13.07.2014 Views

Assessing the activity of predators in relation to capercaillie hen ...

Assessing the activity of predators in relation to capercaillie hen ...

Assessing the activity of predators in relation to capercaillie hen ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Scottish Natural Heritage<br />

Commissioned Report No. 415<br />

<strong>Assess<strong>in</strong>g</strong> <strong>the</strong> <strong>activity</strong> <strong>of</strong> <strong>preda<strong>to</strong>rs</strong> <strong>in</strong><br />

<strong>relation</strong> <strong>to</strong> <strong>capercaillie</strong> <strong>hen</strong> densities<br />

and breed<strong>in</strong>g performance


COMMISSIONED REPORT<br />

Commissioned Report No. 415<br />

<strong>Assess<strong>in</strong>g</strong> <strong>the</strong> <strong>activity</strong> <strong>of</strong> <strong>preda<strong>to</strong>rs</strong> <strong>in</strong> <strong>relation</strong> <strong>to</strong><br />

<strong>capercaillie</strong> <strong>hen</strong> densities and breed<strong>in</strong>g<br />

performance<br />

For fur<strong>the</strong>r <strong>in</strong>formation on this report please contact:<br />

Rob Raynor<br />

Scottish Natural Heritage<br />

Great Glen House<br />

INVERNESS<br />

IV3 8NW<br />

Telephone: 01463-725 200<br />

E-mail: Robert.Raynor@snh.gov.uk<br />

This report should be quoted as:<br />

Ba<strong>in</strong>es, D., Aebischer, N., MacLeod, A. & Woods, J. (2011). Report title. Scottish Natural<br />

Heritage Commissioned Report No.415.<br />

This report, or any part <strong>of</strong> it, should not be reproduced without <strong>the</strong> permission <strong>of</strong> Scottish Natural Heritage. This<br />

permission will not be withheld unreasonably. The views expressed by <strong>the</strong> author(s) <strong>of</strong> this report should not be taken<br />

as <strong>the</strong> views and policies <strong>of</strong> Scottish Natural Heritage. This report is from a partnership project with partners: <strong>the</strong><br />

Game and Wildlife Conservation Trust, <strong>the</strong> Royal Society for <strong>the</strong> Protection <strong>of</strong> Birds and Scottish Natural Heritage.<br />

© Scottish Natural Heritage 2011.<br />

i


COMMISSIONED REPORT<br />

Summary<br />

<strong>Assess<strong>in</strong>g</strong> <strong>the</strong> <strong>activity</strong> <strong>of</strong> <strong>preda<strong>to</strong>rs</strong> <strong>in</strong> <strong>relation</strong> <strong>to</strong><br />

<strong>capercaillie</strong> <strong>hen</strong> densities and breed<strong>in</strong>g performance<br />

Commissioned Report No. 415 (iBids n o 7820)<br />

Contrac<strong>to</strong>r: The Game & Wildlife Conservation Trust<br />

Year <strong>of</strong> publication: 2011<br />

BACKGROUND<br />

P<strong>in</strong>e martens Martes martes are considered <strong>to</strong> have <strong>in</strong>creased <strong>in</strong> abundance <strong>in</strong> Scottish forests<br />

<strong>in</strong> recent decades and have been demonstrated <strong>to</strong> be <strong>the</strong> ma<strong>in</strong> cause <strong>of</strong> nest loss <strong>in</strong> <strong>capercaillie</strong><br />

Tetrao urogallus <strong>in</strong> Abernethy Forest. To consider whe<strong>the</strong>r martens, and o<strong>the</strong>r potential<br />

<strong>preda<strong>to</strong>rs</strong> <strong>of</strong> <strong>capercaillie</strong>, have <strong>in</strong>creased, 11 <strong>of</strong> 14 forests surveyed for <strong>preda<strong>to</strong>rs</strong> <strong>in</strong> 1995 were<br />

resurveyed <strong>in</strong> 2009, <strong>to</strong>ge<strong>the</strong>r with an additional five forests where <strong>capercaillie</strong> brood counts<br />

have been conducted <strong>in</strong> recent years. Survey techniques followed those used <strong>in</strong> 1995.<br />

MAIN FINDINGS<br />

A <strong>to</strong>tal <strong>of</strong> 414 scats represent<strong>in</strong>g 30% <strong>of</strong> those collected and identified <strong>in</strong> <strong>the</strong> field as be<strong>in</strong>g from<br />

ei<strong>the</strong>r fox or marten were sent <strong>to</strong> Forest Research for identification confirmation through DNA<br />

analysis. In all, 77% <strong>of</strong> scats had been identified correctly by <strong>the</strong> two observers, with no<br />

difference between <strong>in</strong>dividual observers. However <strong>of</strong> those <strong>in</strong>correctly identified, <strong>the</strong>re was a<br />

bias <strong>to</strong>wards identify<strong>in</strong>g marten scats as fox. DNA confirmation was used <strong>to</strong> calculate correction<br />

<strong>in</strong>dices <strong>of</strong> x 0.49 for scats identified <strong>in</strong> <strong>the</strong> field as fox and x 1.30 for those identified as martens.<br />

No similar <strong>in</strong>dices were available for 1995.<br />

S<strong>in</strong>ce 1995, marten distribution had expanded and <strong>the</strong> mean abundance <strong>in</strong>dex had <strong>in</strong>creased<br />

3.7-fold, whereas that <strong>of</strong> fox Vulpes vulpes had <strong>in</strong>creased 2.7-fold. Given <strong>the</strong> bias <strong>in</strong> scat<br />

misidentification <strong>in</strong> favour <strong>of</strong> martens, <strong>the</strong>se results could be considered speculative. It is<br />

however assumed that <strong>the</strong> level <strong>of</strong> misidentification would be similar between <strong>the</strong> two periods.<br />

This assumption could not be tested, but <strong>the</strong> significance <strong>of</strong> <strong>the</strong> <strong>in</strong>crease <strong>in</strong> both fox and marten<br />

rema<strong>in</strong>ed irrespective <strong>of</strong> whe<strong>the</strong>r correction <strong>in</strong>dices were applied <strong>to</strong> nei<strong>the</strong>r or both years.<br />

Accord<strong>in</strong>gly, correction <strong>in</strong>dices have not been applied w<strong>hen</strong> consider<strong>in</strong>g <strong>relation</strong>ships <strong>of</strong> fox and<br />

marten with <strong>capercaillie</strong>. Indices <strong>of</strong> Carrion crow Corvus corone and rap<strong>to</strong>rs showed no change.<br />

In 2009, forests with more foxes also had more crows, and those with more crows had more<br />

rap<strong>to</strong>rs. Those forests with more crows and rap<strong>to</strong>rs had fewer martens. There was no<br />

<strong>relation</strong>ship between fox and marten <strong>in</strong>dices. Capercaillie breed<strong>in</strong>g success was considered <strong>in</strong><br />

two periods; 1991-95, which was related <strong>to</strong> <strong>the</strong> preda<strong>to</strong>r survey <strong>of</strong> 1995, and 2005-09, which<br />

was related <strong>to</strong> preda<strong>to</strong>r abundance <strong>in</strong> 2009. In 1991-95, broods per <strong>hen</strong> and brood size were<br />

significantly less <strong>in</strong> forests with higher crow and higher fox <strong>in</strong>dices respectively. In 2005-09,<br />

chicks per <strong>hen</strong> and brood size were lower <strong>in</strong> forests with higher crow <strong>in</strong>dices. Indices <strong>of</strong> <strong>hen</strong><br />

ii


densities <strong>in</strong> 1991-95 were positively correlated with fox <strong>in</strong>dices. Density <strong>in</strong>dices <strong>in</strong> 2005-09 were<br />

57% lower than <strong>in</strong> 1991-95 and fewer <strong>hen</strong>s were found <strong>in</strong> forests with more foxes, crows and<br />

rap<strong>to</strong>rs. Conversely, more <strong>hen</strong>s were found <strong>in</strong> forests with higher marten <strong>in</strong>dices. Reductions <strong>in</strong><br />

<strong>hen</strong> density between <strong>the</strong> two periods occurred <strong>in</strong> forests where ei<strong>the</strong>r <strong>in</strong>dices <strong>of</strong> fox or rap<strong>to</strong>rs<br />

had <strong>in</strong>creased. This survey found no evidence <strong>to</strong> suggest that martens are impact<strong>in</strong>g upon<br />

<strong>capercaillie</strong> breed<strong>in</strong>g success.<br />

iii


ACKNOWLEDGEMENTS<br />

We would like <strong>to</strong> thank <strong>the</strong> numerous land managers and <strong>the</strong>ir staff for access <strong>to</strong> <strong>the</strong>ir forests.<br />

Capercaillie brood counts were also conducted by Mark Andrew, Paul Baker, Lois Canham,<br />

Mick Canham, Norman Cobley, Kathy Fletcher, Isla Graham, Rupert Hawley, Andrew Hoodless,<br />

David Howarth, David Lambie, Fiona Leckie, Robert Moss, Raymond Parr, Adam Smith, Philip<br />

Warren and staff at RSPB Abernethy & Craigmore. Stewart A’Hara <strong>of</strong> Forest Research<br />

under<strong>to</strong>ok DNA analysis <strong>of</strong> <strong>the</strong> scats. We thank Megan Davies, Susan Haysom, Rob Raynor,<br />

Ron Summers and Jerry Wilson for helpful comments on <strong>the</strong> draft report. The study was funded<br />

by Scottish Natural Heritage, RSPB and <strong>the</strong> Game & Wildlife Conservation Trust.<br />

iv


Table <strong>of</strong> Contents<br />

Page<br />

BACKGROUND............................................................................................................................1<br />

METHODS ....................................................................................................................................2<br />

RESULTS .....................................................................................................................................6<br />

DISCUSSION................................................................................................................................8<br />

REFERENCES ...........................................................................................................................11<br />

TABLES......................................................................................................................................14<br />

FIGURES ....................................................................................................................................26<br />

Table 1. Location and characteristics <strong>of</strong> <strong>the</strong> forests<br />

Table 2. Scat DNA test<strong>in</strong>g confirmation<br />

Table 3. Breakdown <strong>of</strong> scats misidentified <strong>in</strong> <strong>the</strong> field<br />

Table 4. Indices <strong>of</strong> preda<strong>to</strong>r abundance<br />

Table 5. Preda<strong>to</strong>r <strong>in</strong>dices<br />

Table 6. Relationships between preda<strong>to</strong>r <strong>in</strong>dices<br />

Table 7. Effects <strong>of</strong> forest and year on <strong>capercaillie</strong> breed<strong>in</strong>g success<br />

Table 8. Mean breed<strong>in</strong>g success <strong>of</strong> <strong>capercaillie</strong><br />

Table 9. Capercaillie breed<strong>in</strong>g success <strong>in</strong> <strong>relation</strong> <strong>to</strong> preda<strong>to</strong>r <strong>in</strong>dices<br />

Table 10. Changes <strong>in</strong> <strong>capercaillie</strong> breed<strong>in</strong>g success <strong>in</strong> <strong>relation</strong> <strong>to</strong> preda<strong>to</strong>r <strong>in</strong>dices<br />

Table 11. Mean <strong>in</strong>dices <strong>of</strong> <strong>hen</strong> <strong>capercaillie</strong> density<br />

Table 12. Hen <strong>capercaillie</strong> density <strong>in</strong>dices <strong>in</strong> <strong>relation</strong> <strong>to</strong> preda<strong>to</strong>r <strong>in</strong>dices<br />

Figure 1. Location <strong>of</strong> <strong>the</strong> 19 study forests<br />

Figure 2. Capercaillie breed<strong>in</strong>g success <strong>in</strong> <strong>relation</strong> <strong>to</strong> preda<strong>to</strong>r <strong>in</strong>dices<br />

Figure 3. Capercaillie <strong>hen</strong> density <strong>in</strong>dices <strong>in</strong> <strong>relation</strong> <strong>to</strong> preda<strong>to</strong>r <strong>in</strong>dices<br />

Figure 4. Changes <strong>in</strong> <strong>capercaillie</strong> <strong>hen</strong> density <strong>in</strong>dices and changes <strong>in</strong> preda<strong>to</strong>r <strong>in</strong>dices<br />

v


BACKGROUND<br />

Capercaillie Tetrao urogallus numbers have decl<strong>in</strong>ed <strong>in</strong> Scotland s<strong>in</strong>ce <strong>the</strong> mid 1970s, (Moss,<br />

1994; Catt et al., 1998), but <strong>the</strong> last survey <strong>in</strong> 2003-04 suggested that, although <strong>capercaillie</strong><br />

rema<strong>in</strong> seriously threatened, population size may now have stabilised at about 2000 birds<br />

(Ea<strong>to</strong>n et al., 2007). The rapid decl<strong>in</strong>e had been l<strong>in</strong>ked with poor breed<strong>in</strong>g success (Moss et al.,<br />

2000) associated with both changes <strong>in</strong> wea<strong>the</strong>r patterns (Moss et al., 2001) and with <strong>in</strong>creases<br />

<strong>in</strong> generalist <strong>preda<strong>to</strong>rs</strong> that may predate eggs and chicks (Ba<strong>in</strong>es et al., 2004; Summers et al.,<br />

2004). Simultaneous <strong>to</strong> this, mortality <strong>of</strong> full-grown birds through fly<strong>in</strong>g <strong>in</strong><strong>to</strong> deer fences, has<br />

become a significant source <strong>of</strong> mortality (Catt et al., 1998; Ba<strong>in</strong>es & Summers, 1997; Ba<strong>in</strong>es &<br />

Andrew, 2003). That <strong>the</strong> population appears <strong>to</strong> have now stabilised is probably attributable <strong>to</strong><br />

considerable fund<strong>in</strong>g be<strong>in</strong>g dedicated <strong>to</strong> remov<strong>in</strong>g or mark<strong>in</strong>g deer fences and thus reduc<strong>in</strong>g<br />

deaths follow<strong>in</strong>g collisions.<br />

Substantial collaborative habitat management, preda<strong>to</strong>r control and disturbance management<br />

work through <strong>the</strong> LIFE Nature Project "Urgent Conservation Management for Scottish<br />

Capercaillie", <strong>the</strong> <strong>capercaillie</strong> Species Action Framework and o<strong>the</strong>r <strong>in</strong>itiatives has sought <strong>to</strong><br />

deliver progress <strong>to</strong>wards <strong>the</strong> UKBAP targets <strong>of</strong> <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> population <strong>of</strong> <strong>capercaillie</strong> <strong>in</strong><br />

