11.07.2014 Views

Cryptanalysis of RSA Factorization - Library(ISI Kolkata) - Indian ...

Cryptanalysis of RSA Factorization - Library(ISI Kolkata) - Indian ...

Cryptanalysis of RSA Factorization - Library(ISI Kolkata) - Indian ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapter 6: Implicit <strong>Factorization</strong> 108<br />

at the middle leaving the γ 1 log 2 N many MSBs and γ 2 log 2 N many LSBs. Then<br />

under Assumption 1, we can factor both N 1 ,N 2 if there exist τ 1 ,τ 2 ≥ 0 for which<br />

h(τ 1 ,τ 2 ,α,γ 1 ,γ 2 ) < 0 where γ = max{γ 1 ,γ 2 } and<br />

(<br />

h(τ 1 ,τ 2 ,α,γ 1 ,γ 2 ) =<br />

3τ 1 τ 2 + 7 3 τ 1 + 7 3 τ 2 + 17 )<br />

α<br />

24<br />

(<br />

+ τ1τ 2 2 + 3 2 τ 1τ 2 + 3 4 τ2 1 + 2 3 τ 1 + 2 3 τ 2 + 1 )<br />

6<br />

(<br />

+ τ 1 τ2 2 + 3 2 τ 1τ 2 + 3 4 τ2 2 + 2 3 τ 1 + 2 3 τ 2 + 1 6<br />

−<br />

(<br />

τ 1 τ 2 + τ 1<br />

2 + τ 2<br />

2 + 1 8<br />

)<br />

(1+γ) < 0.<br />

γ 1<br />

)<br />

γ 2<br />

Pro<strong>of</strong>. We can write p 1 = N 1−α−γ 1<br />

p 10 + N γ 2<br />

p 11 + p 12 , and p 2 = N 1−α−γ 1<br />

p 20 +<br />

N γ 2<br />

p 11 + p 22 . So p 1 − p 2 = N 1−α−γ 1<br />

(p 10 − p 20 ) + (p 12 − p 22 ). Since p 1 = N 1<br />

q 1<br />

and<br />

p 2 = N 2<br />

q 2<br />

we have N 1 q 2 −N 2 q 1 −N 1−α−γ 1<br />

(p 10 −p 20 )q 1 q 2 −(p 12 −p 22 )q 1 q 2 = 0. Thus<br />

we need to solve f ′ (x,y,z,v) = N 1 x−N 2 y −N 1−α−γ 1<br />

xyz −xyv = 0 whose root<br />

corresponding to x,y,z,v are q 2 ,q 1 ,p 10 −p 20 ,p 12 −p 22 respectively. Since there is<br />

no constant term in f ′ , we define a new polynomial<br />

f(x,y,z,v) = f ′ (x−1,y,z,v)<br />

= N 1 x−N 2 y −N 1 −N 1−α−γ 1<br />

xyz<br />

+N 1−α−γ 1<br />

yz −xyv +yv.<br />

The root (x 0 ,y 0 ,z 0 ,v 0 ) <strong>of</strong> f is (q 2 +1,q 1 ,p 10 −p 20 ,p 12 −p 22 ). Let X = N α ,Y =<br />

N α ,Z = N γ 1<br />

,V = N γ 2<br />

. Then we can take X,Y,Z,V as the upper bound <strong>of</strong><br />

x 0 ,y 0 ,z 0 ,v 0 respectively.<br />

Following the extended strategy <strong>of</strong> Section 2.6.2, we have the following definitions<br />

<strong>of</strong> S,M, where m,t 1 ,t 2 are non-negative integers.<br />

S =<br />

⋃<br />

0≤j 1 ≤t 1 ,0≤j 2 ≤t 2<br />

{x i 1<br />

y i 2<br />

z i 3+j 1<br />

v i 4+j 2<br />

: x i 1<br />

y i 2<br />

z i 3<br />

v i 4<br />

is a monomial <strong>of</strong> f m },<br />

M = {monomials <strong>of</strong> x i 1<br />

y i 2<br />

z i 3<br />

v i 4<br />

f : x i 1<br />

y i 2<br />

z i 3<br />

v i 4<br />

∈ S}.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!