11.07.2014 Views

Cryptanalysis of RSA Factorization - Library(ISI Kolkata) - Indian ...

Cryptanalysis of RSA Factorization - Library(ISI Kolkata) - Indian ...

Cryptanalysis of RSA Factorization - Library(ISI Kolkata) - Indian ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

105 6.1 Implicit Factoring <strong>of</strong> Two Large Integers<br />

f(x,y,z,v,t) = f ′ (x,y + 1,z,v,t) = N 1 N 3 + N 1 N 3 y − N 1 N 2 z − N 3 N γ 2<br />

xyv −<br />

N 3 N γ 2<br />

xv+N 2 N γ 2<br />

xzt. The root (x 0 ,y 0 ,z 0 ,v 0 ,t 0 ) <strong>of</strong> f is (q 1 ,q 2 −1,q 3 ,P 1 −P ′ 1,P 1 −<br />

P ′′<br />

1). The idea <strong>of</strong> modifying the polynomial with a constant term was introduced<br />

in [28, Appendix A] and later used in [65] which we follow here.<br />

Let X,Y,Z,V,T be the upper bounds <strong>of</strong> q 1 ,q 2 −1,q 3 ,P 1 −P ′ 1,P 1 −P ′′<br />

1 respectively.<br />

As given in the statement <strong>of</strong> this theorem, one can take X = N α ,Y =<br />

N α ,Z = N α ,V = N β ,T = N β . Following the basic strategy <strong>of</strong> Section 2.6.2 ,<br />

S = {x i 1<br />

y i 2<br />

z i 3<br />

v i 4<br />

t i 5<br />

: x i 1<br />

y i 2<br />

z i 3<br />

v i 4<br />

t i 5<br />

is a monomial <strong>of</strong> f m },<br />

M = {monomials <strong>of</strong> x i 1<br />

y i 2<br />

z i 3<br />

v i 4<br />

t i 5<br />

f : x i 1<br />

y i 2<br />

z i 3<br />

v i 4<br />

t i 5<br />

∈ S}.<br />

It follows that,<br />

x i 1<br />

y i 2<br />

z i 3<br />

v i 4<br />

t i 5<br />

∈ S ⇔<br />

x i 1<br />

y i 2<br />

z i 3<br />

v i 4<br />

t i 5<br />

∈ M ⇔<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

⎧<br />

⎪⎨<br />

⎪⎩<br />

i 3 = 0,...,m,<br />

i 5 = 0,...,i 3 ,<br />

i 4 = 0,...,m−i 3 ,<br />

i 2 = 0,...,m−i 3 ,<br />

i 1 = i 4 +i 5 ,<br />

i 3 = 0,...,m+1,<br />

i 5 = 0,...,i 3 ,<br />

i 4 = 0,...,m+1−i 3 ,<br />

i 2 = 0,...,m+1−i 3 ,<br />

i 1 = i 4 +i 5 .<br />

From [65], we know that these polynomials can be found by lattice reduction if<br />

X s 1<br />

Y s 2<br />

Z s 3<br />

V s 4<br />

T s 5<br />

< W s , (6.5)<br />

where s = |S|, s j = ∑ x i 1y i 2z i 3v i 4t i 5∈M\S i j,<br />

for j = 1,2,3,4,5, and W = ‖f(xX,yY,zZ,vV,tT)‖ ∞ ≥ N 1 N 3 Y ≈ N 2+α .<br />

Thus, we have the following.<br />

s =<br />

m∑<br />

i 3<br />

∑<br />

m−i<br />

∑ 3<br />

m−i<br />

∑ 3<br />

i 3 =0 i 5 =0 i 4 =0 i 2 =0<br />

1,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!