Scotland <strong>to</strong> 5000 birds and <strong>in</strong>creas<strong>in</strong>g <strong>the</strong>ir range from 40 <strong>to</strong> 45 occupied 10 km squares by<br />

2010. Meet<strong>in</strong>g this target has not been possible, but <strong>the</strong> possibility <strong>of</strong> meet<strong>in</strong>g any future<br />

optimistic targets will also rely on improv<strong>in</strong>g breed<strong>in</strong>g success. The pr<strong>in</strong>cipal cause <strong>of</strong> poor<br />

breed<strong>in</strong>g success relates <strong>to</strong> wea<strong>the</strong>r, ei<strong>the</strong>r temperature change <strong>in</strong> April (Moss et al., 2001) or<br />

ra<strong>in</strong>fall <strong>in</strong> June (Moss, 1986). However even w<strong>hen</strong> wea<strong>the</strong>r patterns appear suitable for<br />

successful breed<strong>in</strong>g, productivity is <strong>of</strong>ten only modest and varies markedly between forests <strong>in</strong><br />

<strong>relation</strong> <strong>to</strong> habitat quality and <strong>in</strong>dices <strong>of</strong> fox and crow abundance (Ba<strong>in</strong>es et al., 2004).<br />

In Scand<strong>in</strong>avia, p<strong>in</strong>e martens Martes martes reduce <strong>capercaillie</strong> breed<strong>in</strong>g success through<br />

predat<strong>in</strong>g both clutches and chicks (Marcstrom et al., 1988; Kastdalen & Wegge, 1989; Kurki et<br />

al., 1997). Both p<strong>in</strong>e martens and <strong>capercaillie</strong> numbers <strong>in</strong>creased <strong>in</strong> parallel w<strong>hen</strong> an outbreak<br />

<strong>of</strong> sarcoptic mange reduced fox abundance, thus <strong>in</strong>dicat<strong>in</strong>g that foxes may be more important<br />

as <strong>preda<strong>to</strong>rs</strong> <strong>of</strong> <strong>capercaillie</strong> and o<strong>the</strong>r small game than martens (Smedshaug et al., 1999). In<br />

Scotland, p<strong>in</strong>e martens were his<strong>to</strong>rically persecuted by man <strong>to</strong> protect gamebirds, but legal<br />

protection with<strong>in</strong> <strong>the</strong> last 25 years has allowed martens and o<strong>the</strong>r <strong>preda<strong>to</strong>rs</strong> <strong>to</strong> recover much <strong>of</strong><br />

<strong>the</strong>ir former range and abundance (Tapper, 1999). Although <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> numbers and range,<br />

<strong>the</strong> p<strong>in</strong>e marten, also a UK BAP priority species, is still rare <strong>in</strong> Scotland as a whole, with only an<br />

estimated 3,500 adults, represent<strong>in</strong>g at least 95% <strong>of</strong> <strong>the</strong> British population (Birks, 2002).<br />

Capercaillie were already <strong>in</strong> steep decl<strong>in</strong>e before martens became numerous once aga<strong>in</strong> and<br />

breed<strong>in</strong>g success was not correlated with an <strong>in</strong>dex <strong>of</strong> marten abundance 1 <strong>in</strong> 1995 <strong>in</strong> a study <strong>of</strong><br />

14 forests (Ba<strong>in</strong>es et al., 2004). There is however subsequent evidence from one <strong>of</strong> those<br />

forests (Abernethy) that martens have become more numerous s<strong>in</strong>ce <strong>the</strong> 1995 survey<br />

(Summers et al., 2004). Here, where crows and foxes are controlled, a recent study <strong>of</strong><br />

<strong>capercaillie</strong> nest outcomes showed that <strong>of</strong> 20 nests, p<strong>in</strong>e martens predated 33-57%, depend<strong>in</strong>g<br />

on <strong>the</strong> <strong>in</strong>terpretation <strong>of</strong> <strong>the</strong> data (Summers et al., 2009). The Abernethy study <strong>in</strong>dicates that<br />

martens can be significant <strong>preda<strong>to</strong>rs</strong> <strong>of</strong> <strong>capercaillie</strong> clutches, but it is not known <strong>to</strong> what extent<br />

this effect occurs elsewhere with<strong>in</strong> <strong>the</strong> bird’s range <strong>in</strong> Scotland. It is likely that similar <strong>in</strong>creases<br />

<strong>in</strong> marten abundance have occurred <strong>in</strong> o<strong>the</strong>r forests s<strong>in</strong>ce <strong>the</strong> mid 1990s and it has been<br />

suggested that this may have resulted <strong>in</strong> <strong>in</strong>creased levels <strong>of</strong> predation on <strong>capercaillie</strong>. In an<br />

attempt <strong>to</strong> determ<strong>in</strong>e whe<strong>the</strong>r marten numbers have <strong>in</strong>creased and whe<strong>the</strong>r <strong>the</strong>y may now<br />

1<br />

There is debate over whe<strong>the</strong>r <strong>the</strong> term “<strong>in</strong>dex <strong>of</strong> <strong>activity</strong>” is more accurate <strong>in</strong> this context – see Discussion and Birks et al., (2004).<br />

1


significantly impact upon <strong>capercaillie</strong> breed<strong>in</strong>g success, it was decided <strong>to</strong> repeat <strong>the</strong> 1995<br />

survey <strong>of</strong> preda<strong>to</strong>r <strong>in</strong>dices <strong>in</strong>clud<strong>in</strong>g martens. This report compares preda<strong>to</strong>r <strong>in</strong>dices from <strong>the</strong><br />

two surveys 1995 and 2009 and considers <strong>relation</strong>ships between preda<strong>to</strong>r <strong>in</strong>dices and<br />

measures <strong>of</strong> <strong>capercaillie</strong> breed<strong>in</strong>g success and <strong>in</strong>dices <strong>of</strong> <strong>hen</strong> density.<br />

OBJECTIVES<br />

The objectives <strong>of</strong> this work are:<br />

1. <strong>to</strong> consider whe<strong>the</strong>r <strong>in</strong>dices <strong>of</strong> preda<strong>to</strong>r abundance have changed s<strong>in</strong>ce <strong>the</strong> 1995<br />

survey;<br />

2. <strong>to</strong> <strong>in</strong>vestigate whe<strong>the</strong>r differences <strong>in</strong> measures <strong>of</strong> <strong>capercaillie</strong> and <strong>the</strong>ir breed<strong>in</strong>g success<br />

amongst forests are related <strong>to</strong> <strong>in</strong>dices <strong>of</strong> preda<strong>to</strong>r <strong>activity</strong>; and<br />

3. <strong>to</strong> compare <strong>the</strong>se with measures from <strong>the</strong> 1990s.<br />

METHODS<br />

Forest selection<br />

Eleven <strong>of</strong> <strong>the</strong> 14 forests orig<strong>in</strong>ally surveyed for preda<strong>to</strong>r <strong>in</strong>dices, <strong>in</strong>clud<strong>in</strong>g p<strong>in</strong>e marten, <strong>in</strong> 1995<br />

(Ba<strong>in</strong>es et al., 2004) were re-surveyed <strong>in</strong> 2009. These forests not only had orig<strong>in</strong>al preda<strong>to</strong>r<br />

survey data from 1995, but also had data on <strong>capercaillie</strong> breed<strong>in</strong>g success from <strong>the</strong> 1990s and<br />

more recently. These comb<strong>in</strong>ations <strong>of</strong> data allowed changes <strong>in</strong> <strong>in</strong>dices <strong>of</strong> p<strong>in</strong>e martens and<br />

o<strong>the</strong>r <strong>preda<strong>to</strong>rs</strong> <strong>to</strong> be related <strong>to</strong> any changes <strong>in</strong> measures <strong>of</strong> abundance and breed<strong>in</strong>g success<br />

<strong>of</strong> <strong>capercaillie</strong>.<br />

Of <strong>the</strong> orig<strong>in</strong>al 14 forests from 1995, three forests (E, C and R) were omitted because brood<br />

counts were largely discont<strong>in</strong>ued <strong>in</strong> <strong>the</strong> early 1990s and <strong>the</strong> latter forest has s<strong>in</strong>ce been clearfelled.<br />

The 11 forests reta<strong>in</strong>ed however <strong>in</strong>cluded three forests (J, K and U) where <strong>capercaillie</strong><br />

were considered <strong>to</strong> be locally ext<strong>in</strong>ct. These 11 forests were supplemented with five additional<br />

forests (B, N, W, X and Y), where brood counts have been conducted <strong>in</strong> more recent years,<br />

br<strong>in</strong>g<strong>in</strong>g <strong>the</strong> <strong>to</strong>tal number <strong>of</strong> forests surveyed for preda<strong>to</strong>r <strong>in</strong>dices <strong>in</strong> 2009 <strong>to</strong> 16 (Table 1) (Figure<br />

1). These 16 forests showed a range <strong>of</strong> forest types and exhibited a geographical range that<br />

encompassed several Special Protection Areas which <strong>in</strong>clude <strong>capercaillie</strong> as a qualify<strong>in</strong>g<br />

<strong>in</strong>terest as well as both core and peripheral parts <strong>of</strong> <strong>the</strong> perceived p<strong>in</strong>e marten distribution.<br />

Scat collection, handl<strong>in</strong>g and s<strong>to</strong>rage<br />

With<strong>in</strong> each forest, approximately 10 km <strong>of</strong> unsurfaced vehicle tracks were searched for<br />

mammal scats. All orig<strong>in</strong>al routes had been reta<strong>in</strong>ed <strong>in</strong> paper map form from <strong>the</strong> previous<br />

survey <strong>in</strong> 1995, and wherever possible <strong>the</strong> same routes were used aga<strong>in</strong>. The tracks were<br />

walked five times, <strong>in</strong>itially dur<strong>in</strong>g a clear-up round <strong>in</strong> <strong>the</strong> second half <strong>of</strong> April <strong>to</strong> count and<br />

remove all scats, <strong>the</strong>n twice <strong>in</strong> May (middle and end <strong>of</strong> <strong>the</strong> month) and twice <strong>in</strong> June (middle<br />

and end <strong>of</strong> <strong>the</strong> month). The observer simultaneously scanned both sides <strong>of</strong> vehicular tracks for<br />

scats at a slow walk<strong>in</strong>g pace. The location <strong>of</strong> all scats was recorded as a 10 figure grid<br />

reference us<strong>in</strong>g a GPS.<br />

All scats were <strong>in</strong>itially classified as “fox”, “marten” or “o<strong>the</strong>r” <strong>in</strong> <strong>the</strong> field w<strong>hen</strong> characteristic<br />

elements <strong>of</strong> <strong>the</strong>ir morphology had not been altered by handl<strong>in</strong>g. Prior <strong>to</strong> handl<strong>in</strong>g, a digital<br />

2


pho<strong>to</strong>graph was taken <strong>of</strong> <strong>the</strong> scat <strong>in</strong> situ with a ruler placed adjacent for scale. All scats were<br />

collected. Two different observers (AM & JW) collected scats <strong>in</strong> <strong>the</strong> field, but <strong>to</strong> try <strong>to</strong> reduce <strong>the</strong><br />

observer error a secondary check <strong>of</strong> identification was performed on <strong>the</strong> collected scats by <strong>the</strong><br />

more experienced observer (AM), whose correct classification dur<strong>in</strong>g a previous survey had<br />

been verified by DNA analysis <strong>to</strong> be high at 88% (R. Trout, pers. comm.).<br />

A <strong>to</strong>tal <strong>of</strong> 414 scats, represent<strong>in</strong>g 30% <strong>of</strong> those collected, was sent <strong>to</strong> Forest Research for DNA<br />

analysis <strong>in</strong> order <strong>to</strong> verify <strong>the</strong>ir orig<strong>in</strong>a<strong>to</strong>r. A positive identification was obta<strong>in</strong>ed for 311 <strong>of</strong> <strong>the</strong><br />

414 scats. These <strong>in</strong>cluded 217 scats that could not be confidently allocated <strong>to</strong> species us<strong>in</strong>g<br />

field characteristics, 88 scats where <strong>the</strong> fieldworkers had a high certa<strong>in</strong>ty <strong>of</strong> correct identification<br />

as ei<strong>the</strong>r p<strong>in</strong>e marten or fox and six scats that were nei<strong>the</strong>r marten nor fox. Those scats sent for<br />

DNA analysis were a randomly selected sub-set from with<strong>in</strong> each <strong>of</strong> <strong>the</strong> four observer-certa<strong>in</strong>ty<br />

categories. To reduce <strong>the</strong> risk <strong>of</strong> contam<strong>in</strong>at<strong>in</strong>g <strong>the</strong> DNA through handl<strong>in</strong>g, scats were collected<br />

<strong>in</strong> <strong>in</strong>dividual plastic bags, with <strong>the</strong> bag <strong>in</strong>verted <strong>to</strong> pick up <strong>the</strong> scat, <strong>the</strong>n reverted, sealed and<br />

labelled with <strong>the</strong> date, site and a unique scat specific code number that cross referenced with<br />

<strong>the</strong> data record<strong>in</strong>g sheet conta<strong>in</strong><strong>in</strong>g o<strong>the</strong>r parameters <strong>in</strong>clud<strong>in</strong>g: location from GPS, collec<strong>to</strong>r’s<br />

name, time, correspond<strong>in</strong>g digital pho<strong>to</strong>graph reference number, <strong>in</strong>itial classification (‘marten’,<br />

‘fox’, ‘o<strong>the</strong>r/unsure’), collection round (eg. ‘1 st round, May’). The bagged scat was <strong>the</strong>n double<br />

bagged for s<strong>to</strong>rage <strong>in</strong> a freezer.<br />

DNA was extracted from each scat, <strong>the</strong>n a short section (380 bases) <strong>of</strong> <strong>the</strong> mi<strong>to</strong>chondrial<br />

genome was amplified by polymerase cha<strong>in</strong> reaction (PCR) and subsequently sequenced. The<br />

sequences obta<strong>in</strong>ed were compared <strong>to</strong> those <strong>in</strong> <strong>the</strong> Genbank database <strong>to</strong> make positive<br />

identification. The 103 rema<strong>in</strong><strong>in</strong>g scats which did not provide a positive identification ei<strong>the</strong>r did<br />

not yield DNA <strong>of</strong> sufficient quality or quantity <strong>to</strong> amplify <strong>in</strong> <strong>the</strong> PCR reaction (65 scats), produced<br />

a double band <strong>in</strong> <strong>the</strong> PCR reaction <strong>in</strong>dicat<strong>in</strong>g that DNA from two different species were present<br />

