polymers<br />

Band Offsets and Electrical Devices<br />

PVs<br />

h+ e-<br />

Polymer<br />

3.0<br />

5.35<br />

E.A.<br />

e-<br />

4.4<br />

6.2<br />

I.P.<br />

vac<br />

light<br />

in<br />

I<br />

T<br />

O<br />

Al<br />

nanocrystal/polymer<br />

blend<br />

LEDs<br />

h+ e-<br />

h+<br />

Nanocrystal<br />

light<br />

out<br />

I<br />

T<br />

O<br />

P<br />

P<br />

V<br />

Cd<br />

Se<br />

Mg<br />

Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P., Nature 1994, 370, 354-357.<br />

Schlamp, M. C.; Peng, X.; Alivisatos, A. P., J. Appl. Phys. 1997, 82, 5837-5842.<br />

nanocrystal<br />

multilayer<br />

37


Nanocrystal/Polymer Cells<br />

Al<br />

S<br />

S<br />

S<br />

CdSe/P3HT Blend<br />

S<br />

P3HT<br />

n/4<br />

Advantages of polymer cells:<br />

•Easy to produce, inexpensive<br />

Disadvantages:<br />

• Low power conversion efficiency<br />

ITO<br />

Glass<br />

100nm<br />

Huynh, W.; Dittmer, J.; Alivisatos, A. P., Science 2002, 242-4<br />

38


Self-assembled Nanorod-Polymer Photovoltaics<br />

Exciton<br />

Diffusion<br />

Length<br />

ITO<br />

Absorption<br />

100 nm<br />

Absorption<br />

Depth<br />

20 nm<br />

e - h +<br />

Exciton<br />

Diffusion<br />

Charge<br />

Transfer<br />

P3HT<br />

Polymer<br />

Al<br />

CdSe Nanorods<br />

Charge<br />

Transport<br />

S<br />

n<br />

Huynh, W.; Dittmer, J.; Alivisatos, A. P., Science 2002, 242-4<br />

39


Best Plastic/Nanorod Solar Cells<br />

(Obtained with 7 nm x 60 nm CdSe rods)<br />

1.2<br />

EQE<br />

0.8<br />

0.4<br />

0<br />

400 500 600 700<br />

Wavelength (nm)<br />

Under AM 1.5 Global solar conditions:<br />

Power Conversion: 1.7%<br />

Huynh, W.; Dittmer, J.; Alivisatos, A. P., Science 2002, 242-4<br />

40


Self-Assembled Polymer-Nanorod Photovoltaic<br />

CdSe<br />

R<br />

O<br />

P X<br />

R<br />

e - h +<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

S<br />

Control on Many Length Scales:<br />

•Photogenerated excitons charge separate across the rod/polymer interface<br />

•Quantum Size Effect: Rod diameter determines bandgap (2-10 nm) - tandem cells<br />

•Electrically Active Surfactant enables rod dispersion in polymer and charge separation<br />

•distance between rods - polymer exciton diffusion length (50 nm)<br />

•inter-rod distance determined by polymer/surfactant interaction<br />

•thickness - full solar absorption (100-200) nm<br />

41


Biological applications of colloidal nanocrystals<br />

HS<br />

SH<br />

SiO 2<br />

SH<br />

SH<br />

NH 2<br />

42


Fluorescence Labeling Widely Used in Biology<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

excitation<br />

Fluorescein<br />

(AU)<br />

350 400 450 500 550 600 650<br />

wavelength (nm)<br />

emission<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

•Discrete Excitation and Emission<br />

•Rapid Photobleaching<br />

Size Dependent Absorbance<br />

CdSe/CdS/ZnS<br />

and Emission<br />

2.2 nm<br />

CdSe<br />

5.0 nm<br />

CdSe<br />

350 450 550 650<br />

Wavelength (nm)<br />

•Continuous excitation<br />

past threshold<br />

Qdots Enable Multiple Channels of Emission in Parallel<br />

43


Water solubilization of nanocrystals<br />

SH<br />

-<br />

-<br />

SiO 2<br />

SH<br />

CH 3<br />

-<br />

SH<br />

As grown nanocrystals:<br />

hydrophobic<br />

COOH<br />

COOH<br />

COOH<br />

COOH<br />

COOH<br />

COOH<br />

COOH<br />

COOH<br />

Silanization<br />

COOH<br />

COOH<br />

COOH<br />

COOH<br />

Surfactant exchange<br />

biological<br />

molecules -><br />

aqueous solution<br />

Polymer coating<br />

44


Bio-conjugation<br />

of core-shell nanocrystals<br />

Streptavidin<br />

-<br />

HS<br />

Silanize<br />

SH<br />

SiO 2<br />

SH<br />

SH<br />

biotin<br />

O<br />

SA<br />

NH 2<br />

HN<br />

N<br />

Antibody<br />

Conjugation<br />

+<br />

- different functional groups<br />

- positive / neutral / negative charge<br />

Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P., Science 1998, 281, 2013-2016.<br />

