11.07.2014 Views

Nano-magnetism - NCLT

Nano-magnetism - NCLT

Nano-magnetism - NCLT

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Nano</strong><strong>magnetism</strong><br />

Kristen Buchanan<br />

Materials Science Division<br />

and<br />

Center for <strong>Nano</strong>scale Materials<br />

Argonne National Laboratory<br />

<strong>NCLT</strong> <strong>Nano</strong>workshop<br />

July 28, 2006


<strong>Nano</strong>science & <strong>Nano</strong>technology<br />

• What is nanoscience? <strong>Nano</strong><strong>magnetism</strong>?<br />

• Why is it interesting?<br />

• How do we make nanoparticles?<br />

• How can we see them?<br />

• What does the future hold?<br />

Single Atom<br />

Bulk Material<br />

<strong>Nano</strong>cluster<br />

<strong>NCLT</strong> <strong>Nano</strong>-workshop, Argonne National Laboratory<br />

July 28, 2006


<strong>NCLT</strong> <strong>Nano</strong>-workshop, Argonne National Laboratory<br />

July 28, 2006<br />

What Are “<strong>Nano</strong>materials”?<br />

Definition based on structure<br />

Structure is different from what you<br />

get in bulk materials<br />

Definition based on properties<br />

Properties are different from what<br />

you get in bulk materials<br />

yellow silver<br />

yellow silver<br />

Structured on a scale of ~10-1000 atoms<br />

Arrays of gold nanoparticles<br />

Kiely et al. Nature 396, 444 (1998).<br />

red gold<br />

Properties different from atoms or<br />

molecules, different from bulk<br />

Yellow silver nanoparticle sample.


When did the nano-revolution begin?<br />

“There’s Plenty of Room<br />

at the Bottom”<br />

Cup of Lycurgus: 4th century A.D.<br />

British Museum<br />

• Richard Feynman’s speech in 1959<br />

• Key to progress: better tools<br />

http://www.thebritishmuseum.ac.uk/science/lycurguscup/sr-lycugus-p1.html<br />

<strong>NCLT</strong> <strong>Nano</strong>-workshop, Argonne National Laboratory<br />

July 28, 2006


<strong>Nano</strong><strong>magnetism</strong><br />

• Create<br />

• Explore<br />

• Understand<br />

• Ancient times: Greeks and Chinese discovered<br />

an iron-rich mineral known as lodestone<br />

•Early compass 1000 AD<br />

1600: Diagram from William Gilbert’s<br />

book "De Magnete” or “On the Magnet”<br />

Present day: Magnetic<br />

vortex in a micron-sized dot<br />

<strong>NCLT</strong> <strong>Nano</strong>-workshop, Argonne National Laboratory<br />

July 28, 2006


Magnets in Everyday Life<br />

• Permanent Magnets<br />

Motor<br />

http://fly.hiwaay.net/~palmer/motor.html<br />

Magnitude 9.0 Earthquake, Northern Sumatra,<br />

December 26, 2004<br />

U.S. Geological Survey, National Earthquake<br />

Information Center<br />

http://www.howstuffworks.com/<br />

<strong>NCLT</strong> <strong>Nano</strong>-workshop, Argonne National Laboratory<br />

July 28, 2006


<strong>NCLT</strong> <strong>Nano</strong>-workshop, Argonne National Laboratory<br />

July 28, 2006<br />

Magnets in Everyday Life<br />

• Storage Media<br />

Magnetic tracks on a 5 Gb hard drive<br />

(http://www.pacificnanotech.com/mag<br />

netic-microscopy_single.html)<br />

• Medical: MRI<br />

40 μm<br />

In 2003, there were ~ 10,000 MRI units<br />

worldwide, and ~ 75 million MRI scans performed.