(usually host and prey) mak<strong>in</strong>g a clean sequence impossible (18 scats), had a very fa<strong>in</strong>t band<br />

not considered suitable for sequenc<strong>in</strong>g (8 scats), or failed <strong>to</strong> sequence (12 scats). As a fur<strong>the</strong>r<br />

control on positive identification, 44 scats (33 marten and 11 fox) were re-tested us<strong>in</strong>g a second<br />

molecular assay, a real time PCR method. This method confirmed <strong>the</strong> earlier test for all<br />

samples.<br />

Crows and rap<strong>to</strong>rs<br />

Approximately 5 km <strong>of</strong> <strong>the</strong> same tracks used for scat surveys were also used as transects along<br />

which carrion crows Corvus corone, C. cornix and rap<strong>to</strong>rs were counted. Bird counts were<br />

conducted just after dawn (i.e. with<strong>in</strong> 2 hours <strong>of</strong> sunrise), twice monthly <strong>in</strong> May and June and<br />

immediately preceded <strong>the</strong> scat collection round on <strong>the</strong> same day. Sight<strong>in</strong>gs and calls were given<br />

a GPS position. Ideally, <strong>the</strong>se transects would have been much longer, so as <strong>to</strong> provide more<br />

data. However, <strong>in</strong> order <strong>to</strong> enable direct comparison with a previous similar study (Ba<strong>in</strong>es et al.,<br />

2004) it was decided <strong>to</strong> apply <strong>the</strong> same methodology.<br />

Counts <strong>of</strong> <strong>capercaillie</strong><br />

Measures <strong>of</strong> <strong>capercaillie</strong> breed<strong>in</strong>g success and <strong>in</strong>dices <strong>of</strong> adult densities were obta<strong>in</strong>ed <strong>in</strong> July<br />

and August from a <strong>to</strong>tal <strong>of</strong> 19 forests where preda<strong>to</strong>r <strong>in</strong>dices were also collected ei<strong>the</strong>r <strong>in</strong> 1995,<br />

2009 or <strong>in</strong> both years. Counts were undertaken annually between 1991 and 2009, but not all<br />

forests were counted <strong>in</strong> each year and <strong>in</strong>stead <strong>the</strong> number <strong>of</strong> forests counted per year varied<br />

from 11 <strong>to</strong> 20, or a <strong>to</strong>tal area searched <strong>of</strong> 31 <strong>to</strong> 78 km 2 per year. Areas were searched us<strong>in</strong>g<br />

tra<strong>in</strong>ed po<strong>in</strong>t<strong>in</strong>g dogs, but areas were not selected at random for practical operative reasons and<br />

<strong>hen</strong>ce are not necessarily representative <strong>of</strong> each forest as a whole. Instead, areas selected for<br />

3


survey were <strong>of</strong>ten perceived <strong>to</strong> be those <strong>of</strong> better breed<strong>in</strong>g habitat, preferred by <strong>capercaillie</strong>.<br />

The area searched with<strong>in</strong> each forest tended <strong>to</strong> be consistent between years, but varied from<br />

0.6 <strong>to</strong> 11.0 km 2 between forests and averaged 3.9 km 2 .<br />

Not all <strong>hen</strong>s may breed <strong>in</strong> <strong>the</strong>ir first spr<strong>in</strong>g, but as <strong>the</strong>re was no way <strong>of</strong> dist<strong>in</strong>guish<strong>in</strong>g between<br />

<strong>hen</strong>s that did not breed and <strong>hen</strong>s that bred but failed <strong>to</strong> rear chicks, all <strong>hen</strong>s seen were<br />

assumed <strong>to</strong> have bred. Three measures <strong>of</strong> reproductive success were calculated each year <strong>in</strong><br />

each forest: <strong>the</strong> proportion <strong>of</strong> <strong>hen</strong>s with at least one chick was “broods per <strong>hen</strong>”, <strong>the</strong> number <strong>of</strong><br />

chicks per <strong>hen</strong> that had at least one chick was “brood size” and <strong>the</strong> overall measure <strong>of</strong> breed<strong>in</strong>g<br />

success was <strong>the</strong> number <strong>of</strong> “chicks per <strong>hen</strong>”.<br />

The number <strong>of</strong> <strong>hen</strong>s encountered <strong>in</strong> each forest <strong>in</strong> <strong>relation</strong> <strong>to</strong> <strong>the</strong> area searched <strong>in</strong> each year<br />

was used as an <strong>in</strong>dex <strong>of</strong> <strong>hen</strong> density. Typically, <strong>the</strong> same areas <strong>of</strong> forest were searched <strong>in</strong> each<br />

year that a forest was surveyed. Where this was not <strong>the</strong> case, such as at Forest A where <strong>the</strong><br />

count method and count site changed over time, <strong>the</strong> data were removed from analysis <strong>of</strong> <strong>hen</strong><br />

density. Annual estimates <strong>of</strong> breed<strong>in</strong>g success at Forest A were however reta<strong>in</strong>ed as <strong>the</strong><br />

number <strong>of</strong> <strong>hen</strong>s encountered rema<strong>in</strong>ed a high proportion <strong>of</strong> those estimated <strong>to</strong> be present and<br />

<strong>hen</strong>ce representative <strong>of</strong> <strong>the</strong> forest as a whole and well above <strong>the</strong> threshold level <strong>of</strong> 10 <strong>hen</strong>s<br />

which formed an <strong>in</strong>itial constra<strong>in</strong>t <strong>in</strong> <strong>the</strong> selection <strong>of</strong> study forests (Ba<strong>in</strong>es et al., 2004). W<strong>hen</strong>,<br />

such as at Forest G <strong>the</strong> area searched differed between years, <strong>the</strong> change <strong>in</strong> effort was taken<br />

<strong>in</strong><strong>to</strong> account w<strong>hen</strong> calculat<strong>in</strong>g <strong>in</strong>dices <strong>of</strong> density.<br />

DATA ANALYSIS<br />

Preda<strong>to</strong>r <strong>in</strong>dices<br />

Indices <strong>of</strong> preda<strong>to</strong>r <strong>activity</strong> were derived for each forest. The <strong>to</strong>tal number <strong>of</strong> scats found <strong>in</strong> each<br />

forest for each mammal species over <strong>the</strong> four visits (dur<strong>in</strong>g May and June), but exclud<strong>in</strong>g those<br />

found on <strong>the</strong> clear-up round, were divided by <strong>the</strong> exposure period <strong>in</strong> days (i.e. <strong>the</strong> time <strong>in</strong>terval<br />

between <strong>the</strong> end <strong>of</strong> <strong>the</strong> clear-up round and <strong>the</strong> f<strong>in</strong>al visit). To adjust for differences <strong>in</strong> transect<br />

route length between forests, <strong>the</strong> number <strong>of</strong> scats per day was divided by <strong>the</strong> transect length.<br />

The <strong>in</strong>dices were presented as scats 10 km -1 day -1 , which were <strong>the</strong>n multiplied by 100 for ease<br />

<strong>of</strong> presentation. Similarly, <strong>the</strong> number <strong>of</strong> crows and rap<strong>to</strong>rs were summed for <strong>the</strong> four visits and<br />

expressed as <strong>the</strong> number <strong>of</strong> sight<strong>in</strong>gs 10km -1 visit -1 .<br />

Subsequent analyses addressed whe<strong>the</strong>r <strong>in</strong>dices <strong>of</strong> mammal and preda<strong>to</strong>ry bird <strong>activity</strong> have<br />

changed <strong>in</strong> <strong>the</strong> same suite <strong>of</strong> forests s<strong>in</strong>ce 1995 us<strong>in</strong>g generalised l<strong>in</strong>ear models with Poisson<br />

error, log l<strong>in</strong>k, adjusted for over-dispersion, with mammal (p<strong>in</strong>e marten or fox) scat or bird<br />

(carrion crow or rap<strong>to</strong>r) sight<strong>in</strong>gs as <strong>the</strong> dependent variable, log e (transect length*time <strong>in</strong>terval)<br />

as an <strong>of</strong>fset and forest and year as fac<strong>to</strong>rs. The described analysis was done twice, <strong>in</strong>itially on<br />

uncorrected mammal <strong>in</strong>dices and <strong>the</strong>n repeated with corrected <strong>in</strong>dices derived from <strong>the</strong> DNA<br />

analysis. Relationships between <strong>in</strong>dividual uncorrected preda<strong>to</strong>r <strong>in</strong>dices (fox, marten, carrion<br />

crow and rap<strong>to</strong>rs) were compared by Pearson cor<strong>relation</strong>s on log e (<strong>in</strong>dex + 1) transformed<br />

preda<strong>to</strong>r data.<br />

Capercaillie breed<strong>in</strong>g success and preda<strong>to</strong>r <strong>in</strong>dices<br />

Data on <strong>capercaillie</strong> breed<strong>in</strong>g success were split <strong>in</strong><strong>to</strong> two periods; 1991-1995 and 2005-09,<br />

which related <strong>to</strong> <strong>the</strong> collection <strong>of</strong> <strong>the</strong> preda<strong>to</strong>r <strong>in</strong>dices <strong>in</strong> 1995 and 2009 respectively. No <strong>hen</strong>s<br />

4


were found <strong>in</strong> 2005-09 for three <strong>of</strong> <strong>the</strong> forests (J, K and U) and were excluded from analyses for<br />

that period. The selection <strong>of</strong> <strong>the</strong> range <strong>of</strong> years with<strong>in</strong> <strong>the</strong>se periods was a compromise between<br />

obta<strong>in</strong><strong>in</strong>g a sufficiently robust sample <strong>of</strong> <strong>capercaillie</strong> breed<strong>in</strong>g success based on enough <strong>hen</strong>s<br />

by comb<strong>in</strong><strong>in</strong>g years, whilst <strong>the</strong> grouped years were still sufficiently few <strong>to</strong> represent <strong>the</strong> year<br />

w<strong>hen</strong> preda<strong>to</strong>r <strong>in</strong>dices were collected, and whilst maximis<strong>in</strong>g <strong>the</strong> period between surveys and<br />

<strong>hen</strong>ce <strong>the</strong> <strong>in</strong>dependence between <strong>the</strong> two periods. Generalised l<strong>in</strong>ear models (GLM) were used<br />

<strong>to</strong> assess <strong>the</strong> effects <strong>of</strong> explana<strong>to</strong>ry forest and year variables on breed<strong>in</strong>g success. Variations <strong>in</strong><br />

chicks per <strong>hen</strong> were considered by sett<strong>in</strong>g <strong>the</strong> numbers <strong>of</strong> chicks seen <strong>in</strong> each forest <strong>in</strong> each<br />

year as <strong>the</strong> response variable and forest and year as fac<strong>to</strong>rs <strong>in</strong> Poisson regressions (Poisson<br />

distribution, log l<strong>in</strong>k, adjusted for over-dispersion, with <strong>the</strong> natural logarithm <strong>of</strong> <strong>the</strong> number <strong>of</strong><br />

<strong>hen</strong>s as an <strong>of</strong>fset). Brood size was analysed <strong>in</strong> <strong>the</strong> same way, but by exclud<strong>in</strong>g <strong>hen</strong>s with no<br />

chicks and sett<strong>in</strong>g <strong>the</strong> logarithm <strong>of</strong> <strong>the</strong> numbers <strong>of</strong> broods as <strong>the</strong> <strong>of</strong>fset. The proportion <strong>of</strong> <strong>hen</strong>s<br />

with broods (broods per <strong>hen</strong>) was modelled us<strong>in</strong>g logistic regression with <strong>the</strong> number <strong>of</strong> <strong>hen</strong>s<br />

with a brood (i.e. one or more chicks) as <strong>the</strong> response variable (b<strong>in</strong>omial distribution with a logit<br />

l<strong>in</strong>k), and <strong>the</strong> <strong>to</strong>tal number <strong>of</strong> <strong>hen</strong>s as <strong>the</strong> b<strong>in</strong>omial denom<strong>in</strong>a<strong>to</strong>r. Differences <strong>in</strong> <strong>the</strong> three<br />

measures <strong>of</strong> breed<strong>in</strong>g success between <strong>the</strong> two study periods were considered by a similar<br />

series <strong>of</strong> GLMs, but this time with forest and period as fixed effects. Only n<strong>in</strong>e forests which<br />

were surveyed for <strong>capercaillie</strong> <strong>in</strong> both periods were <strong>in</strong>cluded.<br />

Capercaillie and preda<strong>to</strong>r <strong>in</strong>dices<br />

Not all forests were surveyed <strong>in</strong> each year def<strong>in</strong>ed by <strong>the</strong> two periods, so mean predicted values<br />

<strong>of</strong> chicks per <strong>hen</strong>, brood size and broods per <strong>hen</strong> were generated from each GLM output for<br />

each forest for each period <strong>of</strong> years. Mean values <strong>of</strong> breed<strong>in</strong>g success over <strong>the</strong> grouped period<br />

<strong>of</strong> years were used ra<strong>the</strong>r than an average <strong>of</strong> annual values because very small sample sizes<br />

made annual estimates for each forest unreliable. A s<strong>in</strong>gle predicted mean was derived for each<br />

<strong>of</strong> <strong>the</strong> three measures <strong>of</strong> <strong>capercaillie</strong> breed<strong>in</strong>g success <strong>in</strong> each forest <strong>in</strong> each period <strong>to</strong> match<br />

