11.07.2014 Views

Manipulation of Light in the Nano World - NCLT

Manipulation of Light in the Nano World - NCLT

Manipulation of Light in the Nano World - NCLT

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

National Center <strong>of</strong> Learn<strong>in</strong>g and Teach<strong>in</strong>g<br />

- <strong>Manipulation</strong> <strong>of</strong> <strong>Light</strong> <strong>in</strong> <strong>the</strong> <strong>Nano</strong> <strong>World</strong><br />

Boyang Liu<br />

Department <strong>of</strong> Electrical Eng<strong>in</strong>eer<strong>in</strong>g and Computer Science


http://policy.iop.org/Policy/<br />

<strong>Nano</strong>technology has become globally<br />

popular. However, it is surrounded by<br />

a state <strong>of</strong> confusion, because it is<br />

different from o<strong>the</strong>r tangible<br />

technologies, and it lacks educational<br />

effort to promote <strong>the</strong> correct image to<br />

society.<br />

One effective way to close gap<br />

between cutt<strong>in</strong>g-edge nanotechnology<br />

research and education is to use<br />

<strong>in</strong>teractive computer simulat<strong>in</strong>g and<br />

model<strong>in</strong>g learn<strong>in</strong>g programs.<br />

Department <strong>of</strong> Electrical Eng<strong>in</strong>eer<strong>in</strong>g and Computer Science


Simulations <strong>of</strong> Double Slits<br />

• Interactive User Interface<br />

Department <strong>of</strong> Electrical Eng<strong>in</strong>eer<strong>in</strong>g and Computer Science


• With <strong>in</strong>teractive user <strong>in</strong>terface, users could choose slit size, slit space and<br />

wavelength <strong>of</strong> <strong>in</strong>cidental light. The simulation is based on real calculation<br />

<strong>of</strong> Electromagnetic field <strong>of</strong> <strong>the</strong> whole region with precise approximations.<br />

Slit size= λ<br />

Slit size=10 λ<br />

Department <strong>of</strong> Electrical Eng<strong>in</strong>eer<strong>in</strong>g and Computer Science


Simulations <strong>of</strong> Photonic Band Gap<br />

http://www.amolf.nl/publications/<strong>the</strong>ses/velikov/<br />

• Simulation <strong>of</strong> PBG is part <strong>of</strong> a<br />

design project <strong>in</strong> <strong>NCLT</strong> <strong>Light</strong><br />

Group. It’s based on real PBG<br />

materials (Polystyrene), which<br />

could be produced by students<br />

<strong>the</strong>mselves. The goal is to make<br />

students be able to produce PBG<br />

materials by <strong>the</strong>mselves, toge<strong>the</strong>r<br />

with <strong>the</strong> real simulation.<br />

Department <strong>of</strong> Electrical Eng<strong>in</strong>eer<strong>in</strong>g and Computer Science


• Introduction:<br />

Photonic band gap (PBG) materials are crystall<strong>in</strong>e structures that<br />

exclude light transmission for specific wavelength ranges, just as<br />

semiconductors exclude electron propagation for certa<strong>in</strong> energy<br />

bands.<br />

• Photonic Bandgap Structure, pre-designed based on real PBG sample:<br />

a) Crystal Structure: Face-Centered Cubic (FCC)<br />

b) Refractive Index <strong>of</strong> PBG material: 1.59<br />

c) Particle Size (Diameter): 258nm<br />

Department <strong>of</strong> Electrical Eng<strong>in</strong>eer<strong>in</strong>g and Computer Science


• Properties <strong>of</strong> Photonic Band Gap Material:<br />

1) λ Input light ≠ λ PBG : Most energy <strong>of</strong> light pass through<br />

λ Input light = λ PBG : Little energy <strong>of</strong> light pass through<br />

2) When <strong>in</strong>cidental angle (α) changes, <strong>the</strong> central wavelength (λ<br />

PBG) <strong>of</strong> PBG material shifts accord<strong>in</strong>gly.<br />

α<br />

TM<br />

PBG Material<br />

TE<br />

Photonic Band Gap Material<br />

Department <strong>of</strong> Electrical Eng<strong>in</strong>eer<strong>in</strong>g and Computer Science


Normal Incident<br />

λ Input light ≠λ PBG (560nm) : most light passes through<br />

Department <strong>of</strong> Electrical Eng<strong>in</strong>eer<strong>in</strong>g and Computer Science


Normal Incident<br />

λ Input light = λ PBG (560nm) : little light pass through<br />

Department <strong>of</strong> Electrical Eng<strong>in</strong>eer<strong>in</strong>g and Computer Science


• Central wavelength Changes with Incidental angle<br />

Incidental<br />

Angle (α)<br />

0 20 24.5 29 34 38 49 55 59.5<br />

λ PBG (nm) 560 556 550 548 523 519 509 494 460<br />

Incident Angle α=38 °, λ PBG shifts from 560nm to 519nm<br />

λ Input light = λ PBG (519nm) : little light pass through<br />

Department <strong>of</strong> Electrical Eng<strong>in</strong>eer<strong>in</strong>g and Computer Science

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!