11.07.2014 Views

Cryptanalysis of RSA Factorization - Library(ISI Kolkata) - Indian ...

Cryptanalysis of RSA Factorization - Library(ISI Kolkata) - Indian ...

Cryptanalysis of RSA Factorization - Library(ISI Kolkata) - Indian ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapter 7: Approximate Integer Common Divisor Problem 128<br />

X = N α+β as an upper bound <strong>of</strong> x 0 q 2 . Now we consider the shift polynomials<br />

g i (x) = (N 2 +x) i N m−i<br />

1 for 0 ≤ i ≤ m,<br />

g ′ i(x) = x i (N 2 +x) m for 1 ≤ i ≤ t, (7.13)<br />

where m,t are fixed non-negative integers. Clearly,<br />

g i (x 0 q 2 ) ≡ g ′ i(x 0 q 2 ) ≡ 0 mod (p m 1 ).<br />

WeconstructthelatticeLspannedbythecoefficientvectors<strong>of</strong>thepolynomials<br />

g i (xX),g ′ i(xX) in Equation (7.13). One can check that the dimension <strong>of</strong> the lattice<br />

L is ω = m+t+1 and the determinant <strong>of</strong> L is<br />

2 N m(m+1)<br />

2<br />

det(L) = X (m+t)(m+t+1)<br />

2 N m(m+1)<br />

2<br />

1<br />

≈ X (m+t)(m+t+1)<br />

2 N m(m+1)<br />

2 . (7.14)<br />

Here, P 1 = X m(m+1)<br />

1 and P 2 = X mt+t(t+1) 2 (the general expressions <strong>of</strong> P 1 ,P 2<br />

are presented in Lemma 7.7). Using Lattice reduction on L by the LLL algorithm<br />

[77], one can find a nonzero vector b whose norm ||b|| satisfies<br />

||b|| ≤ 2 ω−1<br />

4 (det(L))<br />

1<br />

ω .<br />

Thevectorbisthecoefficientvector<strong>of</strong>thepolynomialh(xX)with||h(xX)|| = ||b||,<br />

where h(x) is the integer linear combination <strong>of</strong> the polynomials g i (x),g ′ i(x). Hence<br />

h(x 0 q 2 ) ≡ 0 mod (p m 1 ). To apply Theorem 2.23 and Lemma 2.20 for finding the<br />

integer root <strong>of</strong> h(x), we need<br />

2 ω−1<br />

4 (det(L))<br />

1<br />

ω <<br />

p m 1<br />

√ ω<br />

. (7.15)<br />

Neglectingsmallconstantterms, wecanrewrite(7.15)asdet(L) < p mω<br />

1 . Substitutingtheexpression<br />

<strong>of</strong>det(L) from Equation (7.14) and usingX = N α+β ,p 1 ≈ N 1−α<br />

we get<br />

(<br />

(m+t)(m+t+1)<br />

(α+β) < m (1−α)(m+t+1)− m+1 )<br />

. (7.16)<br />

2<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!