<strong>the</strong> equivalent dataset <strong>of</strong> uncorrected preda<strong>to</strong>r <strong>in</strong>dices (i.e. one per forest per period). In this<br />

way, <strong>capercaillie</strong> breed<strong>in</strong>g success was related <strong>to</strong> <strong>the</strong> log e transformed preda<strong>to</strong>r <strong>in</strong>dices by<br />

l<strong>in</strong>ear regression for each study period. Changes <strong>in</strong> <strong>capercaillie</strong> breed<strong>in</strong>g success between<br />

periods were related <strong>to</strong> similar changes <strong>in</strong> preda<strong>to</strong>r <strong>in</strong>dices by l<strong>in</strong>ear regression, divid<strong>in</strong>g values<br />

for period 2 (+ 0.1) by those for period 1 (+ 0.1), followed by log e transformation and check<strong>in</strong>g<br />

for normality <strong>of</strong> residuals.<br />

Hen density<br />

A similar approach was adopted w<strong>hen</strong> consider<strong>in</strong>g densities <strong>of</strong> <strong>capercaillie</strong> <strong>hen</strong>s. Aga<strong>in</strong> a GLM<br />

was used for each period, with <strong>the</strong> number <strong>of</strong> <strong>hen</strong>s seen <strong>in</strong> each forest <strong>in</strong> each year set as <strong>the</strong><br />

response variable and forest and year as fac<strong>to</strong>rs <strong>in</strong> Poisson regressions (Poisson distribution,<br />

log l<strong>in</strong>k adjusted for over dispersion, and <strong>the</strong> log <strong>of</strong> <strong>the</strong> area (km 2 ) surveyed as <strong>the</strong> <strong>of</strong>fset). A<br />

fur<strong>the</strong>r GLM with forest and period as fixed effects considered differences <strong>in</strong> <strong>hen</strong> density<br />

between periods. Only forests surveyed <strong>in</strong> each period were <strong>in</strong>cluded. Mean predicted values <strong>of</strong><br />

<strong>hen</strong> density for each period generated from <strong>the</strong> GLM, and changes <strong>in</strong> <strong>hen</strong> density between<br />

periods, were related <strong>to</strong> preda<strong>to</strong>r <strong>in</strong>dices <strong>in</strong> each period and changes <strong>in</strong> preda<strong>to</strong>r <strong>in</strong>dices<br />

between periods.<br />

There were no habitat data, equivalent <strong>to</strong> those collected <strong>in</strong> 1995, for recent years and it is likely<br />

that habitat will have changed considerably <strong>in</strong> both structure and composition at some sites <strong>in</strong><br />

<strong>the</strong> <strong>in</strong>terim. Inclusion <strong>of</strong> habitat parameters was restricted <strong>to</strong> simple structural forestry<br />

classifications as def<strong>in</strong>ed <strong>in</strong> Ba<strong>in</strong>es et al., (2004).<br />

5


RESULTS<br />

DNA verification <strong>of</strong> scats<br />

A <strong>to</strong>tal <strong>of</strong> 414 scat samples were collected, field identified and sent for DNA test<strong>in</strong>g. However<br />

103 samples could not be identified through DNA analysis leav<strong>in</strong>g a sample size <strong>of</strong> 311. The<br />

observers focused <strong>the</strong>ir scat identification <strong>to</strong> fox (116 samples) and p<strong>in</strong>e marten (195 samples),<br />

whereas, <strong>the</strong> DNA demonstrated that <strong>the</strong>re were also scat samples for dog (3), hedgehog (2)<br />

and cat (1), which accounted for 2% (6) <strong>of</strong> <strong>the</strong> scat samples. These 2% have not been<br />

considered fur<strong>the</strong>r.<br />

Of <strong>the</strong> rema<strong>in</strong><strong>in</strong>g 305 scats, 236 (77%) were correctly identified by <strong>the</strong> observers (Table 2). The<br />

level <strong>of</strong> accuracy did not differ between observers w<strong>hen</strong> certa<strong>in</strong>ty categories were comb<strong>in</strong>ed (χ 2 1<br />

= 0.48, P > 0.1). Eighty eight <strong>of</strong> <strong>the</strong> samples sent for analyses were <strong>of</strong> high certa<strong>in</strong>ty for field<br />

identification, with 217 <strong>of</strong> low certa<strong>in</strong>ty. Of those scats <strong>of</strong> high field certa<strong>in</strong>ty, 93% were identified<br />

correctly, compared <strong>to</strong> only 71% <strong>of</strong> those <strong>of</strong> low field certa<strong>in</strong>ty. There was a between-observer<br />

difference <strong>in</strong> <strong>relation</strong> <strong>to</strong> <strong>the</strong> proportion <strong>of</strong> correct identifications across certa<strong>in</strong>ty categories, with<br />

observer JW correctly identify<strong>in</strong>g all scats <strong>of</strong> high certa<strong>in</strong>ty, but only 61% <strong>of</strong> those <strong>of</strong> low<br />

certa<strong>in</strong>ty (χ 2 3 = 23.79, P < 0.001). The more experienced observer AM showed no difference <strong>in</strong><br />

<strong>the</strong> proportion correctly identified between certa<strong>in</strong>ty categories (χ 2 1 = 1.67, P > 0.1).<br />

A <strong>to</strong>tal <strong>of</strong> 69 scats were misidentified <strong>in</strong> <strong>the</strong> field, with an equal split between <strong>the</strong> two observers<br />

(Table 3). Of <strong>the</strong> 69 scats, 64 were misclassified as fox <strong>in</strong> <strong>the</strong> field w<strong>hen</strong> <strong>the</strong>y were actually<br />

marten. Misclassification <strong>of</strong> marten as fox was broadly consistent between observers (χ 2 1 = 0.79,<br />

P > 0.1). Whilst 116 <strong>of</strong> <strong>the</strong> sampled scats <strong>in</strong> <strong>the</strong> field were identified as fox, DNA confirmation<br />

found that only 52 <strong>of</strong> those were actually from fox, plus a fur<strong>the</strong>r five scats misidentified as<br />

marten <strong>in</strong> <strong>the</strong> field, giv<strong>in</strong>g a <strong>to</strong>tal <strong>of</strong> 57. Conversely, 195 scats were classified as marten <strong>in</strong> <strong>the</strong><br />

field, but 254 by DNA analysis (195 plus <strong>the</strong> 64 misidentified as fox, m<strong>in</strong>us <strong>the</strong> five identified as<br />

marten, but actually fox). Thus <strong>the</strong> observers over identified <strong>the</strong> scat samples <strong>to</strong> be fox and<br />

<strong>the</strong>reby under-identified p<strong>in</strong>e marten scat samples. Conversion rates <strong>of</strong> x 0.49 (57 / 116) and x<br />

1.30 (254 / 195) were calculated for fox and marten <strong>in</strong>dices respectively. However <strong>the</strong>se could<br />

only have been applied uniformly across all forests and would not have altered <strong>relation</strong>ships<br />

between mammal <strong>in</strong>dices and <strong>capercaillie</strong>. Essentially, <strong>the</strong>refore, <strong>the</strong>y are summarised<br />

correction fac<strong>to</strong>rs for all forests and both observers derived from just one season <strong>of</strong> scat<br />

verification data. There needs <strong>to</strong> be fur<strong>the</strong>r research <strong>in</strong><strong>to</strong> how accuracy <strong>of</strong> identification varies<br />

between forests, observers and over time. To prevent potential confusion with 1995 <strong>in</strong>dices,<br />

w<strong>hen</strong> no conversion rates were available, <strong>the</strong>y were not applied <strong>in</strong> analyses <strong>in</strong>volv<strong>in</strong>g<br />

<strong>capercaillie</strong>.<br />

Preda<strong>to</strong>r <strong>in</strong>dices<br />

In <strong>the</strong> 1995 survey, <strong>the</strong> number <strong>of</strong> scats found on <strong>the</strong> <strong>in</strong>itial clear-up round (x) was a very good<br />

predic<strong>to</strong>r <strong>of</strong> <strong>the</strong> numbers <strong>of</strong> scats found on <strong>the</strong> subsequent four survey rounds (y) (p<strong>in</strong>e marten:<br />

y = 2.53 + 2.02x, r 2 = 0.76, P < 0.001, fox: y = -1.14 + 0.75x, r 2 = 0.91, P < 0.001). In 2009, <strong>the</strong><br />

<strong>relation</strong>ships between scats on <strong>the</strong> clear up round and on subsequent rounds were not as<br />

strong. These were still significant for martens (y = 8.34 + 1.39x, r 2 = 0.42, P = 0.004)), but not<br />

for fox (r 2 = 0.17, P = 0.06).<br />

6


Preda<strong>to</strong>r <strong>in</strong>dices <strong>in</strong> each forest are given <strong>in</strong> Table 4. Signs <strong>of</strong> martens were found <strong>in</strong> all but two<br />

<strong>of</strong> <strong>the</strong> forests (88%) <strong>in</strong> 2009, compared <strong>to</strong> only eight out <strong>of</strong> 14 (57%) <strong>in</strong> 1995, <strong>in</strong>dicat<strong>in</strong>g a<br />

spread <strong>in</strong> range as well as a likely <strong>in</strong>crease <strong>in</strong> abundance. However, <strong>the</strong> difference is less w<strong>hen</strong><br />

only <strong>the</strong> subset <strong>of</strong> 11 sites that were surveyed for <strong>preda<strong>to</strong>rs</strong> <strong>in</strong> both years are compared. Thus,<br />

<strong>in</strong> 2009, 9/11 sites (82%) had signs <strong>of</strong> p<strong>in</strong>e marten, compared with 8/11 <strong>in</strong> 1995 (73%), (Table<br />

5b). Changes <strong>in</strong> mammalian scat abundance between years were considered first by exclud<strong>in</strong>g<br />

scats collected on <strong>the</strong> clear-up round. Preda<strong>to</strong>r <strong>in</strong>dices from <strong>the</strong> 1995 survey <strong>of</strong> 14 forests and<br />

<strong>the</strong> 2009 survey <strong>of</strong> 16 forests are compared <strong>in</strong> Table 5a. Statistical tests are based on data from<br />

forests surveyed <strong>in</strong> both years (n = 11) (Table 5b). There was a 3.7-fold <strong>in</strong>crease <strong>in</strong> marten<br />

scats across forests (F 1,10 = 8.39, P = 0.016) and a 2.7-fold <strong>in</strong>crease <strong>in</strong> fox scat abundance (F 1,10<br />

= 14.34, P=0.004). These <strong>relation</strong>ships rema<strong>in</strong>ed <strong>the</strong> same, irrespective <strong>of</strong> whe<strong>the</strong>r corrected or<br />

uncorrected mammal <strong>in</strong>dices were used. If corrected values were applied <strong>to</strong> <strong>the</strong> 2009 <strong>in</strong>dices,<br />

but not <strong>to</strong> <strong>the</strong> 1995 <strong>in</strong>dices, <strong>the</strong>n <strong>the</strong> level <strong>of</strong> change for martens <strong>in</strong>creased (F 1,10 = 11.29, P =<br />

0.008), but that <strong>of</strong> fox decreased and became non-significant (F 1,10 = 1.18, P = 0.31), but this<br />

makes <strong>the</strong> assumption that no correction was necessary <strong>in</strong> 1995. There were no changes <strong>in</strong><br />

carrion crow or rap<strong>to</strong>r (chiefly buzzards Buteo buteo) sight<strong>in</strong>gs between surveys (F 1,10 = 0.01, P<br />

= 0.91 and F 1,10 = 0.85, P = 0.38 respectively). The analysis for marten and fox was repeated<br />

<strong>in</strong>clud<strong>in</strong>g scat data from clear-up rounds. The marten scat <strong>in</strong>dex was still higher <strong>in</strong> 2009 than <strong>in</strong><br />

1995 (F 1,10 = 13.14, P = 0.005), but <strong>the</strong>re was no difference <strong>in</strong> <strong>the</strong> fox scat <strong>in</strong>dex (F 1,10 = 1.10, P<br />

= 0.32).<br />

In <strong>the</strong> 1995 survey we found no significant cor<strong>relation</strong> between <strong>in</strong>dices <strong>of</strong> <strong>the</strong> four <strong>preda<strong>to</strong>rs</strong><br />

(Table 6a). However <strong>in</strong> 2009, several <strong>in</strong>dices <strong>of</strong> preda<strong>to</strong>r abundance were <strong>in</strong>ter-correlated<br />

(Table 6b). Foxes were positively correlated with crows, whilst martens were negatively<br />

correlated with both crows and rap<strong>to</strong>rs. Rap<strong>to</strong>rs were positively correlated with crows.<br />

Capercaillie breed<strong>in</strong>g success and preda<strong>to</strong>r <strong>in</strong>dices<br />

In <strong>the</strong> period 1991-95, chicks per <strong>hen</strong> and mean brood size differed significantly between<br />

forests. Chicks per <strong>hen</strong> and broods per <strong>hen</strong> differed between years (Table 7). In contrast, <strong>in</strong> <strong>the</strong><br />

second period (2005-09), <strong>the</strong> forest effect was not significant <strong>in</strong> expla<strong>in</strong><strong>in</strong>g variation <strong>in</strong> any<br />

measure <strong>of</strong> <strong>capercaillie</strong> breed<strong>in</strong>g success, but <strong>the</strong> year effect expla<strong>in</strong>ed variation <strong>in</strong> both chicks<br />

per <strong>hen</strong> and broods per <strong>hen</strong>. All three measures <strong>of</strong> breed<strong>in</strong>g success differed significantly<br />

between <strong>the</strong> two periods, with chicks per <strong>hen</strong> averag<strong>in</strong>g 1.00 <strong>in</strong> 1991-95, but only 0.43 <strong>in</strong> 2005-<br />

09. The mean (+ SE) predicted values <strong>of</strong> each measure <strong>of</strong> breed<strong>in</strong>g success for each period are<br />

given <strong>in</strong> Table 8.<br />

In <strong>the</strong> period 1991-95, broods per <strong>hen</strong> was negatively correlated with crows (F 1,12 = 4.56, P =<br />

0.05) and fox <strong>in</strong>dices were negatively correlated with “brood size” (F 1,12 = 6.94, P = 0.02) (Table<br />

9). In contrast, <strong>in</strong> <strong>the</strong> later period 2005-09, both chicks per <strong>hen</strong> and broods per <strong>hen</strong> were<br />

negatively correlated with <strong>the</strong> <strong>in</strong>dex <strong>of</strong> crow abundance (F 1,11 = 7.73, P = 0.018 and F 1,11 =<br />

10.58, P = 0.008 respectively) (Fig. 2). Nei<strong>the</strong>r <strong>the</strong> marten nor <strong>the</strong> rap<strong>to</strong>r abundance <strong>in</strong>dex<br />

showed any <strong>relation</strong>ship with any <strong>of</strong> <strong>the</strong> three measures <strong>of</strong> <strong>capercaillie</strong> breed<strong>in</strong>g success <strong>in</strong><br />

ei<strong>the</strong>r period. Between period changes <strong>in</strong> <strong>capercaillie</strong> breed<strong>in</strong>g success <strong>in</strong> eight forests<br />

surveyed <strong>in</strong> both periods were not significantly related <strong>to</strong> any changes <strong>in</strong> preda<strong>to</strong>r <strong>in</strong>dices <strong>in</strong><br />

those forests over <strong>the</strong> same period (Table 10).<br />

In both periods, <strong>hen</strong> densities differed significantly between forests, but not between years<br />