Moore’s Law<br />

Year<br />

<strong>NCLT</strong> <strong>Nano</strong>-workshop, Argonne National Laboratory<br />

July 28, 2006


<strong>NCLT</strong> <strong>Nano</strong>-workshop, Argonne National Laboratory<br />

July 28, 2006<br />

<strong>Nano</strong><strong>magnetism</strong> & Spintronics<br />

• Giant Magnetoresistance (GMR)<br />

Electron:<br />

- -<br />

High Resistance<br />

Low Resistance<br />

G. A. Prinz, Science 282, 1660, 1998<br />

40 μm


MRAM<br />

• Instant-on computers<br />

• Tiny, reliable portable<br />

devices<br />

– Cell phones<br />

– MP3 players<br />

http://www.research.ibm.com/<br />

<strong>NCLT</strong> <strong>Nano</strong>-workshop, Argonne National Laboratory<br />

July 28, 2006


<strong>NCLT</strong> <strong>Nano</strong>-workshop, Argonne National Laboratory<br />

July 28, 2006<br />

Bio- + Magnetic = ♥<br />

The magnetic nature of particle is used as a mechanism for:<br />

•Targeted delivery<br />

•Detection<br />

•Manipulation<br />

•Functional control<br />

Bio-??? OF INTEREST<br />

MAGNETIC NANOPARTICLES


<strong>NCLT</strong> <strong>Nano</strong>-workshop, Argonne National Laboratory<br />

July 28, 2006<br />

How do we build nanomaterials?<br />

• Lithography<br />

• Chemical synthesis, self-assembly


Fabrication: Top-Down<br />

Polymer<br />

“PMMA”<br />

Plexiglas<br />

Spin Coat<br />

Expose<br />

Develop<br />

Metallization<br />

Lift-off<br />

1 μm<br />

<strong>NCLT</strong> <strong>Nano</strong>-workshop, Argonne National Laboratory<br />

July 28, 2006


<strong>NCLT</strong> <strong>Nano</strong>-workshop, Argonne National Laboratory<br />

July 28, 2006<br />

Bottom-up: Self-assembly<br />

• Self-assembled 3D arrays of 6-nm FePt particles<br />

S. Sun, C. B. Murray, D. Weller, L. Folks, A. Moser, Science 287, 1989, 2000


<strong>NCLT</strong> <strong>Nano</strong>-workshop, Argonne National Laboratory<br />

July 28, 2006<br />

<strong>Nano</strong>-Biology<br />

Biology uses nano<br />

<strong>Nano</strong>fabrication using<br />

biology<br />

Remove<br />

DNA<br />

Replace<br />

• Chains of nanomagnets in<br />

magnetotactic bacteria<br />

Dunin-Borkowski et al., Science, 282, 1868, 1998<br />

40 nm<br />

• Magnetic Viruses<br />

Liu et al. J. Magn. Magn. Matter. 2006


Virtual Fab: Micromagnetic Simulations<br />

1.0<br />

(e)<br />

M<br />

H<br />

Magnetization, M/Ms<br />

0.5<br />

0<br />

-0.5<br />

(c)<br />

(d)<br />

-1.0<br />

(a)<br />

(b)<br />

Field, mT<br />

-150 -100 -50 0 50 100 150<br />

H<br />

H<br />

(a) (b) (c) (d) (e)<br />

• Landau-Lifshitz Gilbert equation: dynamic relaxation with damping<br />

OOMMF Project http://math.nist.gov/oommf/<br />

<strong>NCLT</strong> <strong>Nano</strong>-workshop, Argonne National Laboratory<br />

July 28, 2006


<strong>NCLT</strong> <strong>Nano</strong>-workshop, Argonne National Laboratory<br />

July 28, 2006<br />

How can we “see” nanoparticles?<br />

• Optical microscope:<br />

– Can resolve > 1 μm (1000 nm)<br />

– Diffraction-limited<br />

∝<br />

• Resolution wavelength<br />

• Solutions:<br />

– Near-field optics<br />

– Use smaller wavelengths<br />

• X-rays<br />

• Electrons<br />

– Scanning-probe microscopy


<strong>NCLT</strong> <strong>Nano</strong>-workshop, Argonne National Laboratory<br />