D. Gerion, F. Pinaud, S.C. Williams, W.J. Parak, D. Zanchet, S.Weiss, A.P. Alivisatos<br />

J Phys Chem B 105(37), 8861-8871 2001<br />

45


DNA conjugation of Au nanocrystals<br />

DNA can be directly<br />

attached to Au surface<br />

via thiol-linkage<br />

+ HS<br />

-<br />

Gel electrophoresis of Aunanocrystal<br />

/ DNA conjugates<br />

10 nm Au<br />

100 bases DNA<br />

2% agarose gel<br />

1h @ 7.1 V/cm<br />

Au and DNA are<br />

negatively charged<br />

DNA/Au ratio<br />

-> Au nanocrystals with controlled number of DNA molecules<br />

+<br />

Zanchet, D.; Micheel, C. M.; Parak, W. J.; Gerion, D.; Alivisatos, A. P.;Nano Letters 2001; 1(1); 32-35<br />

46


T A<br />

C G G C<br />

A C<br />

G C T G<br />

DNA-directed assemblies (Au)<br />

-<br />

100 nm<br />

100 nm<br />

100 nm<br />

Zanchet, D.; Micheel, C. M.; Parak, W. J.; Gerion, D.; Alivisatos, A. P.;Nano Letters 2001; 1(1); 32-35<br />

+<br />

47


DNA-directed assemblies (Au)<br />

T A<br />

C G G C<br />

A C<br />

G C T G<br />

Formation of trimers and other building blocks<br />

-<br />

100 nm<br />

+<br />

Zanchet, D.; Micheel, C. M.; Parak, W. J.; Gerion, D.; Alivisatos, A. P.;Nano Letters 2001; 1(1); 32-35<br />

48


DNA-directed sorting (CdSe/ZnS)<br />

Sample top view<br />

60 µm<br />

gold<br />

8 µm<br />

silicon<br />

Au/SiO 2<br />

Gerion, D.; Parak, W. J.; Williams, S. C.; Zanchet, D.; Micheel, C. M.; Alivisatos, A. P.;<br />

J. Am. Chem. Soc.;2002; 124(24); 7070-7074<br />

49


Two Color Labeling of Mouse 3T3 Fibroblast<br />

idea:<br />

conjugate fluorescent nanocrystals<br />

with biological ligands, that specifically<br />

recognize receptor sites:<br />

molecular recognition<br />

i.e. protein: antibodies, avidin<br />

-> multicolor labeling of cells:<br />

- reduced photobleaching<br />

- only one excitation wavelength<br />

- parallel use of colors<br />

Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P., Science 1998, 281, 2013-2016.<br />

50


Time-Gated Enhancement<br />

1<br />

ensemble measurement<br />

arb. units<br />

0.1<br />

0.01<br />

0 20 40 60 80 100 120 140 160<br />

time (ns)<br />

NC: emission at 575 nm, double shell (CdS/ZnS)<br />

1<br />

fluorescence (a.u.)<br />

0.1<br />

single dot<br />

0.01<br />

0 20 40 60 80 100 120 140 160<br />

time (ns)<br />

51


Phagokinetic tracks with CdSe/ZnS nanocrystals<br />

Pellegrino, T. , Parak, W, et at., Differentiation, December 2003<br />

52


Conclusions and perspectives<br />

• <strong>Colloidal</strong> nanocrystals can be easily and cheaply fabricated<br />

•High quality (monodispersity, crystallinity, size dependent high<br />

fluorescence QY), growth kinetics well understood<br />

•Shape control via selective attachment<br />

•Phase control through surface energy manipulation<br />

•Compositional control (graded core-shell structures,<br />

heterostructures, barcodes…, coupled dots)<br />

•Novel applications: composite materials, biology, nano-electronics,<br />

photovoltaics, display technology.<br />

53

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!