(Table 11). Hen densities more than halved from an average <strong>of</strong> 4.2 <strong>hen</strong>s km -2 <strong>in</strong> 1991-95 <strong>to</strong> only<br />

1.8 <strong>in</strong> 2005-09 (F 1,65 = 31.90, P < 0.001). Hen densities <strong>in</strong> 1991-95 were positively correlated<br />

7


with fox <strong>in</strong>dices (F 1,12 = 5.53, P = 0.04), but <strong>in</strong> 2005-09 were negatively correlated with fox<br />

<strong>in</strong>dices (F 1,13 = 8.51, P = 0.012) and also those <strong>of</strong> crows (F 1,13 = 5.08, P = 0.042) and rap<strong>to</strong>rs<br />

(F 1,13 = 13.36, P = 0.003) and positively correlated with martens (F 1,13 = 9.82, P = 0.008) (Table<br />

12) (Figs 3a-d). A s<strong>in</strong>gle outly<strong>in</strong>g po<strong>in</strong>t, where nei<strong>the</strong>r signs <strong>of</strong> martens, nor <strong>capercaillie</strong>, were<br />

observed <strong>in</strong> one forest was excluded (Fig 3e), but <strong>the</strong> <strong>relation</strong>ship rema<strong>in</strong>ed significant (F 1,12 =<br />

5.64, P = 0.035). Changes <strong>in</strong> <strong>hen</strong> densities <strong>in</strong> 10 forests between <strong>the</strong> two periods were<br />

negatively related <strong>to</strong> changes <strong>in</strong> fox (F 1,8 = 9.09, P = 0.017) and rap<strong>to</strong>r <strong>in</strong>dices (F 1,8 = 9.47, P =<br />

0.015) (Figs. 4a-d).<br />

DISCUSSION<br />

In our study, p<strong>in</strong>e marten and fox <strong>in</strong>dices <strong>of</strong> abundance were solely derived from scat collections<br />

along forest tracks. Consequently, <strong>the</strong>ir use <strong>in</strong> deriv<strong>in</strong>g ei<strong>the</strong>r estimates <strong>of</strong> abundance or<br />

population size can be limited and open <strong>to</strong> different <strong>in</strong>terpretation (Webbon et al., 2004). Scat<br />

deposition and decay rates are likely <strong>to</strong> differ accord<strong>in</strong>g <strong>to</strong> diet related differences <strong>in</strong> defecation<br />

rates and seasonal and habitat differences <strong>in</strong> deposition (Davison et al., 2002) and can be<br />

confounded by differences <strong>in</strong> persistence times due <strong>to</strong> wea<strong>the</strong>r (La<strong>in</strong>g et al., 2003). That said,<br />

many <strong>of</strong> <strong>the</strong>se potential biases were overcome by standardis<strong>in</strong>g survey tim<strong>in</strong>g and duration so<br />

that scat abundance was compared only with<strong>in</strong> one season and on one substrate type with<strong>in</strong><br />

forest habitats only and, with exception <strong>of</strong> <strong>the</strong> sites at K, J and R 2 , with<strong>in</strong> one geographic area;<br />

<strong>the</strong> Scottish Highlands. By restra<strong>in</strong><strong>in</strong>g <strong>the</strong>se conditions as tightly as possible and us<strong>in</strong>g <strong>the</strong><br />

same sampl<strong>in</strong>g regime, both <strong>in</strong> terms <strong>of</strong> tim<strong>in</strong>g <strong>of</strong> survey and <strong>the</strong> tracks <strong>the</strong>mselves, we<br />

consider that <strong>in</strong> compar<strong>in</strong>g <strong>the</strong> 1995 and 2009 surveys we generally compared changes <strong>in</strong><br />

abundance as opposed <strong>to</strong> changes <strong>in</strong> <strong>activity</strong>, but see Birks et al., (2004). However <strong>the</strong> precise<br />

nature <strong>of</strong> <strong>the</strong> <strong>relation</strong>ship between preda<strong>to</strong>r numbers and scat density is unknown, is unlikely <strong>to</strong><br />

be coll<strong>in</strong>ear and <strong>hen</strong>ce reported magnitudes <strong>of</strong> <strong>in</strong>crease <strong>in</strong> preda<strong>to</strong>r <strong>in</strong>dices may not equate <strong>to</strong><br />

<strong>the</strong> same levels <strong>of</strong> <strong>in</strong>crease <strong>in</strong> abundance. One potential source <strong>of</strong> bias that could not be<br />

overcome was that <strong>of</strong> observer error, both <strong>in</strong> detection rates and assign<strong>in</strong>g <strong>the</strong> scat orig<strong>in</strong>a<strong>to</strong>r.<br />

Given a 14 year gap between surveys, different observers had <strong>to</strong> be used, but <strong>the</strong> 2009 field<br />

observers were tra<strong>in</strong>ed <strong>in</strong> <strong>the</strong> methods by one <strong>of</strong> <strong>the</strong> orig<strong>in</strong>al observers from 1995. A DNA check<br />

on scat orig<strong>in</strong>a<strong>to</strong>r was performed <strong>in</strong> 2009, but this technique was not available for scats<br />

collected <strong>in</strong> 1995. Us<strong>in</strong>g ei<strong>the</strong>r corrected or uncorrected <strong>in</strong>dices did not affect <strong>the</strong> results.<br />

Marten and fox <strong>in</strong>dices <strong>in</strong>creased 3.7-fold and 2.7-fold respectively between 1995 and 2009.<br />

That <strong>the</strong> mean marten <strong>in</strong>dex and <strong>the</strong> number <strong>of</strong> forests where marten sign was encountered had<br />

both <strong>in</strong>creased was predictable from a similar magnitude <strong>of</strong> <strong>in</strong>crease already reported from one<br />

<strong>of</strong> <strong>the</strong> forests (Abernethy) <strong>in</strong> this survey (Summers et al., 2004; Summers et al., 2009). This<br />

<strong>in</strong>crease is likely <strong>to</strong> reflect martens re-colonis<strong>in</strong>g much <strong>of</strong> <strong>the</strong> former range follow<strong>in</strong>g <strong>the</strong>ir legal<br />

protection <strong>in</strong> 1988. Perhaps less predictable was <strong>the</strong> likely doubl<strong>in</strong>g <strong>of</strong> <strong>the</strong> fox <strong>in</strong>dex relative <strong>to</strong><br />

1995, particularly w<strong>hen</strong> many <strong>of</strong> <strong>the</strong> sample forests had participated <strong>in</strong> <strong>the</strong> Capercaillie LIFE<br />

Project and had received money <strong>to</strong> improve <strong>the</strong>ir levels <strong>of</strong> fox control. That both martens and<br />

foxes <strong>in</strong>creased does not readily fit with current understand<strong>in</strong>g <strong>of</strong> <strong>in</strong>traguild preda<strong>to</strong>r<br />

<strong>relation</strong>ships where typically <strong>the</strong>re is a negative <strong>relation</strong>ship between <strong>the</strong> abundance <strong>of</strong> larger<br />

<strong>preda<strong>to</strong>rs</strong> such as <strong>the</strong> fox and those <strong>of</strong> meso<strong>preda<strong>to</strong>rs</strong> such as martens (L<strong>in</strong>dstrom et al., 1995;<br />

Smedshaug et al., 1999) and s<strong>to</strong>ats Mustela erm<strong>in</strong>ea (Warren & Ba<strong>in</strong>es, 2004). This is however<br />

not always <strong>the</strong> case and Kurki et al., (1998) found no such negative <strong>relation</strong>ship, whilst<br />

Summers et al., (2004) showed a marten <strong>in</strong>crease whilst fox cubs were be<strong>in</strong>g controlled but<br />

2<br />

These 3 sites <strong>in</strong> Perth & K<strong>in</strong>ross are south <strong>of</strong> <strong>the</strong> Highlands.<br />

8


adult numbers ma<strong>in</strong>ta<strong>in</strong>ed similar at Abernethy. Despite both marten and fox <strong>in</strong>dices both<br />

<strong>in</strong>creas<strong>in</strong>g between surveys, <strong>the</strong>ir <strong>in</strong>dices <strong>of</strong> abundance showed no cor<strong>relation</strong>.<br />

Despite Summers et al., (2009) f<strong>in</strong>d<strong>in</strong>g that martens were <strong>the</strong> major preda<strong>to</strong>r <strong>of</strong> <strong>capercaillie</strong><br />

clutches at Abernethy, this study found no evidence <strong>of</strong> a <strong>relation</strong>ship between <strong>the</strong> marten <strong>in</strong>dex<br />

and any <strong>of</strong> <strong>the</strong> three measures <strong>of</strong> <strong>capercaillie</strong> breed<strong>in</strong>g success <strong>in</strong> ei<strong>the</strong>r period <strong>of</strong> observation 3 .<br />

Indeed, <strong>the</strong> marten <strong>in</strong>dex was positively correlated with <strong>hen</strong> densities <strong>in</strong> 2005-09. This lack <strong>of</strong><br />

agreement could result from marten abundance not yet be<strong>in</strong>g fully res<strong>to</strong>red <strong>in</strong> many <strong>of</strong> <strong>the</strong> study<br />

forests. To this end, marten <strong>in</strong>dices <strong>in</strong> 2009 were on average almost five-fold higher <strong>in</strong><br />

Abernethy than amongst o<strong>the</strong>r study forests, with <strong>in</strong>crease rates subsequent <strong>to</strong> 1995 be<strong>in</strong>g on<br />

average eight–fold higher than <strong>in</strong> o<strong>the</strong>r forests. At what level <strong>of</strong> abundance marten start <strong>to</strong><br />

impact upon <strong>capercaillie</strong> breed<strong>in</strong>g success, ak<strong>in</strong> <strong>to</strong> that described at Abernethy, rema<strong>in</strong>s<br />

undeterm<strong>in</strong>ed. The f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> this study would suggest that o<strong>the</strong>r <strong>preda<strong>to</strong>rs</strong>, <strong>in</strong> particular crows,<br />

may be more important <strong>in</strong> determ<strong>in</strong><strong>in</strong>g breed<strong>in</strong>g success, probably through predation <strong>of</strong><br />

clutches, and that foxes and rap<strong>to</strong>rs may be l<strong>in</strong>ked <strong>to</strong> changes <strong>in</strong> breed<strong>in</strong>g densities, possibly<br />

through predation <strong>of</strong> <strong>hen</strong>s. However <strong>the</strong> rap<strong>to</strong>r <strong>in</strong>dex is based on relatively few sight<strong>in</strong>gs and<br />

<strong>hen</strong>ce any statistical association between <strong>capercaillie</strong> and rap<strong>to</strong>rs is speculative.<br />

Alternatively, marten, or <strong>in</strong>deed fox abundance, deemed by scat collection may be provid<strong>in</strong>g<br />

false <strong>in</strong>dices <strong>of</strong> true relative abundance. Interpretation <strong>of</strong> mammalian preda<strong>to</strong>r <strong>in</strong>dices based on<br />

field identification <strong>of</strong> scats as collected dur<strong>in</strong>g this study must be treated with caution. Analysis<br />

<strong>of</strong> DNA from scats has shown <strong>the</strong>re is considerable scope for misidentification w<strong>hen</strong> only scat<br />

field characteristics are taken <strong>in</strong><strong>to</strong> consideration. Although <strong>in</strong> this study second appraisals <strong>of</strong><br />

scat identification were conducted by an experienced observer, errors appear <strong>to</strong> occur even with<br />

recognised <strong>to</strong>pic experts (Davison et al., 2002).<br />

To overcome morphological misclassification, 414 field identified scats, represent<strong>in</strong>g 30% <strong>of</strong> <strong>the</strong><br />

<strong>to</strong>tal collected, were sent for confirmation by DNA analysis. These techniques confirmed that<br />

suspected misidentification was prevalent, with 23% <strong>of</strong> scats be<strong>in</strong>g misidentified. Importantly,<br />

<strong>the</strong>re was a dist<strong>in</strong>ct tendency for marten scats <strong>to</strong> be misidentified as fox as opposed <strong>to</strong> vice<br />

versa. Thus, without DNA verification, martens are be<strong>in</strong>g under-estimated relative <strong>to</strong> fox. DNA<br />

techniques were not used <strong>in</strong> <strong>the</strong> previous 1995 survey <strong>to</strong> confirm scat identification. Accord<strong>in</strong>gly,<br />

<strong>the</strong> verified data <strong>in</strong> <strong>the</strong> 2009 survey cannot be used <strong>to</strong> derive a comparison <strong>of</strong> appropriate<br />

correction fac<strong>to</strong>rs between this and <strong>the</strong> previous surveys, but will be utilised <strong>in</strong> any future<br />

surveys. Instead, it can only be assumed that misclassification rates were comparable between<br />

<strong>the</strong> two surveys and consistent across forests and as such formed no known source <strong>of</strong> error or<br />

bias. However if this assumption was not followed and <strong>in</strong>stead all fox scats were considered as<br />

correctly identified <strong>in</strong> 1995 and correction <strong>in</strong>dices only applied <strong>in</strong> 2009, <strong>the</strong>n under this<br />

somewhat implausible scenario, any significant <strong>relation</strong>ship <strong>of</strong> fox with <strong>capercaillie</strong> may be<br />

considered <strong>in</strong>valid.<br />

It was high fox and crow <strong>in</strong>dices <strong>in</strong> <strong>the</strong> 1995 survey, ra<strong>the</strong>r than <strong>the</strong> marten <strong>in</strong>dex, that were<br />

associated with poor <strong>capercaillie</strong> breed<strong>in</strong>g success (Ba<strong>in</strong>es et al., 2004). Despite an <strong>in</strong>crease <strong>in</strong><br />

<strong>the</strong> fox <strong>in</strong>dex <strong>in</strong> <strong>the</strong> 2009 survey, no such cor<strong>relation</strong> between breed<strong>in</strong>g success and fox was<br />

found <strong>in</strong> this latter period. Conversely, although crows did not <strong>in</strong>crease between surveys, <strong>the</strong>y<br />

were l<strong>in</strong>ked with poor breed<strong>in</strong>g success <strong>in</strong> <strong>the</strong> second period <strong>of</strong> study, but not <strong>the</strong> first.<br />

