11.07.2014 Views

Cryptanalysis of RSA Factorization - Library(ISI Kolkata) - Indian ...

Cryptanalysis of RSA Factorization - Library(ISI Kolkata) - Indian ...

Cryptanalysis of RSA Factorization - Library(ISI Kolkata) - Indian ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

65 4.1 Theoretical Result<br />

Hence the required result.<br />

Now we may proceed to our main result for this section.<br />

Theorem 4.2. Suppose that n ≥ 2 and (e 1 ,...,e n ) are n <strong>RSA</strong> encryption exponents<br />

with common modulus N. Also suppose that gcd(e i ,e j ) = 1 for all<br />

i ≠ j where 1 ≤ i,j ≤ n. Let d 1 ,...,d n be the corresponding decryption exponents<br />

with d 1 ,...,d n < N δ . Then, under Assumption 1, one can factor N in<br />

poly{logN,exp(n)} time if<br />

⎧<br />

⎪⎨<br />

δ <<br />

⎪⎩<br />

0.422 for n = 2<br />

3n−1<br />

4n+4<br />

for n ≥ 3<br />

Pro<strong>of</strong>. We have, e 1 d 1 = 1 + k 1 (N + r), e 2 d 2 = 1 + k 2 (N + r), ..., e n d n = 1 +<br />

k n (N+r), where r = −p−q+1. Let ∏ n<br />

i=1 e i = E. Multiplying the n equations by<br />

E<br />

e 1<br />

, E e 2<br />

,..., E e n<br />

respectively, and then subtracting all the other equations from the<br />

first one, we get<br />

E<br />

(<br />

d 1 −<br />

)<br />

n∑<br />

d i = E −<br />

e 1<br />

i=2<br />

n∑<br />

j=2<br />

(<br />

E E<br />

+(N +r) k 1 −<br />

e j e 1<br />

n∑<br />

j=2<br />

)<br />

E<br />

k j .<br />

e j<br />

Now, we want to find a solution (d 1 −d 2 −···−d n ,k 1 ,...,k n ,r) <strong>of</strong> the polynomial<br />

f(x 1 ,x 2 ,...,x n+2 ) = Ex 1 −<br />

(<br />

E<br />

e 1<br />

−<br />

n∑<br />

j=2<br />

) (<br />

E E<br />

−(N +x n+2 ) x 2 −<br />

e j e 1<br />

n∑<br />

j=2<br />

)<br />

E<br />

x j+1 .<br />

e j<br />

Note that f(x 1 ,x 2 ,...,x n+2 ) is an irreducible polynomial as the encryption exponents<br />

are relatively prime. Since d i < N δ for 1 ≤ i ≤ n, |d 1 − ∑ n<br />

i=2 d i| < N δ ,<br />

treating n as a constant and neglecting it. Also, we have |r| < ( 1+ √ 2 ) N 1 2 and<br />

k i < N δ for 1 ≤ i ≤ n. Let X 1 = X 2 = ··· = X n+1 = N δ and X n+2 = N 1 2. Then<br />

X 1 ,X 2 ,...,X n+2 aretheupperbounds<strong>of</strong>(d 1 − ∑ n<br />

i=2 d i),k 1 ,...,k n ,r respectively,<br />

neglecting constant terms. Using the extended strategy <strong>of</strong> Section 2.6.2, we define<br />

S = ⋃<br />

0≤j≤t<br />

{x i 1<br />

1 x i 2<br />

2 ···x i n+2+j<br />

n+2 : x i 1<br />

1 x i 2<br />

2 ···x i n+2<br />

n+2 is a monomial <strong>of</strong> f m }<br />

M = {monomials <strong>of</strong> x i 1<br />

1 x i 2<br />

2 ···x i n+2<br />

n+2 ·f : x i 1<br />

1 x i 2<br />

2 ···x i n+2<br />

n+2 ∈ S},

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!