July 28, 2006<br />

Magnetic Imaging<br />

N<br />

S<br />

N<br />

S<br />

• Iron fillings show magnetic field lines: early 19th-century imaging tool Freeman<br />

and Choi, Science 294, 1484, 2001


Magneto-optical methods<br />

• Magneto-optical Faraday (transmission)<br />

and Kerr (reflection) effects<br />

– Discovered in 1845 (Faraday) and<br />

1888 (Kerr)<br />

– Rotation in polarization proportional to<br />

magnetization<br />

– Imaging<br />

– Hysteresis<br />

15 μm<br />

Th. Lacoste, Th. Huser and H. Heinzelmann,<br />

Z. Phys. B 104, 183, 1997<br />

<strong>NCLT</strong> <strong>Nano</strong>-workshop, Argonne National Laboratory<br />

July 28, 2006


Side View<br />

Transmission Electron Microscopy<br />

λ ~ 0.0025 nm<br />

3 mm<br />

4 nm<br />

20 nm<br />

Fe <strong>Nano</strong>crysals in SiO 2<br />

Buchanan et al. <strong>Nano</strong>. Lett. 2005<br />

<strong>NCLT</strong> <strong>Nano</strong>-workshop, Argonne National Laboratory<br />

July 28, 2006<br />

Volkov and Zhu, Ultramicroscopy 98, 271, 2003


CNM <strong>Nano</strong>probe at the Advanced<br />

Photon Source<br />

<strong>NCLT</strong> <strong>Nano</strong>-workshop, Argonne National Laboratory<br />

July 28, 2006<br />

30 nm beam: Fresnel zone plate


Photoemission Electron Microscopy (PEEM)<br />

• X-rays and electrons:<br />

– Shine x-rays on sample<br />

– Capture emitted electrons<br />

• Element-specific<br />

• High resolution (50-100 nm)<br />

PEEM images of 1-2 μm tri-layer<br />

nanomagnets (Advanced Light Source)<br />

Buchanan et al. Phys. Rev. B, 72, 134415, 2005<br />

<strong>NCLT</strong> <strong>Nano</strong>-workshop, Argonne National Laboratory<br />

July 28, 2006


Atomic Force Microscopy<br />

AFM image of ferroelectric stripe domains<br />

10nm PbTiO 3 on SrTiO 3<br />

Magnetic vortices in a patterned<br />

ferromagnet<br />

100nm<br />

http://www.msd.anl.gov/<br />

Buchanan et al. Nature Physics 2006<br />

<strong>NCLT</strong> <strong>Nano</strong>-workshop, Argonne National Laboratory<br />

July 28, 2006


Scanning Tunneling Microscopy<br />

http://en.wikipedia.org/wiki/Scanning_tunneling_microscope<br />

• Scan atomically-sharp tip over sample<br />

• Record height/tunneling current information<br />

<strong>NCLT</strong> <strong>Nano</strong>-workshop, Argonne National Laboratory<br />

July 28, 2006


Scanning Tunneling Microscopy<br />

Quantum Corral (IBM)<br />

Writing with Atoms<br />

Eigler & Schweizer, Nature, 1990)<br />

1981: G. Binnig and H. Rohrer (IBM) invented the scanning tunneling microscope<br />

1986: Nobel Prize in Physics:<br />

G. Binnig and H. Rohrer for STM<br />

E. Ruska for designing the first electron microscope<br />

<strong>NCLT</strong> <strong>Nano</strong>-workshop, Argonne National Laboratory<br />

July 28, 2006


Spin Polarized Scanning Tunnelling Microscopy<br />

• Mn monolayer on W(110) measured with a magnetic Fe tip<br />

• Atomic resolution<br />

• Periodic parallel stripes along the [001] direction: antiferromagnetic<br />

configuration (Nolting et al., Nature 405, 767, 2000)<br />

<strong>NCLT</strong> <strong>Nano</strong>-workshop, Argonne National Laboratory<br />