3<br />

The analyses undertaken <strong>in</strong> this study consider statistical associations between measures <strong>of</strong> <strong>capercaillie</strong> breed<strong>in</strong>g success and<br />

preda<strong>to</strong>r <strong>in</strong>dices only. No o<strong>the</strong>r environmental variables, such as wea<strong>the</strong>r, were <strong>in</strong>cluded. A separate, but related analysis,<br />

undertaken <strong>in</strong> parallel <strong>to</strong> this study found evidence <strong>of</strong> a negative <strong>relation</strong>ship between <strong>the</strong> p<strong>in</strong>e marten <strong>in</strong>dex and <strong>capercaillie</strong><br />

productivity (broods per <strong>hen</strong> and chicks per <strong>hen</strong>), w<strong>hen</strong> certa<strong>in</strong> wea<strong>the</strong>r parameters are taken <strong>in</strong><strong>to</strong> account. See SNH<br />

Commissioned Report 435 for details.<br />

9


It has been well documented that <strong>the</strong> pr<strong>in</strong>cipal fac<strong>to</strong>r limit<strong>in</strong>g annual breed<strong>in</strong>g success is high<br />

ra<strong>in</strong>fall <strong>in</strong> June at and just after hatch<strong>in</strong>g (Moss, 1986; Moss et al., 2001; Summers et al., 2004).<br />

Whilst this analysis does not attempt <strong>to</strong> disentangle <strong>the</strong> effects <strong>of</strong> wea<strong>the</strong>r and preda<strong>to</strong>r<br />

abundance on levels <strong>of</strong> <strong>capercaillie</strong> breed<strong>in</strong>g success with<strong>in</strong> <strong>the</strong> two study periods under<br />

consideration, it is acknowledged that with<strong>in</strong> <strong>the</strong> latter period <strong>the</strong>re have been two very poor<br />

breed<strong>in</strong>g years; 2007 and 2008, related <strong>to</strong> wet June wea<strong>the</strong>r (MacLeod et al., 2007, 2008),<br />

which may mask any contribution made by a potential <strong>in</strong>crease <strong>in</strong> mammalian <strong>preda<strong>to</strong>rs</strong>.<br />

Increases <strong>in</strong> fox and rap<strong>to</strong>r <strong>in</strong>dices were significantly correlated with decl<strong>in</strong>es <strong>in</strong> <strong>capercaillie</strong><br />

abundance measured by changes <strong>in</strong> <strong>in</strong>dices <strong>of</strong> <strong>hen</strong> density. This cor<strong>relation</strong>, suggest<strong>in</strong>g that fox<br />

abundance may limit <strong>capercaillie</strong> populations, is supported by evidence from Abernethy, where<br />

<strong>in</strong>creases <strong>in</strong> <strong>capercaillie</strong> occurred dur<strong>in</strong>g an experimental period <strong>of</strong> fox control (Summers et al.,<br />

2004). Similarly, <strong>capercaillie</strong> <strong>in</strong>creased <strong>in</strong> Scand<strong>in</strong>avia w<strong>hen</strong> fox abundance was reduced<br />

followed an outbreak <strong>of</strong> mange (Smedhaugh et al., 1999) and lower breed<strong>in</strong>g success and<br />

population densities were found <strong>in</strong> areas with more foxes follow<strong>in</strong>g higher levels <strong>of</strong> forest<br />

fragmentation (Kurki et al., 1997, 2000).<br />

The evidence base from this study suggests that <strong>the</strong>re is an <strong>in</strong>crease <strong>in</strong> fox abundance <strong>in</strong><br />

Scottish forests. Caution is needed w<strong>hen</strong> draw<strong>in</strong>g conclusions based on untested statistical<br />

associations. In this case, <strong>the</strong> fox <strong>in</strong>dex was related <strong>to</strong> <strong>the</strong> <strong>hen</strong> density <strong>in</strong> both 1995 and 2009,<br />

but it switched from be<strong>in</strong>g a positive <strong>relation</strong>ship <strong>to</strong> a negative one. The change <strong>in</strong> <strong>hen</strong> density<br />

and <strong>the</strong> fox <strong>in</strong>dex was also a negative <strong>relation</strong>ship, so it may be suggested that as foxes<br />

<strong>in</strong>crease, <strong>hen</strong> densities decl<strong>in</strong>e. Fur<strong>the</strong>rmore, a case study at Abernethy clearly suggests, albeit<br />

with a restricted sample size, that martens can limit hatch<strong>in</strong>g success <strong>of</strong> clutches and thus<br />

negatively <strong>in</strong>fluence breed<strong>in</strong>g success (Summers et al., 2009). This study, whilst not f<strong>in</strong>d<strong>in</strong>g any<br />

cor<strong>relation</strong> between marten <strong>in</strong>dices and breed<strong>in</strong>g success, found that crows, and <strong>to</strong> a lesser<br />

extent foxes, were l<strong>in</strong>ked <strong>to</strong> poor breed<strong>in</strong>g success, whilst fewer <strong>hen</strong>s <strong>in</strong> 2005-09 were found<br />

where preda<strong>to</strong>r (fox, crow and rap<strong>to</strong>r) <strong>in</strong>dices were higher. Decl<strong>in</strong>es <strong>in</strong> <strong>capercaillie</strong> breed<strong>in</strong>g<br />

population size as measured by changes <strong>in</strong> <strong>hen</strong> density between observation periods, were<br />

negatively associated with changes <strong>in</strong> fox and rap<strong>to</strong>r <strong>in</strong>dices <strong>of</strong> abundance.<br />

Numbers and distribution <strong>of</strong> several preda<strong>to</strong>r species <strong>in</strong> Scotland, <strong>in</strong>clud<strong>in</strong>g both marten and<br />

fox, have been limited, legally or illegally, by gamekeepers whose objective has been <strong>to</strong><br />

conserve gamebirds, particularly red grouse Lagopus lagopus scoticus, but also <strong>capercaillie</strong>, for<br />

sport shoot<strong>in</strong>g (Redpath & Thirgood, 1997; Tapper, 1999; Whitfield et al., 2004). Recent<br />

decl<strong>in</strong>es <strong>in</strong> red grouse and driven grouse shoot<strong>in</strong>g (McGilvray, 1995) are <strong>of</strong>ten associated with<br />

reductions <strong>in</strong> gamekeeper numbers and preda<strong>to</strong>r management. This <strong>in</strong> turn has probably<br />

improved <strong>the</strong> conservation status <strong>of</strong> <strong>the</strong> now protected p<strong>in</strong>e marten, but has also resulted <strong>in</strong><br />

<strong>in</strong>creases <strong>in</strong> foxes and possibly crows. Reach<strong>in</strong>g <strong>the</strong> UKBAP Capercaillie Species Action Plan<br />

population size and range targets may depend upon improv<strong>in</strong>g breed<strong>in</strong>g success through<br />

cont<strong>in</strong>ued reductions <strong>in</strong> preda<strong>to</strong>r abundance, but not <strong>in</strong> isolation, or <strong>in</strong> <strong>the</strong> absence <strong>of</strong> <strong>the</strong> o<strong>the</strong>r<br />

available management options.<br />

10


REFERENCES<br />

Ba<strong>in</strong>es, D. & Summers, R.W. 1997. Assessment <strong>of</strong> bird collisions with deer fences <strong>in</strong> Scottish<br />

forests. Journal <strong>of</strong> Applied Ecology, 34, 941-948.<br />

Ba<strong>in</strong>es, D. & Andrew, M. 2003. Mark<strong>in</strong>g <strong>of</strong> deer fences <strong>to</strong> reduce frequency <strong>of</strong> collisions by<br />

woodland grouse. Biological Conservation, 110, 169-176.<br />

Ba<strong>in</strong>es, D., Moss, R. & Dugan, D. 2004. Capercaillie breed<strong>in</strong>g success <strong>in</strong> <strong>relation</strong> <strong>to</strong> forest<br />

habitat and preda<strong>to</strong>r abundance. Journal <strong>of</strong> Applied Ecology, 41, 59-71.<br />

Birks, J. 2002. The P<strong>in</strong>e Marten. The Mammal Society, London. 27 pp.<br />

Birks, J., Messenger, J., Braithwaite, T., Davison, A., Brookes, R. & Strachan, C. 2004. Are scat<br />

surveys a reliable method for assess<strong>in</strong>g distribution and population status <strong>of</strong> p<strong>in</strong>e martens?<br />

Pages 235-252, <strong>in</strong>: Harrison, D.J., Fuller, A.K. & Proulx, G. (eds.), Martens and Fishers (Martes)<br />

<strong>in</strong> Human Altered Environments. Spr<strong>in</strong>ger, London, UK.<br />

Davison, A., Birks, J.D.S., Brookes, R.C., Braithwaite, T.C. & Messenger, J.E. 2002. On <strong>the</strong><br />

orig<strong>in</strong> <strong>of</strong> faeces: morphological versus molecular methods for survey<strong>in</strong>g rare carnivores from<br />

<strong>the</strong>ir scats. Journal <strong>of</strong> Zoology, 257, 141-143.<br />

Catt, D.C., Ba<strong>in</strong>es, D., Piccozzi, N., Moss, R. & Summers, R.W. 1998. Abundance and<br />

distribution <strong>of</strong> <strong>capercaillie</strong> Tetrao urogallus <strong>in</strong> Scotland 1992-94. Biological Conservation, 85,<br />

257-267.<br />

Ea<strong>to</strong>n, M.A., Marshall, K.B. & Gregory, R.D. 2007. Status <strong>of</strong> <strong>capercaillie</strong> Tetrao urogallus <strong>in</strong><br />

Scotland dur<strong>in</strong>g w<strong>in</strong>ter 2003/04. Bird Study, 54, 145-153.<br />

Kastdalen, L. & Wegge, P. 1989. Why and w<strong>hen</strong> do <strong>capercaillie</strong> chicks die – prelim<strong>in</strong>ary results<br />

based on radio-<strong>in</strong>strumented broods <strong>in</strong> south-east Norway? Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> International<br />

Grouse Symposium, 4, 65-72.<br />

Kurki, S., Helle, P., L<strong>in</strong>den, H. & Nikula , A. 1997. Breed<strong>in</strong>g success <strong>of</strong> black grouse and<br />

<strong>capercaillie</strong> <strong>in</strong> <strong>relation</strong> <strong>to</strong> mammalian preda<strong>to</strong>r densities on two spatial scales. Oikos, 79, 301-<br />

310.<br />

Kurki, S., Nikula, A., Helle, P. & L<strong>in</strong>den, H. 1998. Abundances <strong>of</strong> red fox and p<strong>in</strong>e marten <strong>in</strong><br />

<strong>relation</strong> <strong>to</strong> <strong>the</strong> composition <strong>of</strong> boreal forest landscapes. Journal <strong>of</strong> Animal Ecology, 67, 874-886.<br />

Kurki, S., Nikula, A., Helle, P. & L<strong>in</strong>den, H. 2000. Landscape fragmentation and forest<br />

composition effects on grouse breed<strong>in</strong>g success <strong>in</strong> boreal forests. Ecology, 81, 1985-1997.<br />

La<strong>in</strong>g, S.E., Buckland, S.T., Burns, R.W., Lambie, D. & Amphlett, A. 2003. Dung and nest<br />

surveys: estimat<strong>in</strong>g decay rates. Journal <strong>of</strong> Applied Ecology, 40, 1102-1111.<br />

L<strong>in</strong>dstrom, E.R., Bra<strong>in</strong>erd, S.M., Held<strong>in</strong>, J.O. & Overskaug, K. 1995. P<strong>in</strong>e marten – red fox<br />

<strong>in</strong>teractions: a case <strong>of</strong> <strong>in</strong>traguild predation? Annales Zoologici Fennici, 32, 123-130.<br />

11


MacLeod, A., Moss, R. & Ba<strong>in</strong>es, D. 2007. The productivity <strong>of</strong> breed<strong>in</strong>g <strong>capercaillie</strong> Tetrao<br />

urogallus at sites across <strong>the</strong>ir Scottish range 2007. Unpublished report <strong>to</strong> Scottish Natural<br />

Heritage Project No. FO3AC301a.<br />

MacLeod, A., Canham, L. & Ba<strong>in</strong>es, D. 2008. The productivity <strong>of</strong> breed<strong>in</strong>g <strong>capercaillie</strong> Tetrao<br />

urogallus at sites across <strong>the</strong>ir Scottish range 2008. Unpublished report <strong>to</strong> Scottish Natural<br />

Heritage Project No. FO3AC301a.<br />

Marcstrom, V., Kenward, R.E. & Engren, E. 1988. The impacts <strong>of</strong> predation on boreal tetraonids<br />

dur<strong>in</strong>g vole cycles: an experimental study. Journal <strong>of</strong> Animal Ecology, 57, 859-872.<br />

McGilvray, J. 1995. An economic study <strong>of</strong> grouse moors. Game Conservancy Ltd,<br />

Ford<strong>in</strong>gbridge, Hampshire.<br />

Moss, R. 1986. Ra<strong>in</strong>, breed<strong>in</strong>g success and distribution <strong>of</strong> <strong>capercaillie</strong> Tetrao urogallus and<br />

black grouse Tetrao tetrix <strong>in</strong> Scotland. Ibis, 128, 65-72.<br />

Moss, R. 1994. Decl<strong>in</strong>e <strong>of</strong> <strong>capercaillie</strong> (Tetrao urogallus) <strong>in</strong> Scotland. Gibier Faune Sauvage,<br />

11, 217-222.<br />

Moss, R., Picozzi, N., Summers, R. & Ba<strong>in</strong>es, D. 2000. Capercaillie Tetrao urogallus <strong>in</strong> Scotland<br />

– demography <strong>of</strong> a decl<strong>in</strong><strong>in</strong>g population. Ibis, 142, 159-167.<br />

Moss, R., Oswald, J. & Ba<strong>in</strong>es, D. 2001. Climate change and breed<strong>in</strong>g success: decl<strong>in</strong>e <strong>of</strong> <strong>the</strong><br />

<strong>capercaillie</strong> <strong>in</strong> Scotland. Journal <strong>of</strong> Animal Ecology, 70, 47-61.<br />

Redpath, S.M. & Thirgood, S.J. 1997. Numerical and functional responses <strong>in</strong> generalist<br />

<strong>preda<strong>to</strong>rs</strong>: <strong>hen</strong> harriers and peregr<strong>in</strong>es, on Scottish grouse moors. Journal <strong>of</strong> Animal Ecology,<br />

68, 879-892.<br />

Proc<strong>to</strong>r, R. & Summers, R.W. 2002. Nest<strong>in</strong>g habitat, clutch size and nest failure <strong>of</strong> <strong>capercaillie</strong><br />

Tetrao urogallus <strong>in</strong> Scotland. Bird Study, 49, 190-192.<br />

Smedshaug, .A., Selaes, V., Lund, S.E. & Sonerud, G.A. 1999. The effects <strong>of</strong> a natural<br />

reduction <strong>of</strong> fox Vulpes vulpes on small game hunt<strong>in</strong>g bags <strong>in</strong> Norway. Wildlife Biology, 5, 157-<br />

166.<br />

Summers, R.W., Green, R.E., Proc<strong>to</strong>r, R., Dugan, D., Lambie, D., Moncrieff, R., Moss, R. &<br />

Ba<strong>in</strong>es, D. 2004. An experimental study <strong>of</strong> <strong>the</strong> effects <strong>of</strong> predation on <strong>the</strong> breed<strong>in</strong>g productivity<br />

<strong>of</strong> <strong>capercaillie</strong> and black grouse. Journal <strong>of</strong> Applied Ecology, 41, 513-525.<br />

Summers, R.W., Willi, J. & Selvidge, J. 2009. Capercaillie Tetrao urogallus nest loss and<br />

attendance at Abernethy Forest, Scotland. Wildlife Biology, 15, 319-327.<br />

Tapper, S. 1999. A question <strong>of</strong> balance: Game animals and <strong>the</strong>ir role <strong>in</strong> <strong>the</strong> British countryside.<br />

The Game Conservancy Trust, Ford<strong>in</strong>gbridge, Hampshire.<br />

Warren, P. & Ba<strong>in</strong>es, D. 2004. Black grouse <strong>in</strong> nor<strong>the</strong>rn England: stemm<strong>in</strong>g <strong>the</strong> decl<strong>in</strong>e. British<br />

Birds 97: 183-189.<br />

12


Webbon, C.C., Baker, P.J. & Harris, S. 2004. Faecal density counts for moni<strong>to</strong>r<strong>in</strong>g changes <strong>in</strong><br />

red fox numbers <strong>in</strong> rural Brita<strong>in</strong>. Journal <strong>of</strong> Applied Ecology, 41, 768-779.<br />

Whitfield, D.P., Field<strong>in</strong>g, A.H., McLeod, D.R.A. & Haworth, P.F. 2004. The effects <strong>of</strong> persecution<br />

on age <strong>of</strong> breed<strong>in</strong>g and terri<strong>to</strong>ry occupation <strong>in</strong> golden eagles <strong>in</strong> Scotland. Biological<br />

Conservation, 118, 249-259.<br />

13


TABLES<br />

Table 1. Location and characteristics <strong>of</strong> <strong>the</strong> forests 4 surveyed for preda<strong>to</strong>r <strong>in</strong>dices <strong>in</strong> ei<strong>the</strong>r 1995<br />

and / or 2009 and <strong>capercaillie</strong> breed<strong>in</strong>g success. Forest type: 1, open canopy as <strong>in</strong> native<br />

p<strong>in</strong>ewoods; 2, mature Scots p<strong>in</strong>e plantation, canopy sufficiently open for some dwarf shrubs; 3,<br />

mixed species plantation with closed canopy, <strong>of</strong>ten with some clear-felled areas and res<strong>to</strong>cked<br />

ground.<br />

____________________________________________________________________________<br />

Capercaillie brood<br />

Forest Region Forest type Preda<strong>to</strong>r survey count years______<br />

A Strathspey 1 1995, 2009 1991-2009<br />

B Perth & K<strong>in</strong>ross 3 2009 2001-2009<br />

C Strathspey 1 1995 1991-1993, 2005-09<br />

E Aberdeenshire 1 1995 1991-1994, 98-2001<br />

G Strathspey 2 1995, 2009 1991-2009<br />

H Moray 3 1995, 2009 1991-1993, 2001-09<br />

I Perth & K<strong>in</strong>ross 2 1995, 2009 1991-2009<br />

J Perth & K<strong>in</strong>ross 2 1995, 2009 1991-2001, 2009<br />

K Perth & K<strong>in</strong>ross 3 1995, 2009 1991-2001, 2009<br />

L Aberdeenshire 1 1995, 2009 1991-2009<br />

N Strathspey 2 2009 2002-2009<br />

Q Strathspey 3 1995, 2009 1992-2000, 2005-09<br />

R Perth & K<strong>in</strong>ross 3 1995 1991-1993<br />

S Strathspey 1 1995, 2009 1992-1999, 2001-09<br />

U Aberdeenshire 1 1995, 2009 1991-2007, 2009<br />

W Easter Ross 3 2009 2000-2009<br />

X Easter Ross 3 2009 2000-2009<br />

Y Aberdeenshire 2 2009 2003-2009<br />

Z Strathspey 1 1995, 2009 1992-2009<br />

____________________________________________________________________________<br />

4<br />

The forest codes follow an irregular sequence because <strong>the</strong>y are <strong>the</strong> same site codes that are used <strong>in</strong> SNH Commissioned reports<br />

434 and 435 and form a subset <strong>of</strong> <strong>the</strong> latter.<br />

14


Table 2. The frequency <strong>of</strong> scat identification <strong>in</strong> <strong>the</strong> field be<strong>in</strong>g subsequently confirmed as correct<br />

by DNA analysis for each observer and each field assigned certa<strong>in</strong>ty category, n = <strong>the</strong> number<br />

<strong>of</strong> scats tested.<br />

Scat category Both observers Observer AM Observer JW<br />

n % n % n %<br />

All scats 305 77% 177 80% 128 74%<br />

High certa<strong>in</strong>ty 88 93% 44 86% 44 100%<br />

Low certa<strong>in</strong>ty 217 71% 133 77% 84 61%<br />

____________________________________________________________________________<br />

15


Table 3. Breakdown <strong>of</strong> scats misidentified <strong>in</strong> <strong>the</strong> field <strong>in</strong> <strong>relation</strong> <strong>to</strong> subsequent DNA<br />

confirmation accord<strong>in</strong>g <strong>to</strong> species (fox or p<strong>in</strong>e marten) for each <strong>of</strong> <strong>the</strong> two observers <strong>in</strong> each<br />

field assigned identification certa<strong>in</strong>ty category.<br />

_______________________________________________________________________<br />

Both observers Observer AM Observer JW<br />

No. wrong % No. wrong % No. wrong. %<br />

_______________________________________________________________________<br />

All scats 69 36 33<br />

Field - fox, DNA - marten 64 93% 32 89% 32 94%<br />

Field - marten, DNA - fox 5 7% 4 11% 1 6%<br />

High certa<strong>in</strong>ty 6 6 0<br />

Field - fox, DNA - marten 5 83% 5 83% -<br />

Field - marten, DNA - fox 1 17% 1 17% -<br />

Low certa<strong>in</strong>ty 63 30 33<br />

Field - fox, DNA – marten 59 94% 27 90% 32 94%<br />

Field – marten, DNA – fox 4 6% 3 10% 1 6%<br />

16


Table 4. Indices <strong>of</strong> preda<strong>to</strong>r abundance from forest transects walked between April and June <strong>in</strong><br />

1995 (from Ba<strong>in</strong>es et al., 2004) and 2009 <strong>in</strong> <strong>the</strong> forest areas where <strong>capercaillie</strong> brood counts<br />

were conducted. Values for fox and p<strong>in</strong>e marten are mean scats 10 km -1 day -1 10 2 and exclude<br />

<strong>the</strong> clearance round. Those for crows and rap<strong>to</strong>rs are mean observations 10 km -1 visit -1 . These<br />

values refer <strong>to</strong> <strong>in</strong>itial identifications. Corrections from DNA test<strong>in</strong>g can be applied by multiply<strong>in</strong>g<br />

fox <strong>in</strong>dices by 0.45 and marten <strong>in</strong>dices by 1.3.<br />

___________________________________________________________________________<br />

Fox Marten Crow Rap<strong>to</strong>r<br />

Forest 1995 2009 1995 2009 1995 2009 1995 2009<br />

A 9.3 57.5 7.0 221.9 0.9 1.5 0 0<br />

B - 54.6 - 31.4 - 0 - 2.0<br />

C 0 - 0 - 2.5 - 2.8 -<br />

E 5.1 - 0 - - - -<br />

G 13.4 36.2 4.5 158.3 1.2 1.7 0.7 0<br />

H 8.7 45.5 36.0 39.0 1.4 4.4 0.2 1.3<br />

I 9.0 25.1 47.8 40.2 0.9 1.2 0.4 1.2<br />

J 1.8 43.9 3.5 0 0.8 5.5 2.1 3.9<br />

K 60.5 86.1 1.8 4.8 5.4 4.2 1.1 1.9<br />

L 4.9 14.9 0 93.3 0.7 0 0.2 0<br />

N - 29.2 - 53.0 - 0 - 0.9<br />

Q 11.0 5.4 26.5 5.4 0.3 1.4 0 0<br />

R 125.1 - 0 - 5.7 - 0.9 -<br />

S 11.1 17.2 25.9 31.9 0 0 0.5 0<br />

U 19.8 141.1 0 0 1.3 11.3 0.2 2.4<br />

W - 105.7 - 120.8 - 2.5 - 0<br />

X - 12.1 - 46.9 - 2.0 - 0.5<br />

Y - 6.4 - 42.8 - 2.6 - 0.6<br />

Z 8.1 5.7 0 30.3 1.3 0 0.2 0<br />

___________________________________________________________________________<br />

17


Table 5a. Preda<strong>to</strong>r <strong>in</strong>dices, (means + 1SE) from 14 forests used by breed<strong>in</strong>g <strong>capercaillie</strong> <strong>in</strong><br />

1995 and 16 forests <strong>in</strong> 2009. Mammal <strong>in</strong>dices are scats 10 km -1 day -1 x 100 and exclude scats<br />

from <strong>the</strong> clear-up round. Bird <strong>in</strong>dices are sight<strong>in</strong>gs 10 km -1 visit -1 .<br />

____________________________________________________________________________<br />

1995 (n = 14 forests) 2009 (n = 16 forests)<br />

Preda<strong>to</strong>r Forests with sign Abundance Forests with sign Abundance<br />

Index<br />

Index<br />

____________________________________________________________________________<br />

Red fox 13 (93%) 21.8 + 9.0 16 (100%) 42.9 + 9.7<br />

P<strong>in</strong>e marten 8 (57%) 12.0 + 4.6 14 (88%) 57.8 + 15.4<br />

Carrion crow 13 (93%) 3.1 + 0.8 11 (69%) 2.4 + 0.7<br />

Rap<strong>to</strong>rs 12 (86%) 1.7 + 0.6 9 (56%) 0.9 + 0.3<br />

____________________________________________________________________________<br />

Table 5b. Preda<strong>to</strong>r <strong>in</strong>dices, (means + 1SE) from 11 forests used by breed<strong>in</strong>g <strong>capercaillie</strong><br />

surveyed <strong>in</strong> both 1995 and 2009. Mammal <strong>in</strong>dices are scats 10 km -1 day -1 x 100 and exclude<br />

scats from <strong>the</strong> clear-up rou<strong>in</strong>d. Bird <strong>in</strong>dices are sight<strong>in</strong>gs 10 km -1 visit -1 .<br />

____________________________________________________________________________<br />

1995 2009<br />

Preda<strong>to</strong>r Forests with sign Abundance Forests with sign Abundance<br />

Index<br />

Index<br />

____________________________________________________________________________<br />

Red fox 11 (100%) 15.9 + 5.2 11 (100%) 43.5 + 12.2<br />

P<strong>in</strong>e marten 8 (73%) 15.3 + 5.5 9 (82%) 57.3 + 21.8<br />

Carrion crow 10 (91%) 2.7 + 0.7 8 (73%) 2.9 + 1.0<br />

Rap<strong>to</strong>rs 9 (82%) 1.5 + 0.7 5 (45%) 1.0 + 0.4<br />

____________________________________________________________________________<br />

18


Table 6. Pearson cor<strong>relation</strong> coefficients between preda<strong>to</strong>r <strong>in</strong>dices (log e (<strong>in</strong>dex + 1) <strong>in</strong> a) 1995<br />

(14 forests) and b) 2009 (16 forests). Significant <strong>relation</strong>ships are given <strong>in</strong> bold, * P


Table 7. Effects <strong>of</strong> forest and year on <strong>capercaillie</strong> breed<strong>in</strong>g success from a generalised l<strong>in</strong>ear<br />

model with both forest and year as fixed effects. Tests for differences <strong>in</strong> breed<strong>in</strong>g success<br />

between <strong>the</strong> two periods were made from n<strong>in</strong>e forests counted <strong>in</strong> both periods.<br />

_______________________________________________________________________<br />

Forest<br />

Year<br />

Response variable Period F df P F df P____<br />

Chicks per <strong>hen</strong> 1991-95 2.17 13,42 0.03 3.07 4,42 0.03<br />

2005-09 1.46 13,45 0.17 9.56 4,45 0.001<br />

Difference 8.47 1,66 0.006<br />

Broods per <strong>hen</strong> 1991-95 1.74 13,42 0.09 3.20 4,42 0.02<br />

2005-09 1.91 13,45 0.06 12.53 4,45 0.001<br />

Difference 4.54 1,66 0.04<br />

Mean brood size 1991-95 2.38 13,34 0.02 1.59 4,34 0.20<br />

2005-09 0.67 12,29 0.77 0.93 4,29 0.46<br />

Difference 7.21 1,52 0.01<br />

__________________________________________________________________<br />

20


Table 8. Mean breed<strong>in</strong>g success <strong>of</strong> <strong>capercaillie</strong> predicted from generalised l<strong>in</strong>ear models with<br />

forest and year as fixed effects <strong>in</strong> forests where preda<strong>to</strong>r <strong>in</strong>dices were obta<strong>in</strong>ed ei<strong>the</strong>r <strong>in</strong> <strong>the</strong><br />

period 1991-95 (n=14 forests) or 2005-09 (n=13 forests, no <strong>hen</strong>s were encountered <strong>in</strong> three<br />

additional forests (J, K and U) and were excluded). (SE) are based on <strong>the</strong> residual deviance and<br />

s<strong>in</strong>ce <strong>the</strong> model is not l<strong>in</strong>ear are approximated.<br />