July 28, 2006


Magneto-transport<br />

• Electrical contacts can be attached to<br />

nanomagnets<br />

– Reversal in single element<br />

– Spin transport<br />

Py<br />

Au<br />

1 μm<br />

<strong>NCLT</strong> <strong>Nano</strong>-workshop, Argonne National Laboratory<br />

July 28, 2006<br />

Y. Ji, A. Hoffmann, J. S. Jiang, S. D. Bader,<br />

Appl. Phys. Lett. 85, 6218, 2004


Freezing Time: <strong>Nano</strong>seconds and beyond<br />

• Famous photo by H. Edgerton<br />

– Flash photography: microseconds<br />

<strong>NCLT</strong> <strong>Nano</strong>-workshop, Argonne National Laboratory<br />

July 28, 2006


Pump-probe dynamics<br />

<strong>NCLT</strong> <strong>Nano</strong>-workshop, Argonne National Laboratory<br />

July 28, 2006


Pump-probe dynamics<br />

• Dynamics of <strong>Nano</strong>magnets:<br />

<strong>NCLT</strong> <strong>Nano</strong>-workshop, Argonne National Laboratory<br />

July 28, 2006<br />

– Probe: 0.100 ps (0.1x10 -12 s) laser pulse<br />

– Pump: trigger current pulse in waveguide


<strong>NCLT</strong> <strong>Nano</strong>-workshop, Argonne National Laboratory<br />

July 28, 2006<br />

Time-Resolved Magnetic Imaging<br />

Reversal field<br />

H t<br />

• 10 by 2 µm rectangles of 15-nm thick nickel-iron (Ni 80<br />

Fe 20<br />

)<br />

Freeman and Choi, Science, 294, 1484, 2001


Where will nano make an impact?<br />

Electronics<br />

– Information storage &<br />

processing<br />

– Spintronics<br />

– Photonics<br />

Materials<br />

– Powders, coatings,<br />

composites<br />

– Harder, stronger, dirt<br />

Security<br />

repellant, …<br />

– Sensors<br />

– Protective clothing<br />

– Communications<br />

Energy/Environment<br />

– Solar cells<br />

– Fuel cells<br />

– Remediation<br />

Bio-Medical<br />

– New materials<br />

– Drug delivery<br />

– Diagnostics<br />

<strong>NCLT</strong> <strong>Nano</strong>-workshop, Argonne National Laboratory<br />

July 28, 2006


Conclusions<br />

• <strong>Nano</strong>science<br />

– Create<br />

• Lithographic patterning, self-assembly, …<br />

– Explore and Understand<br />

• Experiment: imaging, dynamics<br />

• Simulation/Theory<br />

– Exciting fundamental research<br />

– New and improved technologies for the future<br />

Center<br />

for<br />

<strong>Nano</strong>scale Materials<br />

at Argonne<br />

<strong>NCLT</strong> <strong>Nano</strong>-workshop, Argonne National Laboratory<br />

July 28, 2006


Further Information<br />

• “When Things Get Small”: 30 min. TV show, 5 Emmy Awards!<br />

– http://www.uctv.tv/getsmall/<br />

• “There’s Plenty of Room at the Bottom”, Feynman’s lecture from 1959<br />

– http://www.zyvex.com/nanotech/feynman.html<br />

• http://nano.anl.gov/<br />

• http://www.discovernano.northwestern.edu/<br />

• National Center for Learning and Teaching of <strong>Nano</strong>scale Science and Engineering<br />

– http://www.nclt.us<br />

• National <strong>Nano</strong>technology Initiative<br />

– http://www.nano.gov/<br />

• http://www.sciencemuseum.org.uk/antenna/nano/<br />

• http://mrsec.wisc.edu/Edetc/<br />

Acknowledgements<br />

Sam Bader, Val Novosad, Axel Hoffmann, Eric Isaacs, Al Meldrum, Mark Freeman,<br />

Steve Volkov, Marcos Grimsditch, Frank Fradin<br />

DOE, NSERC Canada<br />

<strong>NCLT</strong> <strong>Nano</strong>-workshop, Argonne National Laboratory<br />

July 28, 2006

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!