____________________________________________________________________________<br />

Chicks per <strong>hen</strong> Broods per <strong>hen</strong> Brood size<br />

Forest 1991-95 2005-09 1991-95 2005-09 1991-95 2005-09_<br />

A 1.1(0.3) 0.5(0.1) 0.37(0.08) 0.22(0.04) 2.9(0.3) 1.9(0.3)<br />

B - 1.3(0.6) - 0.60(0.16) - 2.0(0.6)<br />

C 0.9(0.7) - 0.25(0.23) - 3.3(1.2) -<br />

E 1.4(0.5) - 0.67(0.12) - 2.1(0.3) -<br />

G 0.8(0.3) 0.6(0.2) 0.44(0.10) 0.31(0.08) 1.8(0.3) 1.8(0.4)<br />

H 1.4(0.5) 0.0 0.41(0.14) 0.00 3.3(0.5) -<br />

I 0.4(0.2) 1.1(0.9) 0.26(0.10) 0.44(0.21) 1.7(0.4) 2.3(1.3)<br />

J 0.7(0.2) - 0.32(0.09) - 2.2(0.3) -<br />

K 0.2(0.2) - 0.13(0.09) - 1.8(0.6) -<br />

L 0.9(0.2) 0.3(0.2) 0.41(0.09) 0.20(0.11) 2.1(0.3) 1.2(0.7)<br />

N - 1.1(0.2) - 0.44(0.06) - 2.3(0.3)<br />

Q 2.1(0.7) 0.7(0.3) 0.68(0.16) 0.36(0.11) 3.1(0.5) 1.7(0.5)<br />

R 0.2(0.2) - 0.21(0.16) - 1.0(0.5) -<br />

S 1.2(0.4) 0.6(0.2) 0.45(0.11) 0.32(0.06) 2.8(0.4) 1.2(0.6)<br />

U 0.3(0.2) - 0.17(0.10) - 1.7(0.5) -<br />

W - 0.4(0.2) - 0.15(0.08) - 2.9(1.0)<br />

X - 0.5(0.3) - 0.28(0.13) - 1.7(0.7)<br />

Y - 0.3(0.2) - 0.21(0.11) - 1.2(0.6)<br />

Z 1.8(0.5) 1.1(0.3) 0.60(0.13) 0.48(0.09) 2.9(0.4) 2.3(0.4)<br />

Forest means 1.00(0.14) 0.43(0.16) 0.41(0.03) 0.29(0.04) 2.46(0.12) 1.91(0.12)<br />

____________________________________________________________________________<br />

21


Table 9. Three measures <strong>of</strong> mean <strong>capercaillie</strong> breed<strong>in</strong>g success <strong>in</strong> <strong>relation</strong> <strong>to</strong> <strong>in</strong>dices <strong>of</strong><br />

preda<strong>to</strong>r abundance (log e (<strong>in</strong>dex + 1) <strong>in</strong> 14 forests <strong>in</strong> period 1 (1991-95) and 13 forests <strong>in</strong> period<br />

2 (2005-09). Measures are slopes from l<strong>in</strong>ear regressions (SE). Significant <strong>relation</strong>ships are<br />

given <strong>in</strong> bold, * P


Table 10. Changes <strong>in</strong> three measures <strong>of</strong> <strong>capercaillie</strong> breed<strong>in</strong>g success (log e success <strong>in</strong>dex)<br />

between <strong>the</strong> periods 1991-95 and 2005-09 <strong>in</strong> <strong>relation</strong> <strong>to</strong> changes <strong>in</strong> log e preda<strong>to</strong>r <strong>in</strong>dices<br />

between <strong>the</strong> same periods <strong>in</strong> eight forests. Values presented are slopes from l<strong>in</strong>ear regressions<br />

(SE). No <strong>relation</strong>ships were significant.<br />

____________________________________________________________________________<br />

Chicks per <strong>hen</strong> Broods per <strong>hen</strong> Brood size<br />

____________________________________________________________________________<br />

Fox -0.198 (0.453) -0.123 (0.258) 0.073 (0.155)<br />

Marten 0.022 (0.142) 0.017 (0.081) -0.016 (0.048)<br />

Crow -0.081 (0.296) -0.056 (0.169) 0.003 (0.100)<br />

Rap<strong>to</strong>r -0.167 (0.282) -0.091 (0.162) 0.014 (0.106)<br />

____________________________________________________________________________<br />

23


Table 11. Mean (+ SE) <strong>hen</strong> <strong>capercaillie</strong> density <strong>in</strong>dices (<strong>hen</strong>s km -2 ) predicted from generalised<br />

l<strong>in</strong>ear models with forest and year as fixed effects <strong>in</strong> forests where preda<strong>to</strong>r <strong>in</strong>dices were<br />

obta<strong>in</strong>ed <strong>in</strong> ei<strong>the</strong>r <strong>the</strong> period 1991-95 (n=14 forests) and / or 2005-09 (n=16 forests). SE are<br />

based on <strong>the</strong> residual deviance and s<strong>in</strong>ce <strong>the</strong> model is not l<strong>in</strong>ear are approximated.<br />

_________________________________________________________________<br />

Hen density (birds km -2 )<br />

Forest 1991-95 2005-09<br />

A 2.7 + 0.4 -<br />

B - 0.6 + 0.2<br />

C 0.6 + 0.3 1.5 + 0.8<br />

E 1.9 + 0.4 -<br />

G 7.4 + 1.3 4.8 + 0.9<br />

H 3.7 + 0.9 0.1 + 0.1<br />

I 2.7 + 0.5 0.5 + 0.2<br />

J 2.0 + 0.5 0<br />

K 2.0 + 0.5 0<br />

L 4.9 + 0.8 4.5 + 0.7<br />

N - 2.1 + 0.3<br />

Q 9.7 + 2.8 4.6 + 1.2<br />

R 4.1 + 1.3 -<br />

S 2.0 + 0.4 1.5 + 0.2<br />

U 7.8 + 1.8 0<br />

W - 0.6 + 0.1<br />

X - 5.0 + 1.5<br />

Y - 1.6 + 0.4<br />

Z 1.0 + 0.2 0.7 + 0.1<br />

_____________________________________________________________<br />

Mean from GLM output 4.2 + 0.5 1.8 + 0.3<br />

Effect <strong>of</strong> forest F 13,42 = 9.63, P < 0.001 F 15,45 = 12.08, P < 0.001<br />

Effect <strong>of</strong> year F 4,42 = 1.42, P = 0.25 F 4,45 = 1.74, P = 0.16<br />

24


Table 12. Hen <strong>capercaillie</strong> density <strong>in</strong>dices (birds km -2 ) <strong>in</strong> <strong>relation</strong> <strong>to</strong> four preda<strong>to</strong>r <strong>in</strong>dices (log e<br />

(<strong>in</strong>dex +1)) dur<strong>in</strong>g <strong>the</strong> periods 1991-95 (n = 14 forests) and 2005-09 (n = 15 forests) and<br />

changes <strong>in</strong> <strong>hen</strong> density <strong>in</strong>dex (log e (density + 0.1)) <strong>in</strong> <strong>relation</strong> <strong>to</strong> changes <strong>in</strong> preda<strong>to</strong>r <strong>in</strong>dices<br />

between <strong>the</strong> two periods (n = 11 forests). Values are slopes from l<strong>in</strong>ear regressions (SE).<br />

Significant <strong>relation</strong>ships are given <strong>in</strong> bold, * P < 0.05, ** P < 0.01.<br />

_________________________________________________________________________<br />

Mean <strong>hen</strong> densities<br />

1991-95 2005-09 Change_______<br />

Fox 0.268 (0.114) * -0.840 (0.288) * -0.930 (0.308) *<br />

Marten 0.078 (0.083) 0.402 (0.128) ** 0.156 (0.150)<br />

Crow -0.119 (0.359) -0.915 (0.406) * -0.424 (0.303)<br />

Rap<strong>to</strong>r -0.562 (0.325) -1.834 (0.502) ** -0.715 (0.232) *<br />

____________________________________________________________________________<br />

25


FIGURES<br />

Figure 1. Location <strong>of</strong> <strong>the</strong> 19 forests <strong>in</strong> which <strong>preda<strong>to</strong>rs</strong> were surveyed <strong>in</strong> ei<strong>the</strong>r 1995 and / or<br />

2009 and <strong>capercaillie</strong> were counted.<br />

26


Figure 2. Capercaillie breed<strong>in</strong>g success (chicks per <strong>hen</strong>) based on outputs from Poisson<br />

regressions <strong>in</strong>volv<strong>in</strong>g forest and year as fixed effects <strong>in</strong> <strong>the</strong> period 2005-09 and <strong>in</strong>dices <strong>of</strong><br />

preda<strong>to</strong>r (log e (<strong>in</strong>dex + 0.1)) <strong>in</strong> 2009 <strong>in</strong> 13 forests. The fitted l<strong>in</strong>e is from a l<strong>in</strong>ear regression.<br />

a) Carrion crow r 2 = 0.33<br />

1.5<br />

Chicks per <strong>hen</strong><br />

1.0<br />

0.5<br />

0.0<br />

-2.5 -1.0 0.5 2.0<br />

Crow <strong>in</strong>dex<br />

b) Rap<strong>to</strong>rs r 2 = 0.04<br />

1.5<br />

Chicks per <strong>hen</strong><br />

1.0<br />

0.5<br />

0.0<br />

-2.5 -1.5 -0.5 0.5 1.5<br />

Rap<strong>to</strong>r <strong>in</strong>dex<br />

27


c) Fox r 2 = 0.01<br />

1.5<br />

Chicks per <strong>hen</strong><br />

1.0<br />

0.5<br />

0.0<br />

1.5 2.2 2.9 3.6 4.3 5.0<br />

Fox <strong>in</strong>dex<br />

d) P<strong>in</strong>e marten r 2 = 0.09<br />

1.5<br />

Chicks per <strong>hen</strong><br />

1.0<br />

0.5<br />

0.0<br />

2 3 4 5 6<br />

Marten <strong>in</strong>dex<br />

28


Figure 3. Capercaillie <strong>hen</strong> density <strong>in</strong>dices (log (<strong>hen</strong>s km -2 + 0.1)) <strong>in</strong> <strong>the</strong> period 2005-09 and<br />

preda<strong>to</strong>r <strong>in</strong>dices (log e (<strong>in</strong>dex + 0.1)) <strong>in</strong> 2009 from 16 forests. The fitted l<strong>in</strong>es are from l<strong>in</strong>ear<br />

regressions.<br />

a) Carrion crow r 2 = 0.28<br />

2.0<br />

Hen density<br />

0.5<br />

-1.0<br />

-2.5<br />

-2.5 -1.5 -0.5 0.5 1.5 2.5<br />

Crow <strong>in</strong>dex<br />

b) Rap<strong>to</strong>rs r 2 = 0.49<br />

2.0<br />

Hen density<br />

0.5<br />

-1.0<br />

-2.5<br />

-2.5 -1.5 -0.5 0.5 1.5<br />

Rap<strong>to</strong>r <strong>in</strong>dex<br />

29


c) Fox r 2 = 0.37<br />

2.0<br />

Hen density<br />

0.5<br />

-1.0<br />

-2.5<br />

1.5 2.2 2.9 3.6 4.3 5.0<br />

Fox <strong>in</strong>dex<br />

d) P<strong>in</strong>e marten r2 = 0.41<br />

2.0<br />

Hen density<br />

0.5<br />

-1.0<br />

-2.5<br />

-2.5 -0.8 0.9 2.6 4.3 6.0<br />

Marten <strong>in</strong>dex<br />

30


e) P<strong>in</strong>e marten, with outlier po<strong>in</strong>t excluded<br />

2<br />

1<br />

Hen density<br />

0<br />

-1<br />

-2<br />

-3<br />

0 2 4 6<br />

Marten <strong>in</strong>dex<br />

31


Figure 4. Changes <strong>in</strong> <strong>capercaillie</strong> <strong>hen</strong> density <strong>in</strong>dices(log (<strong>hen</strong>s km -2 + 0.1) between 1991-95<br />

and 2005-09 and changes <strong>in</strong> <strong>in</strong>dices <strong>of</strong> preda<strong>to</strong>r abundance (log e (<strong>in</strong>dex + 0.1)) <strong>in</strong> <strong>the</strong> same 11<br />

forests over <strong>the</strong> same period. The fitted l<strong>in</strong>es are from l<strong>in</strong>ear regressions.<br />

a) Carrion crow r 2 = 0.16<br />

1.0<br />

Change <strong>in</strong> <strong>hen</strong> <strong>in</strong>dex<br />

-0.1<br />

-1.2<br />

-2.3<br />

-3.4<br />

-4.5<br />

-3.5 -2.4 -1.3 -0.2 0.9 2.0<br />

Change <strong>in</strong> crow <strong>in</strong>dex<br />

b) Rap<strong>to</strong>rs r 2 = 0.37<br />

1.0<br />

Change <strong>in</strong> <strong>hen</strong> <strong>in</strong>dex<br />

-0.1<br />

-1.2<br />

-2.3<br />

-3.4<br />

-4.5<br />

-3.5 -2.5 -1.5 -0.5 0.5 1.5<br />

Change <strong>in</strong> rap<strong>to</strong>r <strong>in</strong>dex<br />

32


c) Fox r 2 = 0.31<br />

1.0<br />

Change <strong>in</strong> <strong>hen</strong> <strong>in</strong>dex<br />

-0.1<br />

-1.2<br />

-2.3<br />

-3.4<br />

-4.5<br />

-1 0 1 2 3<br />

Change <strong>in</strong> fox <strong>in</strong>dex<br />

d) P<strong>in</strong>e marten r 2 = 0.16<br />

1.0<br />

Change <strong>in</strong> <strong>hen</strong> <strong>in</strong>dex<br />

-0.1<br />

-1.2<br />

-2.3<br />

-3.4<br />

-4.5<br />

-4.0 -1.8 0.4 2.6 4.8 7.0<br />

Change <strong>in</strong> marten <strong>in</strong>dex<br />

33


www.snh.gov.uk<br />

© Scottish Natural Heritage 2011<br />

ISBN: 978-1-85397-701-5<br />

Policy and Advice Direc<strong>to</strong>rate, Great Glen House,<br />

Leachk<strong>in</strong> Road, Inverness IV3 8NW<br />

T: 01463 725000<br />

You can download a copy <strong>of</strong> this publication from <strong>the</strong> SNH website.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!